1
|
Le Page AK, Johnson EC, Greenberg JH. Is mild dehydration a risk for progression of childhood chronic kidney disease? Pediatr Nephrol 2024; 39:3177-3191. [PMID: 38632124 DOI: 10.1007/s00467-024-06332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Children with chronic kidney disease (CKD) can have an inherent vulnerability to dehydration. Younger children are unable to freely access water, and CKD aetiology and stage can associate with reduced kidney concentrating capacity, which can also impact risk. This article aims to review the risk factors and consequences of mild dehydration and underhydration in CKD, with a particular focus on evidence for risk of CKD progression. We discuss that assessment of dehydration in the CKD population is more challenging than in the healthy population, thus complicating the definition of adequate hydration and clinical research in this field. We review pathophysiologic studies that suggest mild dehydration and underhydration may cause hyperfiltration injury and impact renal function, with arginine vasopressin as a key mediator. Randomised controlled trials in adults have not shown an impact of improved hydration in CKD outcomes, but more vulnerable populations with baseline low fluid intake or poor kidney concentrating capacity need to be studied. There is little published data on the frequency of dehydration, and risk of complications, acute or chronic, in children with CKD. Despite conflicting evidence and the need for more research, we propose that paediatric CKD management should routinely include an assessment of individual dehydration risk along with a treatment plan, and we provide a framework that could be used in outpatient settings.
Collapse
Affiliation(s)
- Amelia K Le Page
- Department of Nephrology, Monash Children's Hospital, Clayton, VIC, Australia.
- Department of Pediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Evan C Johnson
- Division of Kinesiology & Health, College of Health Sciences, University of Wyoming, Laramie, WY, USA
| | - Jason H Greenberg
- Section of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Clinical and Translational Research Accelerator, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
3
|
Calvi A, Bongrani A, Verzicco I, Figus G, Vicini V, Coghi P, Montanari A, Cabassi A. Urinary hyaluronidase activity is closely related to vasopressinergic system following an oral water load in men: a potential role in blood pressure regulation and early stages of hypertension development. Front Endocrinol (Lausanne) 2024; 15:1346082. [PMID: 38982989 PMCID: PMC11231081 DOI: 10.3389/fendo.2024.1346082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.
Collapse
Affiliation(s)
- Anna Calvi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ignazio Verzicco
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Giuliano Figus
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Vanni Vicini
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Pietro Coghi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alberto Montanari
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Aderville Cabassi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
5
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. Effects of a high-salt diet on MAP and expression levels of renal ENaCs and aquaporins in SHR. Exp Biol Med (Maywood) 2023; 248:1768-1779. [PMID: 37828834 PMCID: PMC10792424 DOI: 10.1177/15353702231198085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/05/2023] [Indexed: 10/14/2023] Open
Abstract
An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
Collapse
Affiliation(s)
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sau-Kuen Lam
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Suresh Kumar S, Kumar K, Venkataramani S, Ghazi NM. Central Diabetes Insipidus: An Acute Manifestation of COVID-19 Infection. Cureus 2023; 15:e43884. [PMID: 37746393 PMCID: PMC10511668 DOI: 10.7759/cureus.43884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
In recent years, there has been a rise in the number of COVID-19 cases and its complications. Central diabetes insipidus (central DI) is a rare but treatable manifestation of acute COVID-19 infection. This case reports the rapid onset of central DI in a 35-year-old male in less than two weeks post-COVID-19 infection. He made a complete recovery post-administration of desmopressin within one month. Prompt diagnosis, treatment, and periodic follow-up are hence the cornerstones of a successful recovery for a patient with central DI post-COVID-19 infection.
Collapse
Affiliation(s)
| | - Kiran Kumar
- Internal Medicine, Thumbay University Hospital, Ajman, ARE
| | | | | |
Collapse
|
7
|
Gilles N. Natural Peptide Toxins as an Option for Renewed Treatment of Type 2 Vasopressin Receptor-Related Diseases. BIOLOGY 2023; 12:544. [PMID: 37106745 PMCID: PMC10136000 DOI: 10.3390/biology12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
The type 2 vasopressin receptor (V2R) is expressed in the kidneys, and it is the keystone of water homeostasis. Under the control of the antidiuretic hormone vasopressin, the V2R ensures vital functions, and any disturbance has dramatic consequences. Despite decades of research to develop drugs capable of activating or blocking V2R function to meet real medical needs, only one agonist and one antagonist are virtually used today. These two drugs cover only a small portion of patients' needs, leaving millions of patients without treatment. Natural peptide toxins known to act selectively and at low doses on their receptor target could offer new therapeutic options.
Collapse
Affiliation(s)
- Nicolas Gilles
- CEA, SIMoS, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Little R, Murali SK, Poulsen SB, Grimm PR, Assmus A, Cheng L, Ivy JR, Hoorn EJ, Matchkov V, Welling PA, Fenton RA. Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation. JCI Insight 2023; 8:156437. [PMID: 36719746 PMCID: PMC10077486 DOI: 10.1172/jci.insight.156437] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.
Collapse
Affiliation(s)
- Robert Little
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Paul R Grimm
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
10
|
Lobo R, Lieske JC, Donato LJ, Hickson LJ, Hodge DO, Chapman A, Schwartz GL, Jaffe AS. Measuring copeptin, a surrogate for vasopressin in patients with hypertension - Can it identify those who are volume Responsive? Clin Biochem 2023; 112:48-52. [PMID: 36470342 DOI: 10.1016/j.clinbiochem.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Among hypertensive patients, plasma renin activity is lower and the response to diuretic monotherapy greater in volume responsive hypertensive patients. We hypothesized that hormones influencing extracellular volume such as vasopressin / antidiuretic hormone (ADH) might permit the development of a simple test to identify those with volume-related hypertension. Such a test might be of particular benefit to the Black population which is purported to have a higher incidence of volume-related and responsive hypertension. Thus, using copeptin, a surrogate marker for ADH, we studied if there were differences in this hormone between those with and without volume responsive hypertension. METHODS Serum copeptin was measured in biobanked blood samples from the Genetic Epidemiology of Responses to Antihypertensives (GERA) I study and analyzed with other variables from the study dataset. RESULTS There was no relationship between PRA and copeptin values nor could the response in blood pressure be predicted by the copeptin values. However, baseline copeptin levels were higher in Black than in White subjects (7.5 pmol/L vs 5.4 pmol/L, P < 0.001) while plasma sodium and calculated plasma osmolality were slightly lower in keeping with the concept that Black subjects have more volume-related hypertension. In addition, after hydrochlorothiazide (HCTZ), copeptin was significantly lower in Black (6.2 pmol/L, P = 0.004) but unchanged in White subjects (5.2 pmol/L, P = 0.901) and there were also changes in sodium. CONCLUSION The current study suggests differences in ADH physiology between hypertensive Black and White patients. However, the use of copeptin to identify volume responsive patients could not be confirmed.
