1
|
Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023; 159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Mechanical cues in the cell microenvironment such as those from extracellular matrix properties, stretching, compression and shear stress, play a critical role in maintaining homeostasis. Upon sensing mechanical stimuli, cells can translate these external forces into intracellular biochemical signals to regulate their cellular behaviors, but the specific mechanisms of mechanotransduction at the molecular level remain elusive. As a subfamily of the Ras superfamily, Rho GTPases have been recognized as key intracellular mechanotransduction mediators that can regulate multiple cell activities such as proliferation, migration and differentiation as well as biological processes such as cytoskeletal dynamics, metabolism, and organ development. However, the upstream mechanosensors for Rho proteins and downstream effectors that respond to Rho signal activation have not been well illustrated. Moreover, Rho-mediated mechanical signals in previous studies are highly context-dependent. In this review, we systematically summarize the types of mechanical cues in the cell microenvironment and provide recent advances on the roles of the Rho-based mechanotransduction in various cell activities, physiological processes and diseases. Comprehensive insights into the mechanical roles of Rho GTPase partners would open a new paradigm of mechanomedicine for a variety of diseases. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical role of Rho GTPases as signal mediators to respond to physical cues in microenvironment. This article will add a distinct contribution to this set of knowledge by intensively addressing the relationship between Rho signaling and mechanobiology/mechanotransduction/mechanomedcine. This topic has not been discussed by the journal, nor has it yet been developed by the field. The comprehensive picture that will develop, from molecular mechanisms and engineering methods to disease treatment strategies, represents an important and distinct contribution to the field. We hope that this review would help researchers in various fields, especially clinicians, oncologists and bioengineers, who study Rho signal pathway and mechanobiology/mechanotransduction, understand the critical role of Rho GTPase in mechanotransduction.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runxin Xue
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi 710049, China.
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
2
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Afsar B, Afsar RE, Demiray A, Covic A, Kanbay M. Deciphering nutritional interventions for podocyte structure and function. Pharmacol Res 2021; 172:105852. [PMID: 34450318 DOI: 10.1016/j.phrs.2021.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Despite increasing awareness and therapeutic options chronic kidney disease (CKD) is still and important health problem and glomerular diseases constitute and important percentage of CKD. Proteinuria/albuminuria is not just a marker; but it also plays a direct pathogenic role in renal disease progression of CKD. Glomerular filtration barrier (GFB) which consists of fenestrated endothelial cells, fused basal membrane and interdigitating podocyte foot process and filtration slits between foot process is the major barrier for proteinuria/albuminuria. Many glomerular diseases are characterized by disruption of GFB podocytes, foot process and slit diaphragm. Many proteinuric diseases are non-specifically targeted by therapeutic agents such as steroids and calcineurin inhibitors with systemic side effects. Thus, there is unmet need for more efficient and less toxic therapeutic options to treat glomerular diseases. In recent years, modification of dietary intake, has been gained to treat pathologic processes introducing the concept of 'food as a medicine'. The effect of various nutritional products on podocyte function and structure is also trending, especially in recent years. In the current review, we summarized the effect of nutritional interventions on podocyte function and structure.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
6
|
Go YM, Kim CW, Walker DI, Kang DW, Kumar S, Orr M, Uppal K, Quyyumi AA, Jo H, Jones DP. Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE⁻/⁻ mice with partial carotid ligation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R62-72. [PMID: 25377480 PMCID: PMC4281678 DOI: 10.1152/ajpregu.00278.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Abstract
