1
|
Shi J, Liu X, Jiao Y, Tian J, An J, Zou G, Zhuo L. mTOR pathway: A key player in diabetic nephropathy progression and therapeutic targets. Genes Dis 2025; 12:101260. [PMID: 39717716 PMCID: PMC11665407 DOI: 10.1016/j.gendis.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis. It is implicated in diverse signaling pathways and has been observed to partake in the progression of diabetic nephropathy by inhibiting autophagy, promoting inflammation, and increasing oxidative stress. In this academic review, we have consolidated the understanding of the pathological mechanisms associated with four distinct resident renal cell types (podocytes, glomerular mesangial cells, renal tubular epithelial cells, and glomerular endothelial cells), as well as macrophages and T lymphocytes, within a diabetic environment. Additionally, we highlight the research progress in the treatment of diabetic nephropathy with drugs and various molecules interfering with the mTOR signaling pathway, providing a theoretical reference for the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Jingxuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029, China
| | - Xinze Liu
- Beijing University of Chinese Medicine China-Japan Friendship Clinical Medical College, Beijing 100029, China
| | - Yuanyuan Jiao
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China
| | - Jingwei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing 100007, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Jiaqi An
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Clinic Medical College, Peking University, Beijing 100191, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Chen C, Feng C, Luo Q, Zeng Y, Yuan W, Cui Y, Tang Z, Zhang H, Li T, Peng J, Peng L, Xie X, Guo Y, Peng F, Jiang X, Bai P, Qi Z, Dai H. CD5L up-regulates the TGF-β signaling pathway and promotes renal fibrosis. Life Sci 2024; 354:122945. [PMID: 39127319 DOI: 10.1016/j.lfs.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Renal fibrosis is the common final pathway of progressive renal diseases, in which the macrophages play an important role. ELISA was used to detect CD5 antigen-like (CD5L) in serum samples from end-stage renal disease (ESRD), as well as in mice serum with unilateral ureteral occlusion (UUO). Recombinant CD5L was injected into UUO mice to assess renal injury, fibrosis, and macrophage infiltration. The expression of CD5L was significantly upregulated in the serum of patients with ESRD and UUO mice. Histological analysis showed that rCD5L-treated UUO mice had more severe renal injury and fibrosis. Furthermore, rCD5L promoted the phenotypic transfer of monocytes from Ly6Chigh to LyC6low. RCD5L promoted TGF-β signaling pathway activation by promoting Smad2/3 phosphorylation. We used Co-IP to identify HSPA5 interact with CD5L on cell membrane could inhibit the formation of the Cripto/HSPA5 complex, and promote the activation of the TGF-β signaling pathway. The CD5L antibody could reduce the degree of renal fibrosis in UUO mice.
Collapse
Affiliation(s)
- Chao Chen
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qiulin Luo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yingqi Zeng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiawei Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Peiming Bai
- Medical College, Guangxi University, Nanning 530004, China; Department of Urology, Zhongshan Hospital Xiamen University, Xiamen 361000, China.
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Helong Dai
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
4
|
Sloan L, Sen R, Liu C, Doucet M, Blosser L, Katulis L, Kamson DO, Grossman S, Holdhoff M, Redmond KJ, Quon H, Lim M, Eberhart C, Pardoll DM, Hu C, Ganguly S, Kleinberg LR. Radiation immunodynamics in patients with glioblastoma receiving chemoradiation. Front Immunol 2024; 15:1438044. [PMID: 39346903 PMCID: PMC11427284 DOI: 10.3389/fimmu.2024.1438044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction This is a prospective, rigorous inquiry into the systemic immune effects of standard adjuvant chemoradiotherapy, for WHO grade 4, glioblastoma. The purpose is to identify peripheral immunologic effects never yet reported in key immune populations, including myeloid-derived suppressor cells, which are critical to the immune suppressive environment of glioblastoma. We hypothesize that harmful immune-supportive white blood cells, myeloid derived suppressor cells, expand in response to conventionally fractionated radiotherapy with concurrent temozolomide, essentially promoting systemic immunity similar what is seen in chronic diseases like diabetes and heart disease. Methods 16 patients were enrolled in a single-institution, observational, immune surveillance study where peripheral blood was collected and interrogated by flow cytometry and RNAseq. Tumor tissue from baseline assessment was analyzed with spatial proteomics to link peripheral blood findings to baseline tissue characteristics. Results We identified an increase in myeloid-derived suppressor cells during the final week of a six-week treatment of chemoradiotherapy in peripheral blood of patients that were not alive at two years after diagnosis compared to those who were living. This was also associated with a decrease in CD8+ T lymphocytes that produced IFNγ, the potent anti-tumor cytokine. Discussion These data suggest that, as in chronic inflammatory disease, systemic immunity is impaired following delivery of adjuvant chemoradiotherapy. Finally, baseline investigation of myeloid cells within tumor tissue did not differ between survival groups, indicating immune surveillance of peripheral blood during adjuvant therapy may be a critical missing link to educate our understanding of the immune effects of standard of care therapy for glioblastoma.