Collapse
Affiliation(s)
- Ronstan Lobo
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Leslie J Donato
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic Florida, Jacksonville, FL, USA
| | - David O Hodge
- Department of Clinical Trials and Biostatistics, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Arlene Chapman
- Division of Nephrology, The University of Chicago Medicine, Chicago, IL, USA
| | - Gary L Schwartz
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Allan S Jaffe
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Lai X, Wen H, Yang T, Qin F, Zhong X, Pan Y, Yu J, Huang J, Li J. Effects of renal denervation on endogenous ouabain in spontaneously hypertensive rats. Acta Cir Bras 2023; 37:e371102. [PMID: 36629529 PMCID: PMC9829196 DOI: 10.1590/acb371102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To investigate the role of renal denervation (RDN) on endogenous ouabain (EO) secretion in spontaneously hypertensive rats (SHR). METHODS Sixteen 12-week-old male SHR were randomly separated into the renal denervation group (RDNX group) and sham operation group (sham group), and eight age-matched Wistar Kyoto rats (WKY) were served as control group. EO concentrations, the Na+- K+-ATPaseactivity, and the expression of Na+-K+-ATPase were assessed. RESULTS EO levels in serum, kidneys and hypothalamus of sham group were higher than in RDNX group (p < 0.05). Renal Na+-K+-ATPase activity subjected to denervation surgery showed significantly reduction when compared with the sham groups (p < 0.05). A positive correlation existed between norepinephrine (NE) content and Na+-K+-ATPase activity in the kidney (r2 = 0.579). Renal Na+-K+-ATPase α1 subunit mRNA expression was down-regulated in the RDNX group compared with the sham group (P < 0.05), while renal Na+-K+-ATPase α1 subunit mRNA expression was no statistical significance between the groups (P = 0.63). Immunohistochemical analysis showed that there were significant differences in the renal expression of Na+-K+-ATPasebetween the three groups (P < 0.05). CONCLUSIONS These experiments demonstrate that RDN exerted an anti-hypertensive effect with reduction of EO levels and Na+-K+-ATPase activity and Na+-K+-ATPase α1 subunit expression of kidney in SHR.
Collapse
Affiliation(s)
- Xiaomei Lai
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Hong Wen
- PhD. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Tingting Yang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Fei Qin
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Xiaoge Zhong
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Yajin Pan
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jie Yu
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jing Huang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jianling Li
- PhD, and Postdoctoral Mobile Station. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China.,Corresponding author:
- 13407710624
| |
Collapse
|
12
|
Mineralocorticoid Receptor Pathway Is a Key Mediator of Carfilzomib-induced Nephrotoxicity: Preventive Role of Eplerenone. Hemasphere 2022; 6:e791. [PMID: 36285072 PMCID: PMC9584194 DOI: 10.1097/hs9.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.
Collapse
|
13
|
Stockand JD, Mironova EV, Xiang H, Soares AG, Contreras J, McCormick JA, Gurley SB, Pao AC. Chronic activation of vasopressin-2 receptors induces hypertension in Liddle mice by promoting Na + and water retention. Am J Physiol Renal Physiol 2022; 323:F468-F478. [PMID: 35900342 PMCID: PMC9485005 DOI: 10.1152/ajprenal.00384.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone and arginine vasopressin-V2 receptor-aquaporin-2 (AQP2) systems converge on the epithelial Na+ channel (ENaC) to regulate blood pressure and plasma tonicity. Although it is established that V2 receptors initiate renal water reabsorption through AQP2, whether V2 receptors can also induce renal Na+ retention through ENaC and raise blood pressure remains an open question. We hypothesized that a specific increase in V2 receptor-mediated ENaC activity can lead to high blood pressure. Our approach was to test effects of chronic activation of V2 receptors in Liddle mice, a genetic mouse model of high ENaC activity, and compare differences in ENaC activity, urine Na+ excretion, and blood pressure with control mice. We found that ENaC activity was elevated in Liddle mice and could not be stimulated further by administration of desmopressin (dDAVP), a V2 receptor-specific agonist. In contrast, Liddle mice showed higher levels of expression of AQP2 and aquaporin-3, but they could still respond to dDAVP infusion by increasing phospho-AQP2 expression. With dDAVP infusion, Liddle mice excreted smaller urine volume and less urine Na+ and developed higher blood pressure compared with control mice; this hypertension was attenuated with administration of the ENaC inhibitor benzamil. We conclude that V2 receptors contribute to hypertension in the Liddle mouse model by promoting primary Na+ and concomitant water retention.NEW & NOTEWORTHY Liddle syndrome is a classic model for hypertension from high epithelial Na+ channel (ENaC) activity. In the Liddle mouse model, vasopressin-2 receptors stimulate both ENaC and aquaporin-2, which increases Na+ and water retention to such an extent that hypertension ensues. Liddle mice will preserve plasma tonicity at the expense of a higher blood pressure; these data highlight the inherent limitation in which the kidney must use ENaC as a pathway to regulate both plasma tonicity and blood pressure.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Elena V Mironova
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hong Xiang
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Antonio G Soares
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jorge Contreras
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James A McCormick
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Nephrology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
14
|
Pravikova PD, Ivanova LN. Effect of Vasopressin V1a Receptor Blockade on Renal Osmoregulatory Function in L-Thyroxine-Induced Hyperthyroid Rats with Different Blood Vasopressin Levels. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Verzicco I, Tedeschi S, Graiani G, Bongrani A, Carnevali ML, Dancelli S, Zappa J, Mattei S, Bovino A, Cavazzini S, Rocco R, Calvi A, Palladini B, Volpi R, Cannone V, Coghi P, Borghetti A, Cabassi A. Evidence for a Prehypertensive Water Dysregulation Affecting the Development of Hypertension: Results of Very Early Treatment of Vasopressin V1 and V2 Antagonism in Spontaneously Hypertensive Rats. Front Cardiovasc Med 2022; 9:897244. [PMID: 35722114 PMCID: PMC9198251 DOI: 10.3389/fcvm.2022.897244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to long-term regulation of blood pressure (BP), in the kidney resides the initial trigger for hypertension development due to an altered capacity to excrete sodium and water. Betaine is one of the major organic osmolytes, and its betaine/gamma-aminobutyric acid transporter (BGT-1) expression in the renal medulla relates to interstitial tonicity and urinary osmolality and volume. This study investigated altered water and sodium balance as well as changes in antidiuretic hormone (ADH) activity in female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats from their 3–5 weeks of age (prehypertensive phase) to SHR’s 28–30 weeks of age (established hypertension-organ damage). Young prehypertensive SHRs showed a reduced daily urine output, an elevated urine osmolarity, and higher immunostaining of tubule BGT-1, alpha-1-Na-K ATPase in the outer medulla vs. age-matched WKY. ADH circulating levels were not different between young prehypertensive SHR and WKY, but the urine aquaporin2 (AQP2)/creatinine ratio and labeling of AQP2 in the collecting duct were increased. At 28–30 weeks, hypertensive SHR with moderate renal failure did not show any difference in urinary osmolarity, urine AQP2/creatinine ratio, tubule BGT-1, and alpha-1-Na-K ATPase as compared with WKY. These results suggest an increased sensitivity to ADH in prehypertensive female SHR. On this basis, a second series of experiments were set to study the role of ADH V1 and V2 receptors in the development of hypertension, and a group of female prehypertensive SHRs were treated from the 25th to 49th day of age with either V1 (OPC21268) or V2 (OPC 41061) receptor antagonists to evaluate the BP time course. OPC 41061-treated SHRs had a delayed development of hypertension for 5 weeks without effect in OPC 21268-treated SHRs. In prehypertensive female SHR, an increased renal ADH sensitivity is crucial for the development of hypertension by favoring a positive water balance. Early treatment with selective V2 antagonism delays future hypertension development in young SHRs.