Disturbed blood flow (d-flow) occurring in branched and curved arteries promotes endothelial dysfunction and atherosclerosis, in part, by altering gene expression and epigenomic profiles in endothelial cells. While a systemic metabolic change is known to play a role in atherosclerosis, it is unclear whether it can be regulated by local d-flow. Here, we tested this hypothesis by carrying out a metabolomics study using blood plasma samples obtained from ApoE(-/-) mice that underwent a partial carotid ligation surgery to induce d-flow. Mice receiving sham ligation were used as a control. To study early metabolic changes, samples collected from 1 wk after partial ligation when endothelial dysfunction occurs, but before atheroma develops, were analyzed by high-resolution mass spectrometry. A metabolome-wide association study showed that 128 metabolites were significantly altered in the ligated mice compared with the sham group. Of these, sphingomyelin (SM; m/z 703.5747), a common mammalian cell membrane sphingolipid, was most significantly increased in the ligated mice. Of the 128 discriminatory metabolites, 18 and 41 were positively and negatively correlated with SM, respectively. The amino acids methionine and phenylalanine were increased by d-flow, while phosphatidylcholine and phosphatidylethanolamine were decreased by d-flow, and these metabolites were correlated with SM. Other significantly affected metabolites included dietary and environmental agents. Pathway analysis showed that the metabolic changes of d-flow impacted broad functional networks. These results suggest that signaling from d-flow occurring in focal regions induces systemic metabolic changes associated with atherosclerosis.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Chan Woo Kim
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Douglas I Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts; and
| | - Dong Won Kang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sandeep Kumar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Hanjoong Jo
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|
7
|
Grabias BM, Konstantopoulos K. The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 2013; 306:F473-85. [PMID: 24352503 DOI: 10.1152/ajprenal.00503.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Healthy kidneys are continuously exposed to an array of physical forces as they filter the blood: shear stress along the inner lumen of the tubules, distension of the tubular walls in response to changing fluid pressures, and bending moments along both the cilia and microvilli of individual epithelial cells that comprise the tubules. Dysregulation of kidney homeostasis via underlying medical conditions such as hypertension, diabetes, or glomerulonephritis fundamentally elevates the magnitudes of each principle force in the kidney and leads to fibrotic scarring and eventual loss of organ function. The purpose of this review is to summarize the progress made characterizing the response of kidney cells to pathological levels of mechanical stimuli. In particular, we examine important, mechanically responsive signaling cascades and explore fundamental changes in renal cell homeostasis after cyclic strain or fluid shear stress exposure. Elucidating the effects of these disease-related mechanical imbalances on endogenous signaling events in kidney cells presents a unique opportunity to better understand the fibrotic process.
Collapse
Affiliation(s)
- Bryan M Grabias
- Dept. of Chemical and Biomolecular Engineering, The Johns Hopkins Univ., New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218.
| | | |
Collapse
|
8
|
Struckhoff AP, Rana MK, Kher SS, Burow ME, Hagan JL, Del Valle L, Worthylake RA. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA. J Cell Sci 2013; 126:4514-26. [PMID: 23868972 DOI: 10.1242/jcs.132381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The CXCL12-CXCR4 chemokine signaling pathway is a well-established driver of cancer progression. One key process promoted by CXCR4 stimulation is tumor cell motility; however, the specific signaling pathways leading to migration remain poorly understood. Previously, we have shown that CXCL12 stimulation of migration depends on temporal regulation of RhoA. However, the specific RhoGEF that translates CXCR4 signaling into RhoA activity and cell motility is unknown. We screened the three regulator of G-protein signaling RhoGEFs (LSC, LARG and PRG) and found that PRG selectively regulated the migration and invasion of CXCR4-overexpressing breast tumor cells. Interestingly, we found that PDZ-RhoGEF (PRG) was required for spatial organization of F-actin structures in the center, but not periphery of the cells. The effects on the cytoskeleton were mirrored by the spatial effects on RhoA activity that were dependent upon PRG. Loss of PRG also enhanced adherens junctions in the epithelial-like MCF7-CXCR4 cell line, and inhibited directional persistence and polarity in the more mesenchymal MDA-MB-231 cell line. Thus, PRG is essential for CXCR4-driven tumor cell migration through spatial regulation of RhoA and the subsequent organization of the cytoskeletal structures that support motility. Furthermore, immunohistochemical analysis of human breast tumor tissues shows a significant increase of PRG expression in the invasive areas of the tumors, suggesting that this RhoGEF is associated with breast tumor invasion in vivo.