Collapse
Affiliation(s)
- Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rupashree Sen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chunnan Liu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michele Doucet
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee Blosser
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa Katulis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stuart Grossman
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Charles Eberhart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Drew M. Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chen Hu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
| | - Sudipto Ganguly
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Xu L, Zhu Y, Cai H, Liu S, Cao Q, Zhuang Q. CX3CR1 regulates the development of renal interstitial fibrosis through macrophage polarization. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:957-966. [PMID: 37724398 PMCID: PMC10930042 DOI: 10.11817/j.issn.1672-7347.2023.220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 09/20/2023]
Abstract
OBJECTIVES The binding of CX3C chemokine receptor 1 (CX3CR1) and its unique ligand CX3C chemokine ligand 1 (CX3CL1) can promote the migration of inflammatory cells to the lesion and affect the progression of renal interstitial fibrosis, but the underlying mechanisms remain unclear. This study aims to investigate whether CX3CR1 affects renal interstitial fibrosis by macrophage polarization. METHODS A mouse model of renal interstitial fibrosis was established by unilateral ureteral obstruction (UUO). C57/B6 mice were divided into a CX3CR1 inhibitor group (injected with CX3CR1 inhibitor AZD8797) and a model group (injected with physiological saline). After continuous intraperitoneal injection for 5 days, the ligated lateral kidneys of mice were obtained on the 7th day. Hematoxylin and eosin (HE) staining and Masson staining were used to observe the infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium, respectively. The mRNA and protein expressions of CX3CR1, alpha-smooth muscle actin (α-SMA) and fibronectin (FN) in the kidneys were detected by reverse transcription PCR (RT-PCR) and Western blotting, respectively. Differentially expressed genes in kidney of the 2 groups were identified by whole genome sequencing and the differential expression of arginase-1 (Arg-1) was verified by RT-PCR. Flow cytometry was used to detect the proportion of M2 type macrophages in kidneys of the 2 groups. RESULTS The infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium were significantly reduced in the CX3CR1 inhibitor group. The mRNA and protein levels of CX3CR1 and the mRNA levels of α-SMA and FN in the CX3CR1 inhibitor group were significantly lower than those of the model group (all P<0.05). Whole genome sequencing showed that the top 5 differentially expressed genes in kidney of the 2 groups were Ugt1a6b, Serpina1c, Arg-1, Retnla, and Nup62. RT-PCR verified that the expression level of Arg-1 in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (P<0.001). Flow cytometry showed that the proportion of Arg1+CD206+M2 macrophages in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (P<0.01). CONCLUSIONS Inhibiting CX3CR1 can effectively prevent the progression of renal interstitial fibrosis. The mechanism may be related to macrophage polarization towards M2 type and upregulation of Arg-1 expression.
Collapse
Affiliation(s)
- Linyong Xu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
- School of Life Science, Central South University, Changsha 410013.
| | - Yanping Zhu
- School of Life Science, Central South University, Changsha 410013.
| | - Haozheng Cai
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Shu Liu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Qingtai Cao
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Quan Zhuang
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
- Research Center of National Health Commission on Transplantation Medicine, Changsha 410013, China.
| |
Collapse
|
8
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
9
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
10
|
Hopfer H. Macrophages-Stealth Cells Below the Radar. Kidney Int Rep 2023; 8:212-214. [PMID: 36815119 PMCID: PMC9939418 DOI: 10.1016/j.ekir.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Helmut Hopfer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Li J, Gong X. Bibliometric and visualization analysis of kidney repair associated with acute kidney injury from 2002 to 2022. Front Pharmacol 2023; 14:1101036. [PMID: 37153766 PMCID: PMC10157647 DOI: 10.3389/fphar.2023.1101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Renal repair is closely related to the prognosis of acute kidney injury (AKI) and has attracted increasing attention in the research field. However, there is a lack of a comprehensive bibliometric analysis in this research area. This study aims at exploring the current status and hotspots of renal repair research in AKI from the perspective of bibliometrics. Methods: Studies published between 2002 and 2022 related to kidney repair after AKI were collected from Web of Science core collection (WoSCC) database. Bibliometric measurement and knowledge graph analysis to predict the latest research trends in the field were performed using bibliometrics software CiteSpace and VOSviewer. Results: The number of documents related to kidney repair after AKI has steadily increased over 20 years. The United States and China contribute more than 60% of documents and are the main drivers of research in this field. Harvard University is the most active academic institution that contributes the most documents. Humphreys BD and Bonventre JV are the most prolific authors and co-cited authors in the field. The American Journal of Physiology-Renal Physiology and Journal of the American Society of Nephrology are the most popular journals in the field with the greatest number of documents. "exosome", "macrophage polarization", "fibroblast", and" aki-ckd transition" are high-frequency keywords in this field in recent years. Extracellular vesicles (including exosomes), macrophage polarization, cell cycle arrest, hippo pathway, and sox9 are current research hotspots and potential targets in this field. Conclusion: This is the first comprehensive bibliometric study on the knowledge structure and development trend of AKI-related renal repair research in recent years. The results of the study comprehensively summarize and identify research frontiers in AKI-related renal repair.
Collapse
|
12
|
Tseng KF, Tsai PH, Wang JS, Chen FY, Shen MY. Sesamol Attenuates Renal Inflammation and Arrests Reactive-Oxygen-Species-Mediated IL-1β Secretion via the HO-1-Induced Inhibition of the IKKα/NFκB Pathway In Vivo and In Vitro. Antioxidants (Basel) 2022; 11:antiox11122461. [PMID: 36552668 PMCID: PMC9774643 DOI: 10.3390/antiox11122461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic nephritis leads to irreversible renal fibrosis, ultimately leading to chronic kidney disease (CKD) and death. Macrophage infiltration and interleukin 1β (IL-1β) upregulation are involved in inflammation-mediated renal fibrosis and CKD. Sesamol (SM), which is extracted from sesame seeds, has antioxidant and anti-inflammatory properties. We aimed to explore whether SM mitigates macrophage-mediated renal inflammation and its underlying mechanisms. ApoE-/- mice were subjected to 5/6 nephrectomy (5/6 Nx) with or without the oral gavage of SM for eight weeks. Blood and urine samples and all the kidney remnants were collected for analysis. Additionally, THP-1 cells were used to explore the mechanism through which SM attenuates renal inflammation. Compared with the sham group, the 5/6 Nx ApoE-/- mice exhibited a significant increase in the macrophage infiltration of the kidneys (nephritis), upregulation of IL-1β, generation of reactive oxygen species, reduced creatinine clearance, and renal fibrosis. However, the administration of SM significantly alleviated these effects. SM suppressed the H2O2-induced secretion of IL-1β from the THP-1 cells via the heme oxygenase-1-induced inhibition of the IKKα-NF-κB pathway. SM attenuated renal inflammation and arrested macrophage accumulation by inhibiting IKKα, revealing a novel mechanism of the therapeutic effects of SM on renal injury and offering a potential approach to CKD treatment.