Collapse
Affiliation(s)
- Ignazio Verzicco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Stefano Tedeschi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Gallia Graiani
- Histology and Histopathology Unit and Molecular Biology Laboratory, Dental School Parma, University of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Maria Luisa Carnevali
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Simona Dancelli
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Jessica Zappa
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Silvia Mattei
- Nefrologia e Dialisi, Azienda USL – Istituto di Ricerca a Carattere Scientifico IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Achiropita Bovino
- Internal Medicine Unit, Ospedale Fidenza, Azienda USL Parma, Parma, Italy
| | - Stefania Cavazzini
- Laboratory of Industrial Toxicology, DIMEC, University of Parma, Parma, Italy
| | - Rossana Rocco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Anna Calvi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Barbara Palladini
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Riccardo Volpi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Valentina Cannone
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Pietro Coghi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Alberico Borghetti
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Aderville Cabassi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
- *Correspondence: Aderville Cabassi,
| |
Collapse
|
16
|
Pravikova PD, Ivanova LN. Analysis of Dopamine D1- and D2-Receptors Effect on Renal Osmoregulatory Function in Rats with Different Blood Vasopressin Level. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
18
|
Affiliation(s)
- David H Ellison
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| | - Paul Welling
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| |
Collapse
|
19
|
Mansley MK, Niklas C, Nacken R, Mandery K, Glaeser H, Fromm MF, Korbmacher C, Bertog M. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner. J Gen Physiol 2021; 152:151804. [PMID: 32442241 PMCID: PMC7398144 DOI: 10.1085/jgp.201912525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)–dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.
Collapse
Affiliation(s)
- Morag K Mansley
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Niklas
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Nacken
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Mandery
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hartmut Glaeser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Heida JE, Gansevoort RT, Torres VE, Devuyst O, Perrone RD, Lee J, Li H, Ouyang J, Chapman AB. The Effect of Tolvaptan on BP in Polycystic Kidney Disease: A Post Hoc Analysis of the TEMPO 3:4 Trial. J Am Soc Nephrol 2021; 32:1801-1812. [PMID: 33888577 PMCID: PMC8425647 DOI: 10.1681/asn.2020101512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The V2 receptor antagonist tolvaptan is prescribed to patients with autosomal dominant polycystic kidney disease to slow disease progression. Tolvaptan may alter BP via various acute and chronic effects. METHODS To investigate the magnitude and time course of the effect of tolvaptan use on BP, we conducted a post hoc study of the TEMPO 3:4 trial, which included 1445 patients with autosomal dominant polycystic kidney disease randomized 2:1 to tolvaptan or placebo for 3 years. We evaluated systolic and diastolic BP, mean arterial pressure, hypertension status, and use and dosing of antihypertensive drugs over the course of the trial. RESULTS At baseline, BP did not differ between study arms. After 3 weeks of tolvaptan use, mean body weight had decreased from 79.7 to 78.8 kg, and mean plasma sodium increased from 140.4 to 142.6 mmol/L (both P<0.001), suggesting a decrease in circulating volume. We observed none of these changes in the placebo arm. Nonetheless, BP remained similar in the study arms. After 3 years of treatment, however, mean systolic BP was significantly lower in participants receiving tolvaptan versus placebo (126 versus 129 mm Hg, respectively; P=0.002), as was mean diastolic BP (81.2 versus 82.6 mm Hg, respectively; P=0.01). These differences leveled off at follow-up 3 weeks after discontinuation of the study medication. Use of antihypertensive drugs remained similar in both study arms during the entire study. CONCLUSIONS Long-term treatment with tolvaptan gradually lowered BP compared with placebo, which may be attributed to a beneficial effect on disease progression, a continued natriuretic effect, or both. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER TEMPO 3:4, NCT00428948.
Collapse
Affiliation(s)
- Judith E. Heida
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland,Division of Nephrology, Université Catholique de Louvain, Brussels, Belgium
| | - Ronald D. Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Jennifer Lee
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland
| | - Hui Li
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland
| | - John Ouyang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland
| | | |
Collapse
|
21
|
Piani F, Reinicke T, Lytvyn Y, Melena I, Lovblom LE, Lai V, Tse J, Cham L, Orszag A, Perkins BA, Cherney DZI, Bjornstad P. Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. J Diabetes Complications 2021; 35:107807. [PMID: 33288413 PMCID: PMC8397596 DOI: 10.1016/j.jdiacomp.2020.107807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Arginine vasopressin (AVP) and its surrogate, copeptin, have been implicated in diabetic kidney disease (DKD) pathogenesis, which develops in a subset of people with longstanding type 1 diabetes, but not in others (DKD Resistors). We hypothesized that patients with DKD would exhibit higher copeptin concentrations vs. DKD Resistors. METHODS Participants with type 1 diabetes (n = 62, duration ≥50 years) were stratified into 42 DKD Resistors and 20 with DKD (eGFR ≤60 mL/min/1.73m2 or ≥30 mg/day urine albumin), and age/sex-matched controls (HC, n = 74) were included. Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were calculated by inulin and p-aminohippurate clearance before and after angiotensin II (ang II) infusion. Renal vascular resistance (RVR) was calculated as mean arterial pressure/renal blood flow. Plasma copeptin, renin, aldosterone, neutrophil gelatinase-associated lipocalin (NGAL), and urea concentrations were measured, along with 24-h urine volume. RESULTS DKD resistors had lower copeptin (95% CI: 4.0 [3.4-4.8] pmol/l) compared to DKD (5.8 [4.5-7.6] pmol/l, p = 0.02) and HC (4.8 [4.1-5.5] pmol/l, p = 0.01) adjusting for age, sex and HbA1c. In type 1 diabetes, higher copeptin correlated with lower GFR (r: -0.32, p = 0.01) and higher renin concentration (r: 0.40, p = 0.002) after multivariable adjustments. These relationships were not evident in HC. Copeptin inversely associated with RVR change following exogenous ang II only in participants with type 1 diabetes (β ± SE: -6.9 ± 3.4, p = 0.04). CONCLUSIONS In longstanding type 1 diabetes, copeptin was associated with intrarenal renin-angiotensin-aldosterone system (RAAS) activation and renal hemodynamic function, suggesting interplay between AVP and RAAS in DKD pathogenesis.