Collapse
Affiliation(s)
- Amanda P Struckhoff
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Bi J, Chase SE, Pellenz CD, Kurihara H, Fanning AS, Krendel M. Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes. Am J Physiol Renal Physiol 2013; 305:F532-44. [PMID: 23761676 DOI: 10.1152/ajprenal.00223.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular visceral epithelial cells, also known as podocytes, are critical to both normal kidney function and the development of kidney disease. Podocyte actin cytoskeleton and their highly specialized cell-cell junctions (also called slit diaphragm complexes) play key roles in controlling glomerular filtration. Myosin 1e (myo1e) is an actin-based molecular motor that is expressed in renal glomeruli. Disruption of the Myo1e gene in mice and humans promotes podocyte injury and results in the loss of the integrity of the glomerular filtration barrier. Here, we have used biochemical and microscopic approaches to determine whether myo1e is associated with the slit diaphragm complexes in glomerular podocytes. Myo1e was consistently enriched in the slit diaphragm fraction during subcellular fractionation of renal glomeruli and colocalized with the slit diaphragm markers in mouse kidney. Live cell imaging studies showed that myo1e was recruited to the newly formed cell-cell junctions in cultured podocytes, where it colocalized with the actin filament cables aligned with the nascent contacts. Myo1e-null podocytes expressing FSGS-associated myo1e mutant (A159P) did not efficiently assemble actin cables along new cell-cell junctions. We have mapped domains in myo1e that were critical for its localization to cell-cell junctions and determined that the SH3 domain of myo1e tail interacts with ZO-1, a component of the slit diaphragm complex and tight junctions. These findings suggest that myo1e represents a component of the slit diaphragm complex and may contribute to regulating junctional integrity in kidney podocytes.
Collapse
Affiliation(s)
- J Bi
- Dept. of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
11
|
Zhu L, Qi XY, Aoudjit L, Mouawad F, Baldwin C, Nattel S, Takano T. Nuclear factor of activated T cells mediates RhoA-induced fibronectin upregulation in glomerular podocytes. Am J Physiol Renal Physiol 2013; 304:F849-62. [PMID: 23389455 DOI: 10.1152/ajprenal.00495.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerulosclerosis is featured by accumulation of the extracellular matrixes in the glomerulus. We showed previously that activation of the small GTPase RhoA in podocytes induces heavy proteinuria and glomerulosclerosis in the mouse. In the current study, we investigated the mechanism by which RhoA stimulates the production of one of the extracellular matrixes, fibronectin, by podocytes, specifically testing the role of nuclear factor of activated T cells (NFAT). Expression of constitutively active RhoA in cultured podocytes activated the fibronectin promoter, upregulated fibronectin protein, and activated NFAT. Expression of constitutively active NFAT in podocytes also activated the fibronectin promoter and upregulated fibronectin protein. RhoA-induced NFAT activation and fibronectin upregulation were both dependent on the calcium/calmodulin pathway and Rho kinase. NFAT activation was also observed in vivo in the rat and mouse models of podocyte injury and proteinuria, and NFAT inhibition ameliorated fibronectin upregulation in the latter. RhoA activation induced a rise of intracellular calcium ion concentration ([Ca(2+)]i), which was at least in part dependent on the transient receptor potential canonical 6 (TRPC6) cation channel. The results indicate that RhoA activates NFAT by inducing a rise of [Ca(2+)]i in podocytes, which in turn contributes to fibronectin upregulation. This pathway may be responsible for the pathogenesis of certain glomerular diseases such as hypertension-mediated glomerulosclerosis.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9:200-10. [PMID: 23338211 DOI: 10.1038/nrneph.2012.291] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesion is crucial for maintaining the mechanical integrity of epithelial tissues. Podocytes--a key component of the glomerular filtration barrier--are exposed to permanent transcapillary filtration pressure and must therefore adhere tightly to the underlying glomerular basement membrane (GBM). The major cell-matrix adhesion receptor in podocytes is the integrin α3β1, which connects laminin 521 in the GBM through various adaptor proteins to the intracellular actin cytoskeleton. Other cell-matrix adhesion receptors expressed by podocytes include the integrins α2β1 and αvβ3, α-dystroglycan, syndecan-4 and type XVII collagen. Mutations in genes encoding any of the components critical for podocyte adhesion cause glomerular disease. This Review highlights recent advances in our understanding of the cell biology and genetics of podocyte adhesion with special emphasis on glomerular disease.