Collapse
Affiliation(s)
- Kuo-Feng Tseng
- Department of Biological Science and Technology, China Medical University, Taichung 40406, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jie-Sian Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, Division of Nephrology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: or ; Tel.: +886-4-2205-3366 (ext. 5809)
| |
Collapse
|
13
|
Pfenning MB, Schmitz J, Scheffner I, Schulte K, Khalifa A, Tezval H, Weidemann A, Kulschewski A, Kunzendorf U, Dietrich S, Haller H, Kielstein JT, Gwinner W, Bräsen JH. High Macrophage Densities in Native Kidney Biopsies Correlate With Renal Dysfunction and Promote ESRD. Kidney Int Rep 2022; 8:341-356. [PMID: 36815108 PMCID: PMC9939427 DOI: 10.1016/j.ekir.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Macrophages and monocytes are main players in innate immunity. The relevance of mononuclear phagocyte infiltrates on clinical outcomes remains to be determined in native kidney diseases. Methods Our cross-sectional study included 324 patients with diagnostic renal biopsies comprising 17 disease entities and normal renal tissues for comparison. All samples were stained for CD68+ macrophages. Selected groups were further subtyped for CD14+ monocytes and CD163+ alternatively activated macrophages. Using precise pixel-based digital measurements, we quantified cell densities as positively stained areas in renal cortex and medulla as well as whole renal tissue. Laboratory and clinical data of all cases at the time of biopsy and additional follow-up data in 158 cases were accessible. Results Biopsies with renal disease consistently revealed higher CD68+-macrophage densities and CD163+-macrophage densities in cortex and medulla compared to controls. High macrophage densities correlated with impaired renal function at biopsy and at follow-up in all diseases and in diseases analyzed separately. High cortical CD68+-macrophage densities preceded shorter renal survival, defined as requirement of permanent dialysis. CD14+ monocyte densities showed no difference compared to controls and did not correlate with renal function. Conclusion Precise quantification of macrophage densities in renal biopsies may contribute to risk stratification to identify patients with high risk for end-stage renal disease (ESRD) and might be a promising therapeutic target in renal disease.
Collapse
Affiliation(s)
- Maren B. Pfenning
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Medical Department I, Gastroenterology, Hepatology and Nephrology, Clinics Passau, Passau, Bavaria, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Irina Scheffner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Kevin Schulte
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Abedalrazag Khalifa
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hossein Tezval
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Alexander Weidemann
- Medical Clinic III – Nephrology and Dialysis, St. Vinzenz Hospital, Paderborn, North Rhine-Westphalia, Germany
| | - Anke Kulschewski
- Clinic for Nephrology and Hypertension, University Hospital Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sebastian Dietrich
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hermann Haller
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan T. Kielstein
- Medical Clinic V, Nephrology, Rheumatology and Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Wilfried Gwinner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan H. Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Correspondence: Jan Hinrich Bräsen, Nephropathology Unit, Institute of Pathology, Hannover Medical School, OE 5110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Yuan Q, Zhao B, Cao YH, Yan JC, Sun LJ, Liu X, Xu Y, Wang XY, Wang B. BCR-Associated Protein 31 Regulates Macrophages Polarization and Wound Healing Function via Early Growth Response 2/C/EBPβ and IL-4Rα/C/EBPβ Pathways. THE JOURNAL OF IMMUNOLOGY 2022; 209:1059-1070. [DOI: 10.4049/jimmunol.2200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The BCR-associated protein 31 (BAP31), a transmembrane protein in the endoplasmic reticulum, participates in the regulation of immune cells, such as microglia and T cells, and has potential functions in macrophages that remain to be unexplored. In this study, we designed and bred macrophage-specific BAP31 knockdown mice to detect the polarization and functions of macrophages. The results revealed that M2 macrophage-associated genes were suppressed in mouse bone marrow–derived macrophages of Lyz2 Cre-BAP31flox/flox mice. Multiple macrophage-associated transcription factors were demonstrated to be able to be regulated by BAP31. Among these factors, C/EBPβ was the most significantly decreased and was regulated by early growth response 2. BAP31 could also affect C/EBPβ via modulating IL-4Rα ubiquitination and proteasome degradation in IL-4–stimulated macrophages. Furthermore, we found that BAP31 affects macrophages functions, including angiogenesis and skin fibrosis, during the wound healing process through IL-4Rα, as confirmed by infection with adeno-associated virus–short hairpin (sh)-IL-4Rα in Lyz2 Cre-BAP31flox/flox mice. Our findings indicate a novel mechanism of BAP31 in regulating macrophages and provide potential solutions for the prevention and treatment of chronic wounds.
Collapse
Affiliation(s)
- Qing Yuan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bo Zhao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yu-hua Cao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Jia-cheng Yan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Li-jun Sun
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xia Liu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yang Xu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xiao-yu Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
16
|
Morsy S, Mansour MF, Abdo M, El‐Wazir Y. Can mobilization of bone marrow stem cells be an alternative regenerative therapy to stem cell injection in a rat model of chronic kidney disease? Physiol Rep 2022; 10:e15448. [PMID: 36065849 PMCID: PMC9446404 DOI: 10.14814/phy2.15448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a priority health problem affecting 36% of Egyptians. Adipose-derived mesenchymal stem cells (ADMSCs) have multidifferentiation capacity and the ability to restore several types of cells including damaged renal cells. Granulocyte colony-stimulating factor (G-CSF) is known to mobilize hematopoietic stem cells from bone marrow to the peripheral circulation. The aim of this study was to compare the effect of endogenous CD34+ cells mobilization and exogenous ADMSCs administration in the treatment of a rat model of adriamycin (ADR)-induced CKD. A total of 48 male albino rats of the local strain (200 ± 50 g) were equally divided into four groups: control negative, ADR (control positive), ADMSCs group, and G-CSF group. Six rats from each group were sacrificed after 4 weeks and the other 6 after 12 weeks. Renal function was assessed frequently by measuring serum creatinine, albumin, urea, 24-h urinary protein level, and hemoglobin level throughout the study. Oxidative stress markers malondialdehyde (MDA) and total antioxidant (TAO) were measured on day 28. CD-34+ cell percentage was measured on day 9. After the sacrification of the rats, kidneys were removed for histopathological assessment. Results revealed that both ADMSCs and G-CSF significantly improved serum creatinine, albumin, urea, 24-h urinary protein level, and histopathological damage score, with the G-CSF-treated group showing better improvement in 24-h urinary protein level, serum albumin, and histopathological damage score compared with ADMSCs-treated group. The G-CSF group also had significantly higher levels of CD34+ cells. Oxidative stress markers (MDA and TAO) levels were significantly improved with both therapies. We conclude that mobilization of endogenous hematopoietic stem cells by G-CSF is more effective than exogenously injected ADMSCs in protecting the kidneys against AD-induced toxicity.