Collapse
Affiliation(s)
- Federica Piani
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Trenton Reinicke
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabella Melena
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leif E Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vesta Lai
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Tse
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Cham
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrej Orszag
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Canada
| | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
22
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
23
|
Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW, Staruschenko A. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 2020; 34:13396-13408. [PMID: 32799394 DOI: 10.1096/fj.202000966rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
24
|
The physiological and molecular mechanisms to maintain water and salt homeostasis in response to high salt intake in Mongolian gerbils (Meriones unguiculatus). J Comp Physiol B 2020; 190:641-654. [PMID: 32556536 DOI: 10.1007/s00360-020-01287-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022]
Abstract
Desert rodents are faced with many challenges such as high dietary salt in their natural habitats and they have evolved abilities to conserve water and tolerate salt. However, the physiological and molecular mechanisms involved in water and salt balances in desert rodents are unknown. We hypothesized that desert rodents regulated water and salt balances by altering the expression of AQP2 and α-ENaC in the kidney. Mongolian gerbils (Meriones unguiculatus), a desert species, were acclimated to drinking water with different salt contents: (0, control; 4% NaCl, moderate salt, MS; 8% NaCl, high salt, HS) for 4 weeks. The gerbils drinking salty water had lower body mass, food intake, water intake, metabolic water production and urine volume. The HS gerbils increased the expression of arginine vasopressin (AVP) in the hypothalamus, and also enhanced the expression of AQP2 and cAMP/PKA/CREB signaling pathway in the kidney. In addition, these gerbils reduced serum aldosterone levels and α-ENaC expression in the kidney. Creatinine clearance was lower in the HS group than that in the control group, but serum and urine creatinine levels did not change. These data indicate that desert rodents rely on AVP-dependent upregulation of AQP2 and aldosterone-dependent downregulation of α-ENaC in the kidney to promote water reabsorption and sodium excretion under high salt intake.
Collapse
|
25
|
Albertoni Borghese MF, Ortiz MDC, Marinoni RC, Oronel LH, Palamidessi M, Yarza CA, Di Siervi N, Davio C, Majowicz MP. Inhibition of Endothelin system during the postnatal nephrogenic period in the rat. Its relationship with hypertension and renal disease in adulthood. PLoS One 2020; 15:e0229756. [PMID: 32126132 PMCID: PMC7053749 DOI: 10.1371/journal.pone.0229756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
The aim of this work was to study the effect of a high sodium (HS) diet on blood pressure and renal function in male adult rats that have been treated with a dual Endothelin receptor antagonist (ERA) during their early postnatal period (day 1 to 20 of life). Male Sprague-Dawley rats were divided in four groups: CNS: control rats with normosodic diet; ERANS: ERA-treated rats with normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with HS diet. Systolic blood pressure (SBP) was recorded before and after the diet and 24-hour metabolic cage studies were performed. AQP2 and α-ENac expressions were measured by western blot and real time PCR in the renal medulla. Vasopressin (AVP) pathway was evaluated by measuring V2 receptor and adenylyl cyclase 6 (AC6) expression and cAMP production in the renal medulla. Pre-pro ET-1mRNA was also evaluated in the renal medulla. Only rats that had been treated with an ERA during their postnatal period increased their SBP after consumption of a HS diet, showing an impaired capacity to excrete sodium and water, i.e. developing salt sensitivity. This salt sensitivity would be mediated by an increase in renomedullary expression and activity of AQP2 and α-ENaC as a consequence of increased AC6 expression and cAMP production and/or a decreased ET-1 production in the renal medulla. The knowledge of the molecular mechanisms underlying the perinatal programming of salt sensitive hypertension will allow the development of reprogramming strategies in order to avoid this pathology.
Collapse
Affiliation(s)
- María Florencia Albertoni Borghese
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María del Carmen Ortiz
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío C. Marinoni
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucas H. Oronel
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Milena Palamidessi
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina A. Yarza
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Di Siervi
- CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica P. Majowicz
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Gonzalez AA, Salinas-Parra N, Cifuentes-Araneda F, Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. VITAMINS AND HORMONES 2019; 113:217-238. [PMID: 32138949 DOI: 10.1016/bs.vh.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vasopressin, also named antidiuretic hormone (ADH), arginine vasopressin (AVP) is the main hormone responsible for water maintenance in the body through the antidiuretic actions in the kidney. The posterior pituitary into the blood releases vasopressin formed in the hypothalamus. Hypothalamic osmotic neurons are responsible to initiate the cascade for AVP actions. The effects of AVP peptide includes activation of V2 receptors which stimulate the formation of cyclic AMP (cAMP) and phosphorylation of water channels aquaporin 2 (AQP2) in the collecting duct. AVP also has vasoconstrictor effects through V1a receptors in the vasculature, while V1b is found in the nervous system. V1a and b receptors increases intracellular Ca2+ while activation of V2 receptors of signaling pathways are related to cAMP-dependent phosphorylation in kidney collecting ducts acting in coordination to stimulate water and electrolyte homeostasis. AVP potentiate formation of intratubular angiotensin II (Ang II) through V2 receptors-dependent distal tubular renin formation, contributing to Na+ reabsorption. On the same way, Ang II receptors are able to potentiate the effects of V2-dependent stimulation of AQP2 abundance in the plasma membrane. The role of AVP in hypertension and renal disease has been demonstrated in pathological states with the involvement of V2 receptors in the progression of kidney damage in diabetes and also on the stimulation of intracellular pathways linked to the development of polycystic kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolas Salinas-Parra