Collapse
Affiliation(s)
- Norman Sachs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
13
|
Verma D, Ye N, Meng F, Sachs F, Rahimzadeh J, Hua SZ. Interplay between cytoskeletal stresses and cell adaptation under chronic flow. PLoS One 2012; 7:e44167. [PMID: 23028495 PMCID: PMC3446919 DOI: 10.1371/journal.pone.0044167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/30/2012] [Indexed: 01/16/2023] Open
Abstract
Using stress sensitive FRET sensors we have measured cytoskeletal stresses in α-actinin and the associated reorganization of the actin cytoskeleton in cells subjected to chronic shear stress. We show that long-term shear stress reduces the average actinin stress and this effect is reversible with removal of flow. The flow-induced changes in cytoskeletal stresses are found to be dynamic, involving a transient decrease in stress (phase-I), a short-term increase (3–6 min) (Phase-II), followed by a longer-term decrease that reaches a minimum in ∼20 min (Phase-III), before saturating. These changes are accompanied by reorganization of the actin cytoskeleton from parallel F-actin bundles to peripheral bundles. Blocking mechanosensitive ion channels (MSCs) with Gd3+ and GsMTx4 (a specific inhibitor) eliminated the changes in cytoskeletal stress and the corresponding actin reorganization, indicating that Ca2+ permeable MSCs participate in the signaling cascades. This study shows that shear stress induced cell adaptation is mediated via MSCs.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, New York, United States of America
| | - Nannan Ye
- Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, New York, United States of America
| | - Fanjie Meng
- Department of Physiology and Biophysics, SUNY-Buffalo, Buffalo, New York, United States of America
| | - Frederick Sachs
- Department of Physiology and Biophysics, SUNY-Buffalo, Buffalo, New York, United States of America
| | - Jason Rahimzadeh
- Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, New York, United States of America
| | - Susan Z. Hua
- Department of Physiology and Biophysics, SUNY-Buffalo, Buffalo, New York, United States of America
- Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res 2012; 318:1075-85. [PMID: 22472346 DOI: 10.1016/j.yexcr.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 02/06/2023]
Abstract
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD(1), and PLD(2) to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD(1) but not PLD(2). The inhibition of shear stress-induced c-Src phosphorylation by PP(2) (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chunfa Huang
- Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Almost all mammalian cell types have morphologies that are uniquely tailored to their physiological functions. This immense variation in cell shape depends on an underlying network of dynamic and interconnected actin and microtubule polymers. The glomerular podocyte is an archetypal example of such specialization, with a complex cytoskeleton underlying its delicate architectural features. Dynamic control of this cytoskeletal matrix seems to center around the slit diaphragm, a complex of proteins at the cell-cell junction between adjacent podocyte foot processes. This junction includes molecules that are unique to the podocyte that probably determine the correct morphology of the cell, and are targets of disease processes that disrupt the intricate balance of signaling that controls the cytoskeletal matrix. This Review will outline the most recent concepts and advances in our understanding of this critical aspect of glomerular biology, as well as discussing how an improved understanding of the podocyte cytoskeleton is starting to shape advances in delineating the pathogenesis of common glomerular diseases.