Collapse
Affiliation(s)
- Shereen Morsy
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mona F. Mansour
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
- Centre of Excellence in Molecular and Cellular Medicine, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mohamed Abdo
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Yasser El‐Wazir
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
- Centre of Excellence in Molecular and Cellular Medicine, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
17
|
Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, Wang Y, Kopp JB, Pi J, Zhou H. LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol 2022; 13:913007. [PMID: 35990680 PMCID: PMC9389080 DOI: 10.3389/fimmu.2022.913007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid–Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.
Collapse
Affiliation(s)
- Xiangnan Hao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cong Ma
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingzi Zhu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK/NIH, Bethesda, MD, United States
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
18
|
Chen J, Liu Y, Xia S, Ye X, Chen L. Annexin A2 (ANXA2) regulates the transcription and alternative splicing of inflammatory genes in renal tubular epithelial cells. BMC Genomics 2022; 23:544. [PMID: 35906541 PMCID: PMC9336024 DOI: 10.1186/s12864-022-08748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Renal inflammation plays a crucial role during the progression of Chronic kidney disease (CKD), but there is limited research on hub genes involved in renal inflammation. Here, we aimed to explore the effects of Annexin A2 (ANXA2), a potential inflammatory regulator, on gene expression in human proximal tubular epithelial (HK2) cells. RNA-sequencing and bioinformatics analysis were performed on ANXA2-knockdown versus control HK2 cells to reveal the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs). Then the DEGs and RASEs were validated by qRT-PCR. Results A total of 220 upregulated and 171 downregulated genes related to ANXA2 knockdown were identified. Genes enriched in inflammatory response pathways, such as interferon-mediated signaling, cytokine-mediated signaling, and nuclear factor κB signaling, were under global transcriptional and alternative splicing regulation by ANXA2 knockdown. qRT-PCR confirmed ANXA2-regulated transcription of chemokine gene CCL5, as well as interferon-regulating genes ISG15, IFI6, IFI44, IFITM1, and IRF7, in addition to alternative splicing of inflammatory genes UBA52, RBCK1, and LITAF. Conclusions The present study indicated that ANXA2 plays a role in inflammatory response in HK2 cells that may be mediated via the regulation of transcription and alternative splicing of inflammation-related genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08748-6.
Collapse
Affiliation(s)
- Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shang Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
19
|
V Ganesh G, Ganesan K, Xu B, Ramkumar KM. Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. Biofactors 2022; 48:795-812. [PMID: 35618963 DOI: 10.1002/biof.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
20
|
Vojtusek IK, Laganovic M, Burek Kamenaric M, Bulimbasic S, Hrkac S, Salai G, Ivkovic V, Coric M, Novak R, Grgurevic L. First Characterization of ADAMTS-4 in Kidney Tissue and Plasma of Patients with Chronic Kidney Disease-A Potential Novel Diagnostic Indicator. Diagnostics (Basel) 2022; 12:diagnostics12030648. [PMID: 35328201 PMCID: PMC8947148 DOI: 10.3390/diagnostics12030648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Background: We have previously shown that metzincin protease ADAMTS-4 accompanies renal fibrogenesis, as it appears in the blood of hemodialysis patients. Methods: Native kidney (NKB) and kidney transplant (TXCI) biopsy samples as well as plasma from patients with various stages of CKD were compared to controls. In paired analysis, 15 TXCI samples were compared with their zero-time biopsies (TX0). Tissues were evaluated and scored (interstitial fibrosis and tubular atrophy (IFTA) for NKB and Banff ci for TXCI). Immunohistochemical (IHC) staining for ADAMTS-4 and BMP-1 was performed. Plasma ADAMTS-4 was detected using ELISA. Results: ADAMTS-4 IHC expression was significantly higher in interstitial compartment (INT) of NKB and TXCI group in peritubular capillaries (PTC) and interstitial stroma (INT). Patients with higher stages of interstitial fibrosis (ci > 1 and IFTA > 1) expressed ADAMTS-4 in INT more frequently in both groups (p = 0.005; p = 0.013; respectively). In paired comparison, TXCI samples expressed ADAMTS-4 in INT and PTC more often than TX0. ADAMTS-4 plasma concentration varied significantly across CKD stages, being highest in CKD 2 and 3 compared to other groups (p = 0.0064). Hemodialysis patients had higher concentrations of ADAMTS-4 compared to peritoneal dialysis (p < 0.00001). Conclusion: ADAMTS-4 might have a significant role in CKD as a potential novel diagnostic indicator.
Collapse
Affiliation(s)
- Ivana Kovacevic Vojtusek
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (I.K.V.); (V.I.)
| | - Mario Laganovic
- Department of Nephrology, University Hospital Merkur, 10000 Zagreb, Croatia;
| | - Marija Burek Kamenaric
- Tissue Typing Center, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Stela Bulimbasic
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.C.)
| | - Stela Hrkac
- Department of Emergency Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (R.N.)
| | - Grgur Salai
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (R.N.)
- Teaching Institute of Emergency Medicine of the City of Zagreb, 10000 Zagreb, Croatia
| | - Vanja Ivkovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (I.K.V.); (V.I.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Marijana Coric
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.C.)
| | - Rudjer Novak
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (R.N.)
| | - Lovorka Grgurevic
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (R.N.)
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-91-589-52-40
| |
Collapse
|
21
|
Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin Med J (Engl) 2022; 135:757-766. [PMID: 35671177 PMCID: PMC9276339 DOI: 10.1097/cm9.0000000000002100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.
Collapse
|
22
|
Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology 2021; 461:152899. [PMID: 34416349 DOI: 10.1016/j.tox.2021.152899] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant with immunotoxicity and endocrine toxicity. M1/M2 macrophages participate in the immune response and exert an essential influence on fibrosis. Nevertheless, whether Cd can induce porcineadrenal fibrosis by affecting the polarization of M1/M2 macrophages and its potential regulatory mechanism have not been explored. We added 20 mg/kg CdCl2 to the pig diet for 40 days to investigate the fibrogenic effect of subacute Cd exposure on the adrenal gland. The results indicated that the ACTH and CORT in serum were decreased by 15.26 % and 21.99 %, respectively. The contents of adrenal mineral elements Cd, Cr, Mn were increased up to 34, 1.93, 1.42 folds and Co, Zn, Sn were reduced by 21.57 %, 20.52 %, 15.75 %. Concurrently, the pro-oxidative indicators (LPO, MDA and H2O2) were increased by 1.85, 2.20, 2.77 folds and 3.60, 11.15, 4.11 folds upregulated mRNA levels of TLR4, NF-κB, NLRP3 were observed. Subsequently, the expression of M1 macrophages polarization markers (IL-6, iNOS, TNF-α, CCL2 and CXCL9) were raised by 2.03, 2.30, 2.35, 1.58, 1.56 folds, while M2 macrophages (IL-4, CCL24, Arg1, IL-10, MRC1) showed a 62.34 %, 31.88 %, 50.26 %, 74.00 %, 69.34 % downregulation. The expression levels of AMPK subunits and genes related to glycolysis, oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) were also markedly increased. Additionally, the expression level of TGF-β1, Smad2/3 and downstream pro-fibrotic markers was obviously upregulated. Taken together, we conclude that Cd activates the oxidative stress-mediated TLR4/NF-κB/NLRP3 inflammatory signal transduction, leading to porcine adrenal fibrosis by promoting macrophage polarization toward M1.