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
27
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
28
|
Natochin YV, Golosova DV. Vasopressin receptor subtypes and renal sodium transport. VITAMINS AND HORMONES 2019; 113:239-258. [PMID: 32138950 DOI: 10.1016/bs.vh.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In mammals, three subtypes of V-receptors have been identified in the kidney. The effects of vasopressin, a hormone synthesized in the hypothalamus, are triggered by three distinct receptor isoforms: V2, V1a, and V1b. Stimulation of V2-receptors regulates urine osmotic concentration by increasing sodium reabsorption in the thick ascending limb of the loop of Henle and enhancing osmotic permeability of the epithelium cells in the collecting duct. Stimulation of V1a-receptors inhibits renal sodium reabsorption and induces natriuresis, comparable to the effect of the diuretic furosemide, in the thick ascending limb of the loop of Henle. Stimulation of V1b-receptors induces potassium secretion in the final parts of the distal segments and initial parts of the collecting ducts. In this review, we discuss the role of vasopressin and its interaction with V-receptor subtypes in natriuresis and for stabilizing the physicochemical parameters of the internal environment and water-salt homeostasis in humans. A better understanding of these systems and their regulation is necessary to facilitate identification of additional system components and mechanisms, clarify their contribution during various normal and pathological functional states, and suggest novel strategies for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yu V Natochin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - D V Golosova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
29
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
30
|
M Santos B, Nascimento GC, Capel CP, Borges GS, Rosolen T, Sabino JPJ, Leite-Panissi CRA, Branco LGS. Sex differences and the role of ovarian hormones in site-specific nociception of SHR. Am J Physiol Regul Integr Comp Physiol 2019; 317:R223-R231. [PMID: 31091153 DOI: 10.1152/ajpregu.00390.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accurate diagnosis and treatment of pain is dependent on knowledge of the variables that might alter this response. Some of these variables are the locality of the noxious stimulus, the sex of the individual, and the presence of chronic diseases. Among these chronic diseases, hypertension is considered a serious and silent disease that has been associated with hypoalgesia. The main goal of this study was to evaluate the potential nociceptive differences in spontaneously hypertensive rats (SHR) regarding the locality of the stimulus, i.e., the temporomandibular joint or paw, the sex, and the role of ovarian hormones in a model of mechanical nociception (Von Frey test) or formalin-induced inflammatory nociception. Our results indicate that SHR had lower orofacial mechanical nociception beyond the lower mechanical nociception in the paw compared with WKY rats. In a model of formalin-induced inflammatory nociception, SHR also had decreased nociception compared with normotensive rats. We also sought to evaluate the influence of sex and ovarian hormones on orofacial mechanical nociception in SHR. We observed that female SHR had higher mechanical nociception than male SHR only in the paw, but it had higher formalin-induced orofacial nociception than male SHR. Moreover, the absence of ovarian hormones caused an increase in mean arterial pressure and a decrease in paw nociception in female SHR.
Collapse
Affiliation(s)
- Bruna M Santos
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Glauce C Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Camila P Capel
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Gabriela S Borges
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Thales Rosolen
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - João P J Sabino
- Department of Biophysics and Physiology, Federal University of Piauí , Teresina, Piauí , Brazil
| | - Christie R A Leite-Panissi
- Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
31
|
Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F. Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2019; 316:H506-H515. [PMID: 30550352 PMCID: PMC6734055 DOI: 10.1152/ajpheart.00473.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022]
Abstract
Deletion of the prorenin receptor (PRR) in adipose tissue elevates systolic blood pressure (SBP) and the circulating soluble form of PRR (sPRR) in male mice fed a high-fat (HF) diet. However, sex differences in the contribution of adipose-PRR and sPRR to the regulation of the renin-angiotensin system (RAS) in key organs for blood pressure control are undefined. Therefore, we assessed blood pressure and the systemic and intrarenal RAS status in adipose-PRR knockout (KO) female mice. Blockade of RAS with losartan blunted SBP elevation in HF diet-fed adipose-PRR KO mice. ANG II levels were significantly increased in the renal cortex of HF diet-fed adipose-PRR KO female mice, but not systemically. HF diet-fed adipose-PRR KO mice exhibited higher vasopressin levels, water retention, and lower urine output than wild-type (WT) mice. The results also showed that deletion of adipose-PRR increased circulating sPRR and total hepatic sPRR contents, suggesting the liver as a major source of elevated plasma sPRR in adipose-PRR KO mice. To mimic the elevation of circulating sPRR and define the direct contribution of systemic sPRR to the regulation of the RAS and vasopressin, C57BL/6 female mice fed a standard diet were infused with recombinant sPRR. sPRR infusion increased plasma renin levels, renal and hepatic angiotensinogen expression, and vasopressin. Together, these results demonstrate that the deletion of adipose-PRR induced an elevation of SBP likely mediated by an intrarenal ANG II-dependent mechanism and that sPRR participates in RAS regulation and body fluid homeostasis via its capacity to activate the RAS and increase vasopressin levels. NEW & NOTEWORTHY The elevation of systolic blood pressure appears to be primarily mediated by cortical ANG II in high-fat diet-fed adipose-prorenin receptor knockout female mice. In addition, our data support a role for soluble prorenin receptor in renin-angiotensin system activation and vasopressin regulation.
