1
|
Carré J, Suzuki T, Paus R. Do hair follicles operate as primitive, multifocal kidney‐like excretory (mini‐) organs? Exp Dermatol 2020; 29:357-365. [DOI: 10.1111/exd.14076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jean‐Luc Carré
- Département de Biochimie et Pharmaco‐Toxicologie Hôpital de la Cavale Blanche CHRU Brest France
- EA 4685 Laboratoire des Interactions Epithelium ‐ Neurones University of Brest Brest France
| | - Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- Monasterium Laboratory Münster Germany
| |
Collapse
|
2
|
Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2019; 97:466-476. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Abdulla MH, Johns EJ. The innervation of the kidney in renal injury and inflammation: a cause and consequence of deranged cardiovascular control. Acta Physiol (Oxf) 2017; 220:404-416. [PMID: 28181735 DOI: 10.1111/apha.12856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
Extensive investigations have revealed that renal sympathetic nerves regulate renin secretion, tubular fluid reabsorption and renal haemodynamics which can impact on cardiovascular homoeostasis normally and in pathophysiological states. The significance of the renal afferent innervation and its role in determining the autonomic control of the cardiovascular system is uncertain. The transduction pathways at the renal afferent nerves have been shown to require pro-inflammatory mediators and TRPV1 channels. Reno-renal reflexes have been described, both inhibitory and excitatory, demonstrating that a neural link exists between kidneys and may determine the distribution of excretory and haemodynamic function between the two kidneys. The impact of renal afferent nerve activity on basal and reflex regulation of global sympathetic drive remains opaque. There is clinical and experimental evidence that in states of chronic kidney disease and renal injury, there is infiltration of T-helper cells with a sympatho-excitation and blunting of the high- and low-pressure baroreceptor reflexes regulating renal sympathetic nerve activity. The baroreceptor deficits are renal nerve-dependent as the dysregulation can be relieved by renal denervation. There is also experimental evidence that in obese states, there is a sympatho-excitation and disrupted baroreflex regulation of renal sympathetic nerve activity which is mediated by the renal innervation. This body of information provides an important basis for directing greater attention to the role of renal injury/inflammation causing an inappropriate activation of the renal afferent nerves as an important initiator of aberrant autonomic cardiovascular control.
Collapse
Affiliation(s)
- M. H. Abdulla
- Department of Physiology; University College Cork; Cork Ireland
| | - E. J. Johns
- Department of Physiology; University College Cork; Cork Ireland
| |
Collapse
|
5
|
Abdulla MH, Duff M, Swanton H, Johns EJ. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats. Acta Physiol (Oxf) 2016; 218:212-224. [PMID: 27614105 DOI: 10.1111/apha.12801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
AIM This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. METHODS Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg9 , Leu8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. RESULTS In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P < 0.05) lower than the control but was restored to normal values following intrarenal infusion of BZ, but not LBK. VE had no effect on MAP or HR but reduced RSNA by some 40% (P < 0.05) in control but not renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. CONCLUSION These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA.
Collapse
Affiliation(s)
- M. H. Abdulla
- Department of Physiology; University College Cork; Cork Ireland
| | - M. Duff
- Department of Physiology; University College Cork; Cork Ireland
| | - H. Swanton
- Department of Physiology; University College Cork; Cork Ireland
| | - E. J. Johns
- Department of Physiology; University College Cork; Cork Ireland
| |
Collapse
|
6
|
Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integr Comp Physiol 2015; 308:R79-95. [PMID: 25411364 PMCID: PMC4297860 DOI: 10.1152/ajpregu.00351.2014] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/26/2022]
Abstract
Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation.
