1
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
3
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
6
|
Wei J, Zhu J, Zhang J, Jiang S, Qu L, Wang L, Buggs J, Tan X, Cheng F, Liu R. Aging Impairs Renal Autoregulation in Mice. Hypertension 2020; 75:405-412. [PMID: 31838907 PMCID: PMC7027982 DOI: 10.1161/hypertensionaha.119.13588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Impaired renal autoregulation permits more transmission of disturbance in systemic blood pressure, which initiates barotrauma in intrarenal microvasculatures such as glomerular and tubulointerstitial capillaries, contributing to the development of kidney damage and deterioration in renal function, especially under the conditions with high blood pressure. Although it has been postulated that autoregulatory efficiency is attenuated in the aging kidney, direct evidence remains lacking. In the present study, we measured the autoregulation of renal blood flow, myogenic response of afferent arteriole (Af-Art), tubuloglomerular feedback in vivo with micropuncture, as well as tubuloglomerular feedback in vitro in isolated perfused juxtaglomerular apparatus in young and aged C57BL/6 mice. We found that renal blood flow was not significantly changed in response to a defined elevation of renal arterial pressure in young mice but significantly increased in aged mice. Additionally, myogenic response of Af-Art measured by microperfusion with a stepwise increase in perfusion pressure was significantly blunted in the aging kidney, which is associated with the attenuation of intraluminal pressure-induced intracellular calcium increases, as well as the reduced expression of integrin α5 (Itga5) in Af-Art. Moreover, both tubuloglomerular feedback in vivo and in vitro were nearly inactive in the aging kidney, which is associated with the significantly reduced expression of adenosine A1 receptor (A1AR) and suppressed vasoconstrictor response to adenosine in Af-Art. In conclusion, this study demonstrates that aging impairs renal autoregulation with blunted myogenic response and inhibited tubuloglomerular feedback response. The underlying mechanisms involve the downregulations of integrin α5 and A1AR in the Af-Art.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jinxiu Zhu
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Xuerui Tan
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
7
|
Jiang S, Wang X, Wei J, Zhang G, Zhang J, Xie P, Xu L, Wang L, Zhao L, Li L, Wilcox CS, Chen J, Lai EY, Liu R. NaHCO 3 Dilates Mouse Afferent Arteriole Via Na +/HCO 3- Cotransporters NBCs. Hypertension 2019; 74:1104-1112. [PMID: 31522618 DOI: 10.1161/hypertensionaha.119.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sodium bicarbonate has long been used to treat chronic kidney disease. It has been demonstrated to slow the decline in glomerular filtration rate in chronic kidney disease patient; however, the mechanisms are not completely understood. We hypothesized that NaHCO3 dilates afferent arterioles (Af-Art) by stimulating nitric oxide (NO) release mediated by the Na+/HCO3- cotransporter (NBC) contributing to the elevation in glomerular filtration rate. Isolated microperfused mouse renal Af-Art, preconstricted with norepinephrine (1 µmol/L), dilated 45±2% (n=6, P<0.05) in response to NaHCO3 (44 mmol/L). Whereas, NaCl solution containing the same Na+ concentration was not effective. The mRNA for NBCn1 and NBCe1 were detected in microdissected Af-Art using reverse transcription-polymerase chain reaction and quantitative polymerase chain reaction. The Af-Art intracellular pH measured with 2',7'-bis-(2-carboxyethyl)-5-(and-6) carboxyfluorescein, acetoxymethyl ester increased significantly by 0.29±0.02 (n=6; P<0.05) in the presence of NaHCO3, which was blunted by N-cyanosulphonamide compound (S0859) that is an inhibitor of the NBC family. After clamping the intracellular pH with 10 μM nigericin, changing the bath solution pH from 7.4 to 7.8 still dilates the Af-Art by 53±4% (n=7; P<0.005) and increases NO generation by 22±3% (n=7; P<0.005). Both pH-induced NO generation and vasodilation were blocked by L-NG-Nitroarginine Methyl Ester. NaHCO3 increased NO generation in Af-Art by 19±4% (n=5; P<0.005) and elevated glomerular filtration rate in conscious mice by 36% (233 versus 318 ul/min; n=9-10; P<0.0001). S0859 and L-NG-nitroarginine methyl ester blocked NaHCO3-induced increases in NO generation and vasodilation. We conclude that NBCn1 and NBCe1 are expressed in Af-Art and that NaHCO3 dilates Af-Art via NBCs mediated by NO that increases the glomerular filtration rate.
Collapse
Affiliation(s)
- Shan Jiang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.).,Shandong Provincial Hospital, Affiliated Hospital of Shandong University, Jinan, China (X.W.)
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Gensheng Zhang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Peng Xie
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa (L.X.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Liang Zhao
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Lingli Li
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Jianghua Chen
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - En Yin Lai
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| |
Collapse
|
8
|
Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. J Am Soc Nephrol 2019; 30:578-593. [PMID: 30867247 DOI: 10.1681/asn.2018080844] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/27/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is common in early diabetes and is considered a risk factor for later diabetic nephropathy. We propose that sodium-glucose cotransporter 1 (SGLT1) senses increases in luminal glucose at the macula densa, enhancing generation of neuronal nitric oxide synthase 1 (NOS1)-dependent nitric oxide (NO) in the macula densa and blunting the tubuloglomerular feedback (TGF) response, thereby promoting the rise in GFR. METHODS We used microperfusion, micropuncture, and renal clearance of FITC-inulin to examine the effects of tubular glucose on NO generation at the macula densa, TGF, and GFR in wild-type and macula densa-specific NOS1 knockout mice. RESULTS Acute intravenous injection of glucose induced hyperglycemia and glucosuria with increased GFR in mice. We found that tubular glucose blunts the TGF response in vivo and in vitro and stimulates NO generation at the macula densa. We also showed that SGLT1 is expressed at the macula densa; in the presence of tubular glucose, SGLT1 inhibits TGF and NO generation, but this action is blocked when the SGLT1 inhibitor KGA-2727 is present. In addition, we demonstrated that glucose increases NOS1 expression and NOS1 phosphorylation at Ser1417 in mouse renal cortex and cultured human kidney tissue. In macula densa-specific NOS1 knockout mice, glucose had no effect on NO generation, TGF, and GFR. CONCLUSIONS We identified a novel mechanism of acute hyperglycemia-induced hyperfiltration wherein increases in luminal glucose at the macula densa upregulate the expression and activity of NOS1 via SGLT1, blunting the TGF response and promoting glomerular hyperfiltration.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, College of Medicine,
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Lan Xu
- Department of Biostatistics, College of Public Health, and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; and
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine
| |
Collapse
|