Collapse
Affiliation(s)
- Eva Gatineau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Dianne M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | | | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Ming Gong
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Frédérique Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
32
|
Correlation between Urinary Excretion of Arginine-Vasopressin and Renal Reabsorption of Sodium and Water. Bull Exp Biol Med 2019; 166:417-420. [DOI: 10.1007/s10517-019-04363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/25/2022]
|
33
|
Golosova DV, Shakhmatova EI, Natochin YV. Differences between Arginine-Vasotocin and Arginine-Vasopressin Effects on the Rat Kidney in Evolution of Osmoregulation in Vertebrates. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Kanbay M, Aslan G, Afsar B, Dagel T, Siriopol D, Kuwabara M, Incir S, Camkiran V, Rodriguez‐Iturbe B, Lanaspa MA, Covic A, Johnson RJ. Acute effects of salt on blood pressure are mediated by serum osmolality. J Clin Hypertens (Greenwich) 2018; 20:1447-1454. [PMID: 30232829 PMCID: PMC8030773 DOI: 10.1111/jch.13374] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 02/06/2023]
Abstract
It is classically thought that it is the amount of salt that is critical for driving acute blood pressure responses. However, recent studies suggest that blood pressure responses, at least acutely, may relate to changes in serum osmolality. Here, we test the hypothesis that acute blood pressure responses to salt can be altered by concomitant water loading. Ten healthy patients free of any disease and medication underwent 4 interventions each a week apart in which they took 300 mL of lentil soup with no salt (visit 1), lentil soup with 3 g salt (visit 2), or lentil soup with 3 g salt and 500 mL water (visit 3) or 750 mL water (visit 4). At each visit, hourly blood measurements and blood pressure measurements (baseline, 1st, 2nd, 3rd, and 4th hour) were performed and plasma osmolarity, sodium and copeptin levels were measured. Patients receiving the 3 g salt showed a 6 mOsm/L change in osmolality with a 2.5 mmol/L change in plasma sodium and 10 mm Hg rise in systolic blood pressure at 2 hours. When the same patients drank salty soup with water, the changes in plasma osmolarity, plasma sodium, and blood pressure were prevented. The ability to raise blood pressure acutely with salt appears dependent on changes in plasma osmolality rather than the amount of salt. Our findings suggest that concurrent intake of water must be considered when evaluating the role of salt in blood pressure.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of MedicineKoc University School of MedicineIstanbulTurkey
| | - Gamze Aslan
- Department of CardiologyKoc University HospitalIstanbulTurkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal MedicineSuleyman Demirel University School of MedicineIspartaTurkey
| | - Tuncay Dagel
- Division of Nephrology, Department of MedicineKoc University School of MedicineIstanbulTurkey
| | - Dimitrie Siriopol
- Department of NephrologyUniversity of Medicine and Pharmacy "Gr. T. Popa"lasiRomania
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, School of MedicineUniversity of Colorado DenverAuroraColorado
- Department of CardiologyToranomon HospitalTokyoJapan
| | - Said Incir
- Department of BiochemistryKoc University HospitalIstanbulTurkey
| | - Volkan Camkiran
- Department of CardiologyKoc University HospitalIstanbulTurkey
| | - Bernardo Rodriguez‐Iturbe
- Instituto Venezolano de Investigaciones CientÍficas (IVIC‐Zulia), Nephrology Service Hospital Universitario, Universidad del ZuliaMaracaiboVenezuela
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, School of MedicineUniversity of Colorado DenverAuroraColorado
| | - Adrian Covic
- Department of NephrologyUniversity of Medicine and Pharmacy "Gr. T. Popa"lasiRomania
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, School of MedicineUniversity of Colorado DenverAuroraColorado
| |
Collapse
|
35
|
Qian Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton) 2018; 23 Suppl 4:44-49. [PMID: 30298656 PMCID: PMC6221012 DOI: 10.1111/nep.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Our knowledge on sodium and water homeostasis and regulation continues to evolve. A considerable amount of new information in this area has emerged in recent years. This review summarizes existing and new literature and discusses complex multi-organ effects of high-salt and low-water intake and role of arginine vasopressin in this process, as well as the potential clinical significance of non-osmotic sodium storage pool and rhythmicity of urine sodium excretion. It has become clear that sodium and water dysregulation can exert profound effects on kidney and vascular health, far greater than previously recognized. Maladaptation to a combined high-salt and low-water intake can be linked to the growing epidemic of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo ClinicCollege of MedicineRochesterUSA
| |
Collapse
|
36
|
Association of Genetic Variation in the Epithelial Sodium Channel Gene with Urinary Sodium Excretion and Blood Pressure. Nutrients 2018; 10:nu10050612. [PMID: 29757959 PMCID: PMC5986492 DOI: 10.3390/nu10050612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
This study was performed to investigate whether genetic variation in the epithelial sodium channel (ENaC) is associated with 24-h urinary sodium excretion and blood pressure. A total of 3345 participants of the KoGES_Ansan and Ansung study were eligible for this study. Genomic DNA samples were isolated from peripheral blood and genotyped on the Affymetrix Genome-Wide Human SNP Array 5.0. Thirty-four single nucleotide polymorphisms (SNPs) were extracted for gene regions (SCNN1A, SCNN1B, and SCNN1G) as additive components by using Plink. Twenty-four-hour sodium excretions were estimated from spot urine samples using the Tanaka formula. The general linear model (GLM) was applied to assess the association between SNPs and urinary sodium excretion or blood pressure. In the SCNN1G gene, six SNPs (rs4073291, rs12934362, rs7404408, rs4494543, rs5735, and rs6497657) were significantly different in 24-h urinary sodium excretion according to gene variants. However, no difference was found in blood pressure among participants with gene variants of ENaC. Our finding indicated that 24-h urinary sodium excretions were different according to variants of the SCNN1G gene in large samples. Further studies to replicate these findings are warranted.
Collapse
|
37
|
Visconti L, Cernaro V, Calimeri S, Lacquaniti A, De Gregorio F, Ricciardi CA, Lacava V, Santoro D, Buemi M. The Myth of Water and Salt: From Aquaretics to Tenapanor. J Ren Nutr 2017; 28:73-82. [PMID: 29146141 DOI: 10.1053/j.jrn.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/13/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
The impact of water intake has been studied in several renal diseases. For example, increasing water intake is useful to prevent primary and secondary nephrolithiasis. In autosomal dominant polycystic kidney disease, arginine vasopressin (AVP) is involved in the progression of the disease, and water intake could play a therapeutic role by inhibiting the synthesis of AVP, but its efficacy is still controversial. Conversely, the use of aquaretics, which are antagonists of AVP V2 receptors, results in the reduction of the increase rate of total kidney volume with a slower decline of glomerular filtration rate. In chronic kidney disease, AVP contributes to glomerular hyperfiltration, arterial hypertension, and synthesis of renin, resulting in renal sclerosis. Increased water intake could reduce AVP activation determining a potential protective effect on the kidney, but its efficacy has not yet been clearly demonstrated. On the other side, sodium and potassium play an important role in the control of arterial blood pressure and are involved in the development and progression of chronic kidney disease. Reduction of sodium intake and increase of potassium intake determine a decrease of arterial blood pressure with a beneficial effect on the kidney; however, adherence to sodium restriction is very poor. Regarding this, sodium-hydrogen exchanger isoform 3 inhibitors may reduce sodium absorption in the gut. The most recent sodium-hydrogen exchanger isoform 3 inhibitor, known as tenapanor, reduces extracellular fluid volume, left ventricular hypertrophy, albuminuria, and blood pressure in experimental studies and increases fecal loss of sodium in humans.
Collapse
Affiliation(s)
- Luca Visconti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Valeria Cernaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sebastiano Calimeri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Lacquaniti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesca De Gregorio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Viviana Lacava
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Buemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
38
|
Abstract
Vasopressin (AVP) plays a major role in the regulation of water and sodium homeostasis by its antidiuretic action on the kidney, mediated by V2 receptors. AVP secretion is stimulated by a rise in plasma osmolality, a decline in blood volume or stress. V1a receptors are expressed in vascular smooth muscle cells, but the role of vasopressin in blood pressure regulation is still a matter of debate. AVP may also play a role in some metabolic pathways, including gluconeogenesis, through its action on V1a receptors expressed in the liver. It is now understood that thirst and arginine vasopressin (AVP) release are regulated not only by the classical homeostatic, intero-sensory plasma osmolality negative feedback, but also by novel, extero-sensory, anticipatory signals. AVP measurement is time-consuming, and AVP level in the blood in the physiological range is often below the detection limit of the assays. Recently, an immunoassay has been developed for the measurement of copeptin, a fragment of the pre-provasopressin molecule that is easier to measure. It has been shown to be a good surrogate marker of AVP.