Collapse
Affiliation(s)
- Ulla C Kopp
- Departments of Internal Medicine and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
7
|
Abstract
The renin-angiotensin system (RAS) is a major regulatory system controlling many different homeostatic mechanisms both within the brain and in the periphery. While it is primarily associated with blood pressure and salt/water regulation, increasing evidence points to the involvement of the RAS in both headache disorders specifically and pain regulation in general. Several publications have indicated that drugs blocking various elements of the renin-angiotensin system lead to a reduction in migraine. Additionally, interventions on different angiotensin peptides or their receptors have been shown to both reduce and increase pain in animal models. As such, modulation of the renin-angiotensin system is a promising approach to the treatment of headaches and other pain conditions.
Collapse
|
8
|
Ripa P, Ornello R, Pistoia F, Carolei A, Sacco S. The renin-angiotensin system: a possible contributor to migraine pathogenesis and prophylaxis. Expert Rev Neurother 2014; 14:1043-55. [PMID: 25115162 DOI: 10.1586/14737175.2014.946408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of a tissue-based renin-angiotensin system, independent of the systemic one, has been identified in several organs including the brain. Experimental models have suggested the involvement of the renin-angiotensin system in neurogenic inflammation, susceptibility to oxidative stress, endothelial dysfunction, and neuromodulation of nociceptive transmission, thus potentially contributing to the pathogenesis of migraine. Genetic factors that increase susceptibility to migraine may include angiotensin-converting enzyme polymorphism, although available data are controversial. Clinical studies have suggested that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be effective in migraine prophylaxis. However, further research should clarify whether the postulated preventive effect is attributable to a pharmacological action over and above the antihypertensive effect and should test their tolerability in subjects with normal blood pressure values. In patients with contraindications or not responding to conventional prophylactic drugs and in patients with comorbid arterial hypertension, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be used for migraine prophylaxis.
Collapse
Affiliation(s)
- Patrizia Ripa
- Department of Biotechnological and Applied Clinical Sciences, Division of Clinical Neurology, University of L'Aquila, via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
9
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
10
|
Abstract
The kidneys play a central role in cardiovascular homeostasis by ensuring a balance between the fluid taken in and that lost and excreted during everyday activities. This ensures stability of extracellular fluid volume and maintenance of normal levels of blood pressure. Renal fluid handling is controlled via neural and humoral influences, with the former determining a rapid dynamic response to changing intake of sodium whereas the latter cause a slower longer-term modulation of sodium and water handling. Activity in the renal sympathetic nerves arises from an integration of information from the high and low pressure cardiovascular baroreceptors, the somatosensory and visceral systems as well as the higher cortical centers. Each sensory system provides varying input to the autonomic centers of the hypothalamic and medullary areas of the brain at a level appropriate to the activity being performed. In pathophysiological states, such as hypertension, heart failure and chronic renal disease, there may be an inappropriate sympathoexcitation causing sodium retention which exacerbates the disease process. The contribution of the renal sympathetic nerves to these cardiovascular diseases is beginning to be appreciated with the demonstration that renal denervation of resistant hypertensive patients results in a long-term normalization of blood pressure.
Collapse
Affiliation(s)
- Edward J Johns
- Department of Physiology, University College Cork, Cork, Republic of Ireland.
| |
Collapse
|
11
|
Bohlender J, Nussberger J, Imboden H. Angiotensinergic innervation of the kidney: present knowledge and its significance. Curr Hypertens Rep 2012. [PMID: 23197298 DOI: 10.1007/s11906-012-0322-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrarenal neurotransmission implies the co-release of neuropeptides at the neuro-effector junction with direct influence on parameters of kidney function. The presence of an angiotensin (Ang) II-containing phenotype in catecholaminergic postganglionic and sensory fibers of the kidney, based on immunocytological investigations, has only recently been reported. These angiotensinergic fibers display a distinct morphology and intrarenal distribution, suggesting anatomical and functional subspecialization linked to neuronal Ang II-expression. This review discusses the present knowledge concerning these fibers, and their significance for renal physiology and the pathogenesis of hypertension in light of established mechanisms. The data suggest a new role of Ang II as a co-transmitter stimulating renal target cells or modulating nerve traffic from or to the kidney. Neuronal Ang II is likely to be an independent source of intrarenal Ang II. Further physiological experimentation will have to explore the role of the angiotensinergic renal innervation and integrate it into existing concepts.