Collapse
|
23
|
Yoodee S, Noonin C, Sueksakit K, Kanlaya R, Chaiyarit S, Peerapen P, Thongboonkerd V. Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Commun Biol 2021; 4:959. [PMID: 34381146 PMCID: PMC8358035 DOI: 10.1038/s42003-021-02479-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
The association between kidney stone disease and renal fibrosis has been widely explored in recent years but its underlying mechanisms remain far from complete understanding. Using label-free quantitative proteomics (nanoLC-ESI-LTQ-Orbitrap MS/MS), this study identified 23 significantly altered secreted proteins from calcium oxalate monohydrate (COM)-exposed macrophages (COM-MP) compared with control macrophages (Ctrl-MP) secretome. Functional annotation and protein-protein interactions network analysis revealed that these altered secreted proteins were involved mainly in inflammatory response and fibroblast activation. BHK-21 renal fibroblasts treated with COM-MP secretome had more spindle-shaped morphology with greater spindle index. Immunofluorescence study and gelatin zymography revealed increased levels of fibroblast activation markers (α-smooth muscle actin and F-actin) and fibrotic factors (fibronectin and matrix metalloproteinase-9 and -2) in the COM-MP secretome-treated fibroblasts. Our findings indicate that proteins secreted from macrophages exposed to COM crystals induce renal fibroblast activation and may play important roles in renal fibrogenesis in kidney stone disease.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
24
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
The severity of glomerular endothelial cell injury is associated with infiltrating macrophage heterogeneity in endocapillary proliferative glomerulonephritis. Sci Rep 2021; 11:13339. [PMID: 34172770 PMCID: PMC8233400 DOI: 10.1038/s41598-021-92655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
Endocapillary proliferation occurs in various types of glomerulonephritis (GN), with varying prognoses. We examined 42 renal biopsy samples representing endocapillary proliferative lesions from post-streptococcal acute GN (PSAGN), Henoch–Schönlein purpura nephritis (HSPN), and lupus nephritis (LN). In PSAGN, the glomerular capillary network was maintained, although severe lesions displayed dots or short, curved lines, indicating CD34-positive capillaries and suggesting capillary obstruction. Conversely, patients with LN and HSPN displayed obstruction of CD34-positive capillaries with dissociation from the glomerular basement membrane even in mild lesions. According to computer-assisted morphologic analysis, the cell density did not differ between the diseases. However, in PSAGN, the number of capillary loops was significantly increased, with a larger glomerular capillary luminal area than in the other groups. In addition, the number and frequency of CD163-positive cells (M2 macrophages) tended to be higher in PSAGN, while there were no significant differences in the number of CD68-positive (total) macrophages. These results indicate that in PSAGN, endothelial cell damage is less severe, and angiogenesis may be promoted. The severity of endothelial cell injury in each disease may be associated with differences in infiltrating inflammatory cell phenotypes.
Collapse
|
26
|
Yang M, Liu JW, Zhang YT, Wu G. The Role of Renal Macrophage, AIM, and TGF-β1 Expression in Renal Fibrosis Progression in IgAN Patients. Front Immunol 2021; 12:646650. [PMID: 34194427 PMCID: PMC8236720 DOI: 10.3389/fimmu.2021.646650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 01/24/2023] Open
Abstract
Objective To analyze the expression of macrophages, AIM, TGF-β1 in the kidney of IgAN patients, and to explore the role of macrophages, AIM, TGF-β1 in the progression of renal fibrosis in IgAN patients. Methods The paraffin specimens of renal tissue from 40 IgAN patients were selected as the observation group. At the same time, paraffin specimens of normal renal tissue from 11 patients treated by nephrectomy were selected as the normal control group. We observed the distribution of macrophages, the expression of AIM and TGF-β1 by immunohistochemical staining and/or immunofluorescence. Result The number of M0, M1, M2 macrophages could be found increased in IgAN patients. M0 macrophages are mainly polarized towards M2 macrophages. The expression of AIM and TGF-β1 were significantly higher in IgAN patients than in NC. M2 macrophage, AIM and TGF-β1 were positively correlated with serum creatinine and 24-hour proteinuria, but negatively correlated with eGFR. M2 macrophages, AIM, TGF-β1 were positively correlated with fibrotic area. Conclusion M2 macrophages, AIM and TGF-β1 play important roles in the process of IgAN fibrosis, and the three influence each other.