Collapse
|
16
|
|
17
|
Apostolakos P, Panteris E, Galatis B. The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. ACTA ACUST UNITED AC 2008; 65:863-75. [PMID: 18785264 DOI: 10.1002/cm.20308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, the involvement of phospholipase C and D (PLC and PLD) pathways in the asymmetric divisions that produce the stomatal complexes of Zea mays was investigated. In particular, the polar organization of microtubules (MTs) and actin filaments (AFs) and the process of asymmetric division were studied in subsidiary cell mother cells (SMCs) treated with PLC and PLD modulators. In SMCs treated with butanol-1 (but-1), which blocks phosphatidic acid (PA) production via PLDs, AF-patch formation laterally to the inducing guard cell mother cell (GMC) and the subsequent asymmetric division were inhibited. In these SMCs, cell division plane determination, as expressed by MT preprophase band (MT-PPB) formation, was not disturbed. Exogenously applied PA partially relieved the but-1 effects on SMCs. In contrast to SMCs, but-1 did not affect the symmetric GMC division. Inhibition of the PLC catalytic activity by neomycin or U73122 resulted in inhibition of asymmetric SMC division, while AF-patch and MT-PPB were organized as in control SMCs. These data show that the PLC and PLD signaling pathways are involved in the transduction and/or perception of the inductive stimulus that is emitted by the GMCs and induces the polar AF organization and asymmetric SMC division. In contrast, division plane determination in SMCs, as expressed by MT-PPB formation, does not depend on PLC and PLD signaling pathways.
Collapse
|
18
|
Vorland M, Holmsen H. Phospholipase D in human platelets: presence of isoenzymes and participation of autocrine stimulation during thrombin activation. Platelets 2008; 19:211-24. [PMID: 18432522 DOI: 10.1080/09537100701777329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phospholipase D (PLD), which hydrolyzes phosphatidylcholine to phosphatidic acid (PA) and choline, is present in human platelets. Thrombin and other agonists have been shown to activate PLD but the precise mechanisms of activation and PLDs role in platelet activation remains unclear. We measured thrombin-stimulated PLD activity in platelets as formation of phosphatidylethanol. Since no specific PLD inhibitors exist, we investigated possible roles for PLD in platelets by correlating PLD activity with platelet responses such as thrombin-mediated secretion and F-actin formation (part of platelet shape change). Extracellular Ca2+ potentiated thrombin-stimulated PLD, but did not stimulate PLD in the absence of thrombin. Thrombin-induced PLD activity was enhanced by secreted ADP and binding of fibrinogen to its receptors. In contrast to others, we also found a basal PLD activity. Comparison of time courses and dose responses of platelets with PLD showed many points of correlation between PLD activation and lysosomal secretion and F-actin formation. The finding of different PLD activities suggested that different PLD isoenzymes exist in platelets as reported for other cells. Here we present evidence for the presence of both PLD1 and PLD2 in platelets by use of specific antibodies with immunoblotting and immunohistochemistry. Both isoforms were randomly localized in resting platelets, but became rapidly translocated to the proximity of the plasma membrane upon thrombin stimulation, thus indicating a role for PLD in platelet activation.
Collapse
Affiliation(s)
- M Vorland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway.
| | | |
Collapse
|
19
|
Quinlan MR, Docherty NG, Watson RWG, Fitzpatrick JM. Exploring mechanisms involved in renal tubular sensing of mechanical stretch following ureteric obstruction. Am J Physiol Renal Physiol 2008; 295:F1-F11. [PMID: 18400870 DOI: 10.1152/ajprenal.00576.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tubular mechanical stretch is the key primary insult in obstructive nephropathy. This review addresses how the renal tubular epithelium senses and responds to mechanical stretch. Using data from renal and nonrenal systems, we describe how sensing of stretch initially occurs via the activation of ion channels and subsequent increases in intracellular calcium levels. Calcium influxes activate a number of adaptive and proinjury responses. Key among these are 1) the activation of Rho, consequent cytoskeletal rearrangements, and downstream increases in focal adhesion assembly; and 2) phospholipase activation and resultant mitogen-activated protein kinase activation. These early signaling events culminate in adaptive cellular coupling to the extracellular matrix, a process termed the cell strengthening response. Direct links can be made between increased expression of genes involved in the development of obstructive nephropathy and initial sensing of mechanical stretch. The review illustrates the repercussions of mechanical stretch as a renal stress stimulus, specific to ureteric obstruction, and provides an insight into how tubular responses to mechanical stretch are ultimately implicated in the development of obstructive nephropathy.