Collapse
Affiliation(s)
- Jürgen Bohlender
- Hôpital fribourgeois/CHUV and Institute of Cell Biology, University of Bern, Case postale, Fribourg, Switzerland.
| | | | | |
Collapse
|
12
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
13
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
14
|
Kopp UC, Cicha MZ, Jones SY. Activation of endothelin A receptors contributes to impaired responsiveness of renal mechanosensory nerves in congestive heart failure. Can J Physiol Pharmacol 2011; 88:622-9. [PMID: 20628427 DOI: 10.1139/y10-035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing renal pelvic pressure results in PGE2-mediated release of substance P, leading to increases in afferent renal nerve activity (ARNA) and natriuresis, that is, a renorenal reflex response. The renorenal reflexes are impaired in congestive heart failure (CHF). Impairment of the renorenal reflexes may contribute to the increased renal sympathetic nerve activity and sodium retention in CHF. Endothelin (ET)-1 contributes to the pathological changes in cardiac and renal function in CHF. Therefore, we examined whether the ETA receptor antagonist BQ123 altered the responsiveness of renal mechanosensory nerves in CHF. The ARNA responses to increasing renal pelvic pressure were suppressed in CHF but not in sham-CHF rats. In CHF, increasing renal pelvic pressure by 7.5 mm Hg before and during renal pelvic perfusion with BQ123 increased ARNA 12% +/- 3% and 21% +/- 3% (p < 0.05 vs. vehicle). In isolated renal pelvises from CHF rats, PGE2 increased substance P release from 5 +/- 0 to 7 +/- 1 pg/min without BQ123 and from 4 +/- 1 to 9 +/- 1 pg/min with BQ123 in the bath (p < 0.01 vs. vehicle). BQ123 had no effect on the ARNA responses or substance P release in sham-CHF. In conclusion, activation of ETA receptors contributes to the impaired responsiveness of renal mechanosensory nerves in CHF rats by a mechanism(s) at the renal sensory nerve endings.
Collapse
Affiliation(s)
- Ulla C Kopp
- Department of Internal Medicine, Department of Veterans Affairs Medical Center, and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
15
|
Kopp UC, Cicha MZ, Smith LA, Ruohonen S, Scheinin M, Fritz N, Hökfelt T. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves. Am J Physiol Regul Integr Comp Physiol 2010; 300:R298-310. [PMID: 21106912 DOI: 10.1152/ajpregu.00469.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α(1)-and α(2)-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α(2)-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α(2A)-AR and α(2C)-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α(2)-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α(2)-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α(2)-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake.
Collapse
Affiliation(s)
- Ulla C Kopp
- Dept. of Internal Medicine, Department of Veterans Affairs Medical Center, Bldg. 41, Highway 6W, Iowa City, IA 52246, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Patil J, Schwab A, Nussberger J, Schaffner T, Saavedra JM, Imboden H. Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. ACTA ACUST UNITED AC 2010; 162:90-8. [PMID: 20346377 DOI: 10.1016/j.regpep.2010.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/29/2010] [Accepted: 03/16/2010] [Indexed: 11/30/2022]
Abstract
To elucidate the local formation of angiotensin II (Ang II) in the neurons of sensory dorsal root ganglia (DRG), we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of protein renin, Ang II, Substance P and calcitonin gene-related peptide (CGRP) in the rat and human thoracic DRG. Quantitative real time PCR (qRT-PCR) studies revealed that rat DRG expressed substantial amounts of Ang-N- and ACE mRNA, while renin mRNA as well as the protein renin were untraceable. Cathepsin D-mRNA and cathepsin D-protein were detected in the rat DRG indicating the possibility of existence of pathways alternative to renin for Ang I formation. Angiotensin peptides were successfully detected with high performance liquid chromatography and radioimmunoassay in human DRG extracts. In situ hybridization in rat DRG confirmed additionally expression of Ang-N mRNA in the cytoplasm of numerous neurons. Intracellular Ang II staining could be shown in number of neurons and their processes in both the rat and human DRG. Interestingly we observed neuronal processes with angiotensinergic synapses en passant, colocalized with synaptophysin, within the DRG. In the DRG, we also identified by qRT-PCR, expression of Ang II receptor AT(1A) and AT(2)-mRNA while AT(1B)-mRNA was not traceable. In some neurons Substance P and CGRP were found colocalized with Ang II. The intracellular localization and colocalization of Ang II with Substance P and CGRP in the DRG neurons may indicate a participation and function of Ang II in the regulation of nociception. In conclusion, these results suggest that Ang II may be produced locally in the neurons of rat and human DRG and act as a neurotransmitter.