Collapse
Affiliation(s)
- Min Yang
- Renal Division of Northern Jiangsu People's Hospital, Clinical Medicine College of Yangzhou University, Yangzhou, China
| | - Jia Wei Liu
- Renal Division of Xi'an People's Hospital, Xi'an, China
| | - Yu Ting Zhang
- Intensive Care Unit of The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Gang Wu
- Renal Division of Northern Jiangsu People's Hospital, Clinical Medicine College of Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Taguchi K, Okada A, Unno R, Hamamoto S, Yasui T. Macrophage Function in Calcium Oxalate Kidney Stone Formation: A Systematic Review of Literature. Front Immunol 2021; 12:673690. [PMID: 34108970 PMCID: PMC8182056 DOI: 10.3389/fimmu.2021.673690] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background The global prevalence and recurrence rate of kidney stones is very high. Recent studies of Randall plaques and urinary components in vivo, and in vitro including gene manipulation, have attempted to reveal the pathogenesis of kidney stones. However, the evidence remains insufficient to facilitate the development of novel curative therapies. The involvement of renal and peripheral macrophages in inflammatory processes offers promise that might lead to the development of therapeutic targets. The present systematic literature review aimed to determine current consensus about the functions of macrophages in renal crystal development and suppression, and to synthesize evidence to provide a basis for future immunotherapy. Methods We systematically reviewed the literature during February 2021 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles investigating the relationship between macrophages and urolithiasis, particularly calcium oxalate (CaOx) stones, were extracted from PubMed, MEDLINE, Embase, and Scopus. Study subjects, languages, and publication dates were unrestricted. Two authors searched and screened the publications. Results Although several studies have applied mixed modalities, we selected 10, 12, and seven (total, n = 29) of 380 articles that respectively described cultured cells, animal models, and human samples. The investigative trend has shifted to macrophage phenotypes and signaling pathways, including micro (m)-RNAs since the discovery of macrophage involvement in kidney stones in 1999. Earlier studies of mice-associated macrophages with the acceleration and suppression of renal crystal formation. Later studies found that pro-inflammatory M1- and anti-inflammatory M2-macrophages are involved. Studies of human-derived and other macrophages in vitro and ex vivo showed that M2-macrophages (stimulated by CSF-1, IL-4, and IL-13) can phagocytose CaOx crystals, which suppresses stone development. The signaling mechanisms that promote M2-like macrophage polarization toward CaOx nephrocalcinosis, include the NLRP3, PPARγ-miR-23-Irf1/Pknox1, miR-93-TLR4/IRF1, and miR-185-5p/CSF1 pathways. Proteomic findings have indicated that patients who form kidney stones mainly express M1-like macrophage-related proteins, which might be due to CaOx stimulation of the macrophage exosomal pathway. Conclusions This systematic review provides an update regarding the current status of macrophage involvement in CaOx nephrolithiasis. Targeting M2-like macrophage function might offer a therapeutic strategy with which to prevent stones via crystal phagocytosis.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
28
|
Nakano T, Onoue K, Seno A, Ishihara S, Nakada Y, Nakagawa H, Ueda T, Nishida T, Soeda T, Watanabe M, Kawakami R, Hatakeyama K, Sakaguchi Y, Ohbayashi C, Saito Y. Involvement of chronic inflammation via monocyte chemoattractant protein-1 in uraemic cardiomyopathy: a human biopsy study. ESC Heart Fail 2021; 8:3156-3167. [PMID: 33988313 PMCID: PMC8318461 DOI: 10.1002/ehf2.13423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Patients undergoing dialysis, even those without coronary artery disease or valvular abnormalities, sometimes present with reduced heart function, which resembles dilated cardiomyopathy (DCM). This condition is known as uraemic cardiomyopathy (UCM). The mechanisms of UCM development are not fully understood. Previous studies demonstrated that the balance between placental growth factor (PlGF) and fms‐like tyrosine kinase‐1 (Flt‐1) is correlated with renal function, and PlGF/Flt‐1 signalling is involved in the development of cardiovascular diseases in patients with chronic kidney disease. This study was conducted to evaluate the pathogenesis of UCM and clarify the differences in the mechanisms of UCM and DCM by using human endomyocardial biopsy and blood samples. Methods and results The clinical and pathological features of 30 patients on dialysis with reduced cardiac function [left ventricular ejection fraction (LVEF) ≤50%] (UCM group; mean age: 58.5 ± 9.4 years and LVEF: 39.1 ± 7.2%), 196 DCM patients (DCM group; mean age: 62.7 ± 14.0 years and LVEF: 33.5 ± 8.8%) as controls with reduced cardiac function (LVEF ≤ 45%), and 21 patients as controls with normal cardiac function (control group; mean age: 56.2 ± 19.3 years and LVEF: 67.5 ± 6.7%) were analysed. The percentage of the interstitial fibrosis area in the UCM group was greater than that in the DCM group (P = 0.045). In UCM patients, the percentage of the interstitial fibrosis area was positively correlated with the duration of renal replacement therapy (P < 0.001). The number of infiltrated CD68‐positive macrophages in the myocardium and expression of monocyte chemoattractant protein‐1 (MCP‐1) in cardiomyocytes were significantly greater in the UCM group than in the other groups (P < 0.001, respectively). Furthermore, while the serum level of soluble form of Flt‐1, an endogenous inhibitor of PlGF, in the UCM group was lower compared with that in the DCM group (P < 0.001), the serum levels of PlGF and PlGF/soluble form of Flt‐1 ratio and plasma level of MCP‐1 in the UCM group were higher than those in the DCM group (P < 0.001, respectively). Conclusions These results suggest that activated PlGF/Flt‐1 signalling and subsequent macrophage‐mediated chronic non‐infectious inflammation via MCP‐1 in the myocardium are involved in the pathogenesis of UCM.
Collapse
Affiliation(s)
- Tomoya Nakano
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan.,Department of Internal Medicine, Yamato-Takada Municipal Hospital, Yamato-Takada, Nara, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Ayako Seno
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Satomi Ishihara
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuki Nakada
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Nakagawa
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tomoya Ueda
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Taku Nishida
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tsunenari Soeda
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Rika Kawakami
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiro Sakaguchi
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
29
|
Wei Y, Liang M, Xiong L, Su N, Gao X, Jiang Z. PD-L1 induces macrophage polarization toward the M2 phenotype via Erk/Akt/mTOR. Exp Cell Res 2021; 402:112575. [PMID: 33771483 DOI: 10.1016/j.yexcr.2021.112575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
PD-L1 (programmed death-ligand 1) is the ligand of PD-1 (programmed cell death protein 1) and regulates inhibitory immune responses. It is well known that PD-L1 suppresses T cell function via binding to PD-1. However, little is known about the role of the PD-1/PD-L1 axis in macrophage polarization. According to previous studies, the function of the PD-1/PD-L1 axis in macrophage polarization is controversial, and the underlying mechanism has not been fully elucidated. Thus, we treated THP-1-derived macrophages with human PD-L1 Fc to determine the role of the PD-1/PD-L1 axis in macrophage polarization. To further explore the mechanism, we performed RNA sequencing and used specific inhibitors to identify the implicated signalling pathways. In this study, we found that PD-L1 induces the upregulation of CD206 expression, which is inhibited by nivolumab, LY294002, U0126, and rapamycin. Evaluation of differentially expressed genes (DEGs) and bioinformatics analysis indicated that PD-L1 also induces the upregulation of the expression of genes that maintain mitochondrial function and mediate metabolic switching. In addition, we did not detect PD-L1-induced CD86 alterations, indicating that PD-L1 treatment has no significant influence on M1 polarization. Taken together, these results suggest that PD-L1 binds to PD-1 and promotes M2 polarization accompanied by mitochondrial function enhancement and metabolic reprogramming via Erk/Akt/mTOR. This study elucidates the role of PD-L1 in macrophage polarization and verifies the underlying mechanisms for the first time. Considering that aberrantly upregulated PD-L1 expression contributes to a wide variety of diseases, targeting PD-L1-mediated macrophage polarization is a prospective therapeutic strategy for both neoplastic and nonneoplastic diseases.