Collapse
Affiliation(s)
- Mark R Quinlan
- The Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | |
Collapse
|
20
|
Meima ME, Mackley JR, Barber DL. Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr Opin Nephrol Hypertens 2007; 16:365-72. [PMID: 17565280 DOI: 10.1097/mnh.0b013e3281bd888d] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The sodium-hydrogen exchanger isoform-1 (NHE1) functions in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Recent studies have revealed the structural functions of NHE1 as an anchor for actin filaments and a scaffold for an ensemble of signaling proteins. This review highlights how these functions contribute to NHE1 regulation of biochemical events and cell behaviors. RECENT FINDINGS New data confirming nontransport structural functions of NHE1 suggest reexamining how NHE1 regulates cell functions. Cell survival, cell substrate adhesion, and organization of the actin cytoskeleton are confirmed to be regulated through actin anchoring by NHE1 and likely by NHE1-dependent scaffolding of signaling proteins. A role for NHE1 in mechanotransduction is emerging and a challenge of future studies is to determine whether structural functions of NHE1 are important for mechanoresponsiveness. SUMMARY This review highlights evidence for the nontransport functions of NHE1 and describes how the structural functions are integrated with ion translocation to regulate a range of cellular processes. Nontransporting features of NHE1 are analogous to recently observed nonconducting actions of ion channels in regulating cell behaviors and represent an emerging paradigm of ion transporters as multifunctional proteins.
Collapse
Affiliation(s)
- Marcel E Meima
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
21
|
Oude Weernink PA, López de Jesús M, Schmidt M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 374:399-411. [PMID: 17245604 PMCID: PMC2020506 DOI: 10.1007/s00210-007-0131-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/20/2006] [Indexed: 11/12/2022]
Abstract
Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP(2) by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP(2) and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions.
Collapse
Affiliation(s)
| | | | - Martina Schmidt
- />Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
22
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
23
|
Wu EHT, Tam BHL, Wong YH. Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 2006; 273:2388-98. [PMID: 16704413 DOI: 10.1111/j.1742-4658.2006.05245.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that G protein signaling plays an active role in the regulation of cell survival. Our previous study demonstrated the regulatory effects of G(i/o) proteins in nerve growth factor-induced activation of pro-survival Akt kinase. In the present study we explored the role of various members of the G(s), G(q/11) and G(12/13) subfamilies in the regulation of Akt in cultured mammalian cells. In human embryonic kidney 293 cells transiently expressing constitutively active mutants of G alpha11, G alpha14, G alpha16, G alpha12, or G alpha13 (G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, respectively), basal phosphorylation of Akt was attenuated, as revealed by western blotting analysis using a phosphospecific anti-Akt immunoglobulin. In contrast, basal Akt phosphorylation was unaffected by the overexpression of a constitutively active G alpha(s) mutant (G alpha(s)QL). Additional experiments showed that G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, but not G alpha(s)QL, attenuated phosphorylation of the Akt-regulated translation regulator tuberin. Moreover, they were able to inhibit the epidermal growth factor-induced Akt activation and tuberin phosphorylation. The inhibitory mechanism of Gq family members was independent of phospholipase Cbeta activation and calcium signaling because G alpha11QL, G alpha14QL and G alpha16QL remained capable of inhibiting epidermal growth factor-induced Akt activation in cells pretreated with U73122 and the intracellular calcium chelator, BAPTA/AM. Finally, overexpression of the dominant negative mutant of RhoA blocked G alpha12QL- and G alpha13QL-mediated inhibition, suggesting that activated G alpha12 and G alpha13 inhibit Akt signaling via RhoA. Collectively, this study demonstrated the inhibitory effect of activated G alpha11, G alpha14, G alpha16, G alpha12 and G alpha13 on pro-survival Akt signaling.
Collapse
Affiliation(s)
- Eddy H T Wu
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|