Collapse
Affiliation(s)
- Jaspal Patil
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Kopp UC, Grisk O, Cicha MZ, Smith LA, Steinbach A, Schlüter T, Mähler N, Hökfelt T. Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin. Am J Physiol Regul Integr Comp Physiol 2009; 297:R337-51. [PMID: 19474389 DOI: 10.1152/ajpregu.91029.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which in turn decreases ERSNA via activation of the renorenal reflexes in the overall goal of maintaining low ERSNA. We now examined whether the ERSNA-induced increases in ARNA are modulated by dietary sodium and the role of endothelin (ET). The ARNA response to reflex increases in ERSNA was enhanced in high (HNa)- vs. low-sodium (LNa) diet rats, 7,560 +/- 1,470 vs. 900 +/- 390%.s. The norepinephrine (NE) concentration required to increase PGE(2) and substance P release from isolated renal pelvises was 10 pM in HNa and 6,250 pM in LNa diet rats. In HNa diet pelvises 10 pM NE increased PGE(2) release from 67 +/- 6 to 150 +/- 13 pg/min and substance P release from 6.7 +/- 0.8 to 12.3 +/- 1.8 pg/min. In LNa diet pelvises 6,250 pM NE increased PGE(2) release from 64 +/- 5 to 129 +/- 22 pg/min and substance P release from 4.5 +/- 0.4 to 6.6 +/- 0.7 pg/min. In the renal pelvic wall, ETB-R are present on unmyelinated Schwann cells close to the afferent nerves and ETA-R on smooth muscle cells. ETA-receptor (R) protein expression in the renal pelvic wall is increased in LNa diet. In HNa diet, renal pelvic administration of the ETB-R antagonist BQ788 reduced ERSNA-induced increases in ARNA and NE-induced release of PGE(2) and substance P. In LNa diet, the ETA-R antagonist BQ123 enhanced ERSNA-induced increases in ARNA and NE-induced release of substance P without altering PGE(2) release. In conclusion, activation of ETB-R and ETA-R contributes to the enhanced and suppressed interaction between ERSNA and ARNA in conditions of HNa and LNa diet, respectively, suggesting a role for ET in the renal control of ERSNA that is dependent on dietary sodium.