Collapse
Affiliation(s)
- Yi Wei
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjun Liang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Xiong
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Su
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongpei Jiang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Qin X, Xu Y, Zhou X, Gong T, Zhang ZR, Fu Y. An injectable micelle-hydrogel hybrid for localized and prolonged drug delivery in the management of renal fibrosis. Acta Pharm Sin B 2021; 11:835-847. [PMID: 33777685 PMCID: PMC7982499 DOI: 10.1016/j.apsb.2020.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Localized delivery, comparing to systemic drug administration, offers a unique alternative to enhance efficacy, lower dosage, and minimize systemic tissue toxicity by releasing therapeutics locally and specifically to the site of interests. Herein, a localized drug delivery platform ("plum‒pudding" structure) with controlled release and long-acting features is developed through an injectable hydrogel ("pudding") crosslinked via self-assembled triblock polymeric micelles ("plum") to help reduce renal interstitial fibrosis. This strategy achieves controlled and prolonged release of model therapeutics in the kidney for up to three weeks in mice. Following a single injection, local treatments containing either anti-inflammatory small molecule celastrol or anti-TGFβ antibody effectively minimize inflammation while alleviating fibrosis via inhibiting NF-κB signaling pathway or neutralizing TGF-β1 locally. Importantly, the micelle-hydrogel hybrid based localized therapy shows enhanced efficacy without local or systemic toxicity, which may represent a clinically relevant delivery platform in the management of renal interstitial fibrosis.
Collapse
Key Words
- Anti-TGFβ antibody
- BSA, bovine serum albumin
- CLT, celastrol
- Celastrol
- Controlled release
- Cy5.5-NHS, cyanine 5.5-N-hydroxysuccinimide
- DAPI, 4′,6-diamidino-2-phenylindole
- DEX, dexamethasone
- DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanineperchlorate
- ECM, extracellular matrix
- EDCI, carbodiimide hydrochloride
- ESR, equilibrium swelling ratio
- FITC, fluorescein isothiocyanate
- G", the loss modulus
- G', storage modulus
- HA, hyaluronic acid
- HASH, thiolated hyaluronic acid
- Hydrogel
- IL-1β, interleukin 1β
- IL-6, interleukin 6
- Inflammation
- Localized therapy
- MOD, mean optical density
- NHS, N-hydroxysuccinimide
- PDI, polydispersity index
- RIF, renal interstitial fibrosis
- RSR, real-time swelling ratio
- Renal fibrosis
- SD, standard deviation
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- TGF-β1, transforming growth factor β1
- TNF-α, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- UUO, unilateral ureteral obstruction
- bis-F127-MA, bis-F127-methacrylate
- iNOS, nitric oxide synthase
- α-SMA, α-smooth muscle actin
- “Plum‒pudding” structure
Collapse
|
31
|
Li Y, Yan J, Wang M, Lv J, Yan F, Chen J. Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation by regulation of β-catenin and YAP pathways. J Mol Histol 2021; 52:197-205. [PMID: 33387144 PMCID: PMC8012310 DOI: 10.1007/s10735-020-09936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Evidence has been shown that indoxyl sulfate (IS) could impair kidney and cardiac functions. Moreover, macrophage polarization played important roles in chronic kidney disease and cardiovascular disease. IS acts as a nephron-vascular toxin, whereas its effect on macrophage polarization during inflammation is still not fully elucidated. In this study, we aimed to investigate the effect of IS on macrophage polarization during lipopolysaccharide (LPS) challenge. THP-1 monocytes were incubated with phorbol 12-myristate-13-acetate (PMA) to differentiate into macrophages, and then incubated with LPS and IS for 24 h. ELISA was used to detect the levels of TNFα, IL-6, IL-1β in THP-1-derived macrophages. Western blot assay was used to detect the levels of arginase1 and iNOS in THP-1-derived macrophages. Percentages of HLA-DR-positive cells (M1 macrophages) and CD206-positive cells (M2 macrophages) were detected by flow cytometry. IS markedly increased the production of the pro-inflammatory factors TNFα, IL-6, IL-1β in LPS-stimulated THP-1-derived macrophages. In addition, IS induced M1 macrophage polarization in response to LPS, as evidenced by the increased expression of iNOS and the increased proportion of HLA-DR+ macrophages. Moreover, IS downregulated the level of β-catenin, and upregulated the level of YAP in LPS-stimulated macrophages. Activating β-catenin signaling or inhibiting YAP signaling suppressed the IS-induced inflammatory response in LPS-stimulated macrophages by inhibiting M1 polarization. IS induced M1 macrophage polarization in LPS-stimulated macrophages via inhibiting β-catenin and activating YAP signaling. In addition, this study provided evidences that activation of β-catenin or inhibition of YAP could alleviate IS-induced inflammatory response in LPS-stimulated macrophages. This finding may contribute to the understanding of immune dysfunction observed in chronic kidney disease and cardiovascular disease.