Collapse
Affiliation(s)
- L Bankir
- Centre de Recherche des Cordeliers, INSERM Unit 1138, 75006, Paris, France.,Université Pierre et Marie Curie, 75006, Paris, France
| | - D G Bichet
- Université de Montréal, Montréal, QC, Canada.,Départements de Pharmacologie, Physiologie et de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - N G Morgenthaler
- Institut für Experimentelle Endokrinologie, Charité Universitätsmedizin Berlin, Berlin, Germany.,InVivo Biotech Services, Neuendorfstraße 24a, Hennigsdorf/Berlin, Germany
| |
Collapse
|
39
|
Rossier BC, Bochud M, Devuyst O. The Hypertension Pandemic: An Evolutionary Perspective. Physiology (Bethesda) 2017; 32:112-125. [PMID: 28202622 DOI: 10.1152/physiol.00026.2016] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypertension affects over 1.2 billion individuals worldwide and has become the most critical and expensive public health problem. Hypertension is a multifactorial disease involving environmental and genetic factors together with risk-conferring behaviors. The cause of the disease is identified in ∼10% of the cases (secondary hypertension), but in 90% of the cases no etiology is found (primary or essential hypertension). For this reason, a better understanding of the mechanisms controlling blood pressure in normal and hypertensive patients is the aim of very active experimental and clinical research. In this article, we review the importance of the renin-angiotensin-aldosterone system (RAAS) for the control of blood pressure, focusing on the evolution of the system and its critical importance for adaptation of vertebrates to a terrestrial and dry environment. The evolution of blood pressure control during the evolution of primates, hominins, and humans is discussed, together with the role of common genetic factors and the possible causes of the current hypertension pandemic in the light of evolutionary medicine.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland;
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Jujo K, Minami Y, Haruki S, Matsue Y, Shimazaki K, Kadowaki H, Ishida I, Kambayashi K, Arashi H, Sekiguchi H, Hagiwara N. Persistent high blood urea nitrogen level is associated with increased risk of cardiovascular events in patients with acute heart failure. ESC Heart Fail 2017; 4:545-553. [PMID: 29154415 PMCID: PMC5695177 DOI: 10.1002/ehf2.12188] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/04/2022] Open
Abstract
Aims The association between kinetics of blood urea nitrogen (BUN) levels in hospital and cardiovascular outcomes in patients with acutely decompensated congestive heart failure (HF) is unclear. We aimed to estimate the impact of changes in BUN level during hospitalization on clinical prognosis in patients with acute HF. Methods and results A total of 353 consecutive patients that were urgently hospitalized due to acutely decompensated HF and discharged alive were divided into four subgroups depending on their BUN level at admission and discharge, using a cut‐off level of 21.0 mg/dL. Among 206 patients with high baseline BUN level, 46 (22%) and 160 (78%) had normal and persistent high BUN levels at discharge, respectively. In contrast, of the 147 patients with normal baseline BUN level, 55 (37%) and 92 (63%) had high and normal BUN levels at discharge, respectively. During the observational period after discharge, Kaplan–Meier analysis showed the highest rate of combined outcome of cardiovascular death and HF readmission in patients with persistent high BUN (log‐rank test: P < 0.001). After adjustment for comorbidities, the hazard ratio for a combined outcome was significantly lower in patients with normalized BUN level compared with those with persistent high BUN (hazard ratio 0.48, 95% confidence interval 0.23–0.99, P = 0.049). Conclusions Persistent high BUN levels in hospital are associated with an increased risk of cardiovascular death and HF readmission. Normalization of BUN levels during hospitalization may be associated with long‐term clinical outcomes.
Collapse
Affiliation(s)
- Kentaro Jujo
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuichiro Minami
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shintaro Haruki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuya Matsue
- Department of Cardiology, Kameda Medical Center, Kamogawa, Japan
| | - Kensuke Shimazaki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromu Kadowaki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Issei Ishida
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Keigo Kambayashi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Arashi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Haruki Sekiguchi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
41
|
Qian J, Mummalaneni S, Phan THT, Heck GL, DeSimone JA, West D, Mahavadi S, Hojati D, Murthy KS, Rhyu MR, Spielman AI, Özdener MH, Lyall V. Cyclic-AMP regulates postnatal development of neural and behavioral responses to NaCl in rats. PLoS One 2017; 12:e0171335. [PMID: 28192441 PMCID: PMC5305205 DOI: 10.1371/journal.pone.0171335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
During postnatal development rats demonstrate an age-dependent increase in NaCl chorda tympani (CT) responses and the number of functional apical amiloride-sensitive epithelial Na+ channels (ENaCs) in salt sensing fungiform (FF) taste receptor cells (TRCs). Currently, the intracellular signals that regulate the postnatal development of salt taste have not been identified. We investigated the effect of cAMP, a downstream signal for arginine vasopressin (AVP) action, on the postnatal development of NaCl responses in 19-23 day old rats. ENaC-dependent NaCl CT responses were monitored after lingual application of 8-chlorophenylthio-cAMP (8-CPT-cAMP) under open-circuit conditions and under ±60 mV lingual voltage clamp. Behavioral responses were tested using 2 bottle/24h NaCl preference tests. The effect of [deamino-Cys1, D-Arg8]-vasopressin (dDAVP, a specific V2R agonist) was investigated on ENaC subunit trafficking in rat FF TRCs and on cAMP generation in cultured adult human FF taste cells (HBO cells). Our results show that in 19-23 day old rats, the ENaC-dependent maximum NaCl CT response was a saturating sigmoidal function of 8-CPT-cAMP concentration. 8-CPT-cAMP increased the voltage-sensitivity of the NaCl CT response and the apical Na+ response conductance. Intravenous injections of dDAVP increased ENaC expression and γ-ENaC trafficking from cytosolic compartment to the apical compartment in rat FF TRCs. In HBO cells dDAVP increased intracellular cAMP and cAMP increased trafficking of γ- and δ-ENaC from cytosolic compartment to the apical compartment 10 min post-cAMP treatment. Control 19-23 day old rats were indifferent to NaCl, but showed clear preference for appetitive NaCl concentrations after 8-CPT-cAMP treatment. Relative to adult rats, 14 day old rats demonstrated significantly less V2R antibody binding in circumvallate TRCs. We conclude that an age-dependent increase in V2R expression produces an AVP-induced incremental increase in cAMP that modulates the postnatal increase in TRC ENaC and the neural and behavioral responses to NaCl.