Collapse
Affiliation(s)
- Ulla C Kopp
- Department of Internal Medicine, Department of Veterans Affairs Medical Center and University of Iowa Carver College of Medicine, Iowa City, Iowa 52246, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Imboden H, Patil J, Nussberger J, Nicoud F, Hess B, Ahmed N, Schaffner T, Wellner M, Müller D, Inagami T, Senbonmatsu T, Pavel J, Saavedra JM. Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia. ACTA ACUST UNITED AC 2009; 154:23-31. [PMID: 19323983 DOI: 10.1016/j.regpep.2009.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 01/13/2009] [Accepted: 02/03/2009] [Indexed: 12/21/2022]
Abstract
To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples. Cathepsin D was detected in the rat trigeminal ganglia indicating the possibility of existence of pathways alternative to renin for Ang I formation. In situ hybridization in rat trigeminal ganglia revealed expression of Ang-N mRNA in the cytoplasm of numerous neurons. By using immunocytochemistry, a number of neurons and their processes in both the rat and human trigeminal ganglia were stained for Ang II. Post in situ hybridization immunocytochemistry reveals that in the rat trigeminal ganglia some, but not all Ang-N mRNA-positive neurons marked for Ang II. In some neurons Substance P was found colocalized with Ang II. Angiotensins from rat trigeminal ganglia were quantitated by radioimmunoassay with and without prior separation by high performance liquid chromatography. Immunoreactive angiotensin II (ir-Ang II) was consistently present and the sum of true Ang II (1-8) octapeptide and its specifically measured metabolites were found to account for it. Radioimmunological and immunocytochemical evidence of ir-Ang II in neuronal tissue is compatible with Ang II as a neurotransmitter. In conclusion, these results suggest that Ang II could be produced locally in the neurons of rat trigeminal ganglia. The localization and colocalization of neuronal Ang II with Substance P in the trigeminal ganglia neurons may be the basis for a participation and function of Ang II in the regulation of nociception and migraine pathology.
Collapse
Affiliation(s)
- Hans Imboden
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Quinlan MR, Docherty NG, Watson RWG, Fitzpatrick JM. Exploring mechanisms involved in renal tubular sensing of mechanical stretch following ureteric obstruction. Am J Physiol Renal Physiol 2008; 295:F1-F11. [PMID: 18400870 DOI: 10.1152/ajprenal.00576.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tubular mechanical stretch is the key primary insult in obstructive nephropathy. This review addresses how the renal tubular epithelium senses and responds to mechanical stretch. Using data from renal and nonrenal systems, we describe how sensing of stretch initially occurs via the activation of ion channels and subsequent increases in intracellular calcium levels. Calcium influxes activate a number of adaptive and proinjury responses. Key among these are 1) the activation of Rho, consequent cytoskeletal rearrangements, and downstream increases in focal adhesion assembly; and 2) phospholipase activation and resultant mitogen-activated protein kinase activation. These early signaling events culminate in adaptive cellular coupling to the extracellular matrix, a process termed the cell strengthening response. Direct links can be made between increased expression of genes involved in the development of obstructive nephropathy and initial sensing of mechanical stretch. The review illustrates the repercussions of mechanical stretch as a renal stress stimulus, specific to ureteric obstruction, and provides an insight into how tubular responses to mechanical stretch are ultimately implicated in the development of obstructive nephropathy.
Collapse
Affiliation(s)
- Mark R Quinlan
- The Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | |
Collapse
|
20
|
Kopp UC, Cicha MZ, Yorek MA. Impaired responsiveness of renal sensory nerves in streptozotocin-treated rats and obese Zucker diabetic fatty rats: role of angiotensin. Am J Physiol Regul Integr Comp Physiol 2008; 294:R858-66. [DOI: 10.1152/ajpregu.00830.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing afferent renal nerve activity decreases efferent renal nerve activity and increases urinary sodium excretion. Activation of renal pelvic mechanosensory nerves is impaired in streptozotocin (STZ)-treated rats (model of type 1 diabetes). Decreased activation of renal sensory nerves would lead to increased efferent renal nerve activity, sodium retention, and hypertension. We examined whether the reduced activation of renal sensory nerves in STZ rats was due to increased renal angiotensin activity and whether activation of the renal sensory nerves was impaired in obese Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). In an isolated renal pelvic wall preparation from rats treated with STZ for 2 wk, PGE2failed to increase the release of substance P, from 5 ± 1 to 6 ± 1 pg/min. In pelvises from sham STZ rats, PGE2increased substance P release from 6 ± 1 to 13 ± 2 pg/min. Adding losartan to the incubation bath increased PGE2-mediated release of substance P in STZ rats, from 5 ± 1 to 10 ± 2 pg/min, but had no effect in sham STZ rats. In pelvises from obese ZDF rats (22–46 wk old), PGE2increased substance P release from 12.0 ± 1.2 to 18.3 ± 1.2 pg/min, which was less than that from lean ZDF rats (10.3 ± 1.6 to 22.5 ± 2.4 pg/min). Losartan had no effect on the PGE2-mediated substance P release in obese or lean ZDF rats. We conclude that the mechanisms involved in the decreased responsiveness of the renal sensory nerves in STZ rats involve activation of the renin angiotensin system in STZ but not in obese ZDF rats.