Collapse
Affiliation(s)
- Ying Li
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Minjia Wang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jing Lv
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Fei Yan
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jin Chen
- Department of General Practice, Zhejiang Hospital, 12 Lingyin Road, West Lake District, Hangzhou, 310013, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Du Q, Fu YX, Shu AM, Lv X, Chen YP, Gao YY, Chen J, Wang W, Lv GH, Lu JF, Xu HQ. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy. Life Sci 2020; 272:118808. [PMID: 33245967 DOI: 10.1016/j.lfs.2020.118808] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIMS The theory of inflammation is one of the important theories in the pathogenesis of diabetic nephropathy (DN). We herein aimed to explore whether loganin affected macrophage infiltration and activation upon diabetic nephropathy (DN) by a spontaneous DN mice and a co-culture system of glomerular mesangial cells (GMCs) and macrophage cells (RAW264.7) which was induced by advanced glycation end products (AGEs). METHODS AND KEY FINDINGS Loganin showed remarkable capacity on protecting renal from damage by mitigating diabetic symptoms, improving the histomorphology of the kidney, decreasing the expression of extracellular matrix such as FN, COL-IV and TGF-β, reversing the production of IL-12 and IL-10 and decreasing the number of infiltrating macrophages in the kidney. Moreover, loganin showed markedly effects by suppressing iNOS and CD16/32 expressions (M1 markers), increasing Arg-1 and CD206 expressions (M2 markers), which were the phenotypic transformation of macrophage. These effects may be attributed to the inhibition of the receptor for AGEs (RAGE) /monocyte chemotactic protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2) signaling pathway, with significantly down-regulated expressions of RAGE, MCP-1 and CCR2 by loganin. Loganin further decreased MCP-1 secretion when RAGE was silenced, which means other target was involved in regulating the MCP-1 expression. While loganin combinated with the inhibitor of CCR2 exerted stronger anti-inhibition effects of iNOS expression, suggesting that CCR2 was the target of loganin in regulating the activation of macrophages. SIGNIFICANCE Loganin could ameliorate DN kidney damage by inhibiting macrophage infiltration and activation via the MCP-1/CCR2 signaling pathway in DN.
Collapse
Affiliation(s)
- Qiu Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Ying-Xue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - An-Mei Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Xing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201210, China
| | - Yu-Ping Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Yu-Yan Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Wei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Gao-Hong Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jin-Fu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Hui-Qin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
33
|
Weng X, Zhao H, Guan Q, Shi G, Feng S, Gleave ME, Nguan CC, Du C. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol 2020; 99:274-287. [PMID: 32935392 PMCID: PMC7984284 DOI: 10.1111/imcb.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Clusterin (CLU) is a multifunctional protein localized extracellularly and intracellularly. Although CLU-knockout (KO) mice are more susceptible to renal ischemia-reperfusion injury (IRI), the mechanisms underlying the actions of CLU in IRI are not fully understood. Macrophages are key regulators of IRI severity and tissue repair. Therefore, we investigated the role of CLU in macrophage polarization and phagocytosis. Renal IRI was induced in wild-type (WT) or CLU-KO C57BL/6 mice by clamping the renal pedicles for 30 min at 32°C. Peritoneal macrophages were activated via an intraperitoneal injection of lipopolysaccharide (LPS). Renal tissue damage was examined using histology, whereas leukocyte phenotypes were assessed using flow cytometry and immunohistochemistry. We found that monocytes/macrophages expressed the CLU protein that was upregulated by hypoxia. The percentages of macrophages (F4/80+ , CD11b+ or MAC3+ ) infiltrating the kidneys of WT mice were significantly less than those in CLU-KO mice after IRI. The M1/M2 phenotype ratio of the macrophages in WT kidneys decreased at day 7 post-IRI when the injury was repaired, whereas that in KO kidneys increased consistently as tissue injury persisted. In response to LPS stimulation, WT mice produced fewer M1 macrophages, but not M2, than the control did. Phagocytosis was stimulated by CLU expression in macrophages compared with the CLU null controls and by the exogenous CLU protein. In conclusion, CLU suppresses macrophage infiltration and proinflammatory M1 polarization during the recovery period following IRI, and enhances phagocytic activity, which may be partly responsible for tissue repair in the kidneys of WT mice after injury.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Haimei Zhao
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Ganggang Shi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shijian Feng
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Cy Nguan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
34
|
Regulating the Polarization of Macrophages: A Promising Approach to Vascular Dermatosis. J Immunol Res 2020; 2020:8148272. [PMID: 32775470 PMCID: PMC7407038 DOI: 10.1155/2020/8148272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, a kind of innate immune cells, derive from monocytes in circulation and play a crucial role in the innate and adaptive immunity. Under the stimulation of the signals from local microenvironment, macrophages generally tend to differentiate into two main functional phenotypes depending on their high plasticity and heterogeneity, namely, classically activated macrophage (M1) and alternatively activated macrophage (M2). This phenomenon is often called macrophage polarization. In pathological conditions, chronic persistent inflammation could induce an aberrant response of macrophage and cause a shift in their phenotypes. Moreover, this shift would result in the alteration of macrophage polarization in some vascular dermatoses; e.g., an increase in proinflammatory M1 emerges from Behcet's disease (BD), psoriasis, and systemic lupus erythematosus (SLE), whereas an enhancement in anti-inflammatory M2 appears in infantile hemangioma (IH). Individual polarized phenotypes and their complicated cytokine networks may crucially mediate in the pathological processes of some vascular diseases (vascular dermatosis in particular) by activation of T cell subsets (such as Th1, Th2, Th17, and Treg cells), deterioration of oxidative stress damage, and induction of angiogenesis, but the specific mechanism remains ambiguous. Therefore, in this review, we discuss the possible role of macrophage polarization in the pathological processes of vascular skin diseases. In addition, it is proposed that regulation of macrophage polarization may become a potential strategy for controlling these disorders.
Collapse
|
35
|
Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020; 21:270. [PMID: 32660446 PMCID: PMC7358194 DOI: 10.1186/s12882-020-01921-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation, injury and fibrosis. Dysregulated innate immune responses mediated by macrophages play critical roles in progressive renal injury. The differentiation and polarization of macrophages into pro-inflammatory 'M1' and anti-inflammatory 'M2' states represent the two extreme maturation programs of macrophages during tissue injury. However, the effects of macrophage polarization on the pathogenesis of CKD are not fully understood. In this review, we discuss the innate immune mechanisms underlying macrophage polarization and the role of macrophage polarization in the initiation, progression, resolution and recurrence of CKD. Macrophage activation and polarization are initiated through recognition of conserved endogenous and exogenous molecular motifs by pattern recognition receptors, chiefly, Toll-like receptors (TLRs), which are located on the cell surface and in endosomes, and NLR inflammasomes, which are positioned in the cytosol. Recent data suggest that genetic variants of the innate immune molecule apolipoprotein L1 (APOL1) that are associated with increased CKD prevalence in people of African descent, mediate an atypical M1 macrophage polarization. Manipulation of macrophage polarization may offer novel strategies to address dysregulated immunometabolism and may provide a complementary approach along with current podocentric treatment for glomerular diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|