Collapse
|
21
|
Kopp UC, Cicha MZ, Smith LA. Differential effects of endothelin on activation of renal mechanosensory nerves: stimulatory in high-sodium diet and inhibitory in low-sodium diet. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1545-56. [PMID: 16763077 DOI: 10.1152/ajpregu.00878.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of renal mechanosensory nerves is enhanced by high and suppressed by low sodium dietary intake. Afferent renal denervation results in salt-sensitive hypertension, suggesting that activation of the afferent renal nerves contributes to water and sodium balance. Another model of salt-sensitive hypertension is the endothelin B receptor (ETBR)-deficient rat. ET and its receptors are present in sensory nerves. Therefore, we examined whether ET receptor blockade altered the responsiveness of the renal sensory nerves. In anesthetized rats fed high-sodium diet, renal pelvic administration of the ETBR antagonist BQ-788 reduced the afferent renal nerve activity (ARNA) response to increasing renal pelvic pressure 7.5 mmHg from 26+/-3 to 9+/-3% and the PGE2-mediated renal pelvic release of substance P from 9+/-1 to 3+/-1 pg/min. Conversely, in rats fed low-sodium diet, renal pelvic administration of the ETAR antagonist BQ-123 enhanced the ARNA response to increased renal pelvic pressure from 9+/-2 to 23+/-6% and the PGE2-mediated renal pelvic release of substance P from 0+/-0 to 6+/-1 pg/min. Adding the ETAR antagonist to ETBR-blocked renal pelvises restored the responsiveness of renal sensory nerves in rats fed a high-sodium diet. Adding the ETBR antagonist to ETAR-blocked pelvises suppressed the responsiveness of the renal sensory nerves in rats fed a low-sodium diet. In conclusion, activation of ETBR and ETAR contributes to the enhanced and suppressed responsiveness of renal sensory nerves in conditions of high- and low-sodium dietary intake, respectively. Impaired renorenal reflexes may contribute to the salt-sensitive hypertension in the ETBR-deficient rat.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Diet, Sodium-Restricted
- Endothelin A Receptor Antagonists
- Endothelin B Receptor Antagonists
- Endothelins/genetics
- Endothelins/physiology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/innervation
- Kidney/metabolism
- Male
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Oligopeptides/pharmacology
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/drug effects
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Sodium, Dietary/pharmacology
- Substance P/metabolism
Collapse
Affiliation(s)
- Ulla C Kopp
- Dept. of Internal Medicine, VA Medical Center, University of Iowa Carver College of Medicine, Bldg. 3, Rm. 226, Highway 6W, Iowa City, IA 52246, USA.
| | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Recent studies have reported that intrarenal angiotensin II content and angiotensin II concentrations in the proximal tubular fluid and renal interstitial fluid are much greater than the circulating angiotensin II levels. These high intrarenal angiotensin II levels are responsible for regulating renal hemodynamics and tubular transport. RECENT FINDINGS Intrarenal angiotensin II levels have been assessed from total tissue contents as well as renal interstitial fluid and proximal tubular fluid concentrations. Total tissue contents expressed per gram of tissue weight are greater than plasma angiotensin II concentrations; tubular fluid concentrations and renal interstitial fluid concentrations are even greater in the range of 3-10 pmoles/ml. In hypertensive states, there is also an increased intracellular accumulation of angiotensin II mediated by angiotensin type 1 receptor-dependent endocytosis. The high intrarenal angiotensin II levels are also caused by the presence of angiotensinogen messenger RNA and protein in the proximal tubule cells. Furthermore, there is positive amplification by which increases in circulating angiotensin II stimulate increased production and secretion of angiotensinogen, which is also manifested as an increased urinary excretion rate. SUMMARY The ability of the kidney to generate high intratubular and interstitial concentrations allows the kidney to regulate intrarenal levels in accord with the homeostatic needs for the regulation of renal hemodynamics and tubular reabsorption and the regulation of sodium balance. When inappropriately stimulated, high intrarenal angiotensin II levels contribute to excessive salt and water retention, the development of hypertension, and long-term proliferative effects leading to renal injury.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University Health Scences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
23
|
Kopp UC, Cicha MZ. Impaired substance P release from renal sensory nerves in SHR involves a pertussis toxin-sensitive mechanism. Am J Physiol Regul Integr Comp Physiol 2004; 286:R326-33. [PMID: 14578115 DOI: 10.1152/ajpregu.00493.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretching the renal pelvic wall activates renal mechanosensory nerves by a PGE2-mediated release of substance P via activation of the cAMP-PKA pathway. Renal pelvic ANG II modulates the responsiveness of renal sensory nerves by suppressing the PGE2-mediated activation of adenylyl cyclase via a pertussis toxin (PTX)-sensitive mechanism. In SHR, activation of renal mechanosensory nerves is impaired. This is due to suppressed release of substance P in response to increased pelvic pressure. The present study was performed to investigate whether the PGE2-mediated release of substance P was suppressed in SHR vs. WKY and, if so, whether the impaired PGE2-mediated release of substance P was due to ANG II activating a PTX-sensitive mechanism. In an isolated renal pelvic wall preparation, PGE2, 0.14 μM, increased substance P release from 9 ± 3 to 22 ± 3 pg/min ( P < 0.01) in Wistar-Kyoto rats (WKY), but had no effect in spontaneously hypertensive rats (SHR). A tenfold higher concentration of PGE2, 1.4 μM, was required to increase substance P release in SHR, from 7 ± 1 to 22 ± 3 pg/min ( P < 0.01). In SHR, treating renal pelvises with losartan enhanced the release of substance P produced by subthreshold concentration of PGE2, 0.3 μM, from 16 ± 2 to 26 ± 3 pg/min ( P < 0.01). Likewise, treating renal pelvises with PTX enhanced the PGE2-mediated release of substance P from 10 ± 1 to 33 ± 3 pg/min ( P < 0.01) in SHR. In WKY, neither losartan nor PTX had an effect on the release of substance P produced by subthreshold concentrations of PGE2, 0.03 μM. In conclusion, the impaired responsiveness of renal sensory nerves in SHR involves endogenous ANG II suppressing the PGE2-mediated release of substance P via a PTX-sensitive mechanism.
Collapse
Affiliation(s)
- Ulla C Kopp
- Dept. of Internal Medicine, VA Medical Center, Bldg. 3, Rm 226, Highway 6W, Iowa City, IA 52246, USA.
| | | |
Collapse
|
24
|
Abstract
The renal nerves are the communication link between the central nervous system and the kidney. In response to multiple peripheral and central inputs, efferent renal sympathetic nerve activity is altered so as to convey information to the major structural and functional components of the kidney, the vessels, glomeruli, and tubules, each of which is innervated. At the level of each of these individual components, information transfer occurs via interaction of the neurotransmitter released at the sympathetic nerve terminal-neuroeffector junction with specific postjunctional receptors coupled to defined intracellular signaling and effector systems. In response to normal physiological stimuli, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of renal blood flow, glomerular filtration rate, renal tubular epithelial cell solute and water transport, and hormonal release. Afferent input from sensory receptors located in the kidney participates in this reflex control system via renorenal reflexes that enable total renal function to be self-regulated and balanced between the two kidneys. In pathophysiological conditions, abnormal regulation of efferent renal sympathetic nerve activity contributes significantly to the associated abnormalities of renal function which, in turn, are of importance in the pathogenesis of the disease.
Collapse
Affiliation(s)
- G F DiBona
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|