Collapse
Affiliation(s)
- Jie Qian
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shobha Mummalaneni
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gerard L. Heck
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David West
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sunila Mahavadi
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Deanna Hojati
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | | | - Mehmet Hakan Özdener
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Vijay Lyall
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
42
|
Abstract
Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference.
Collapse
Affiliation(s)
| | | | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
43
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
44
|
Jung HJ, Kwon TH. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 2016; 311:F1318-F1328. [PMID: 27760771 DOI: 10.1152/ajprenal.00485.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023] Open
Abstract
The kidney collecting duct is an important renal tubular segment for regulation of body water homeostasis and urine concentration. Water reabsorption in the collecting duct principal cells is controlled by vasopressin, a peptide hormone that induces the osmotic water transport across the collecting duct epithelia through regulation of water channel proteins aquaporin-2 (AQP2) and aquaporin-3 (AQP3). In particular, vasopressin induces both intracellular translocation of AQP2-bearing vesicles to the apical plasma membrane and transcription of the Aqp2 gene to increase AQP2 protein abundance. The signaling pathways, including AQP2 phosphorylation, RhoA phosphorylation, intracellular calcium mobilization, and actin depolymerization, play a key role in the translocation of AQP2. This review summarizes recent data demonstrating the regulation of AQP2 as the underlying molecular mechanism for the homeostasis of water balance in the body.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
45
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Rotondo F, Butz H, Syro LV, Yousef GM, Di Ieva A, Restrepo LM, Quintanar-Stephano A, Berczi I, Kovacs K. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 2016; 19:345-55. [PMID: 26762848 DOI: 10.1007/s11102-015-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION This publication reviews the function of arginine vasopressin and focuses on the morphologic and functional correlation between the hormone and its effect on stress, the hypophysial-adrenocortical axis, neuroimmune responses, renal function and corticotroph pituitary tumors. MATERIALS AND METHODS A literature review was performed using various search engines for information regarding the morphology and the multifunctional role of arginine vasopressin. RESULTS Although a large number of studies were published discussing these interactions, there are several important areas that are still obscure. CONCLUSION The questions of how does arginine vasopressin affect the morphology and function of these various areas, and how does the secretion of ACTH and adrenocortical hormones influence the morphology of arginine vasopressin-producing cells and their hormone secretion requires further investigation.
Collapse
Affiliation(s)
- Fabio Rotondo
- Division of Pathology, Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
| | - Henriett Butz
- Division of Pathology, Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Luis V Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellín, Colombia
| | - George M Yousef
- Division of Pathology, Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Antonio Di Ieva
- Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia
| | - Lina M Restrepo
- Division of Endocrinology, Clinica Medellin, Medellín, Colombia
| | - Andres Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Istvan Berczi
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Kalman Kovacs
- Division of Pathology, Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
47
|
Xu W, Hong SJ, Zhong A, Xie P, Jia S, Xie Z, Zeitchek M, Niknam-Bienia S, Zhao J, Porterfield DM, Surmeier DJ, Leung KP, Galiano RD, Mustoe TA. Sodium channel Nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 2016; 7:312ra177. [PMID: 26537257 DOI: 10.1126/scitranslmed.aad0286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a perturbation of the epidermal barrier, water is lost, resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as a sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin, which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. Nax is present in multiple epithelial tissues, and up-regulation of its downstream genes is found in hypertrophic scars. In animal models, blocking Nax expression results in improvement in scarring and atopic dermatitis-like symptoms, both of which are pathological conditions characterized by perturbations in barrier function. These findings support an important role for Nax in maintaining epithelial homeostasis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Solmaz Niknam-Bienia
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jingling Zhao
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Burns, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kai P Leung
- Microbiology Branch, U.S. Army Dental and Trauma Research Detachment, Institute of Surgical Research, JB Fort Sam Houston, San Antonio, TX 78234, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
48
|
Wu LW, Chen WL, Liaw FY, Sun YS, Yang HF, Wang CC, Lin CM, Tsao YT. Association between fluid intake and kidney function, and survival outcomes analysis: a nationwide population-based study. BMJ Open 2016; 6:e010708. [PMID: 27173809 PMCID: PMC4874113 DOI: 10.1136/bmjopen-2015-010708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Fluid intake, one of the most common daily activities, has not been well studied in chronic kidney disease (CKD) populations, and clinical outcomes are rarely addressed. The aim of this nationwide study is to explore the influence of daily fluid intake on cardiovascular and all-cause mortality and its association with renal function. DESIGN Observational cohort study. PARTICIPANTS In all, 2182 participants aged more than 20 years participated in the Third National Health and Nutrition Examination Survey (1988-1994). MAIN OUTCOME MEASURES Survival outcomes in patients with or without CKD, using multiple variable adjusted Cox proportional hazard models. RESULTS In a longitudinal survey with a median follow-up length of 15.4 years, 1080 participants died and 473 cardiovascular deaths were recorded. For all-cause mortality in the CKD group, individuals in the highest quartile of fluid intake (≧3.576 L/day) had better survival outcomes than those in the lowest quartile of fluid intake (≤2.147 L/day) (p=0.029) after adjustment of several pertinent variables. CONCLUSIONS Although the interpretation of this observational study was limited by the failure to identify the compositions of ingested fluids, adequate hydration may offer some advantages in patients with CKD. However, the underlying pathophysiological mechanisms of the responses of normal and injured kidneys to chronic changes in fluid consumption warrant further investigation.
Collapse
Affiliation(s)
- Li-Wei Wu
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Wei-Liang Chen
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Fang-Yih Liaw
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Yu-Shan Sun
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Hui-Fang Yang
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Chung-Ching Wang
- Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Chien-Ming Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Yu-Tzu Tsao
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Taoyuan City, Taiwan (ROC)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
| |
Collapse
|
49
|
|
50
|
Jujo K, Saito K, Ishida I, Furuki Y, Kim A, Suzuki Y, Sekiguchi H, Yamaguchi J, Ogawa H, Hagiwara N. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail 2016; 3:177-188. [PMID: 27818782 PMCID: PMC5071712 DOI: 10.1002/ehf2.12088] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Loop diuretics are first-line medications for congestive heart failure (CHF); however, they are associated with serious adverse effects, including decreased renal function, and sympathetic nervous and renin-angiotensin system activation. We tested whether tolvaptan, a vasopressin V2-receptor antagonist, could reduce unfavourable furosemide-induced effects during CHF treatment. METHODS AND RESULTS Sixty patients emergently hospitalized owing to CHF-induced dyspnea were randomly assigned to receive either 40 mg intravenous furosemide daily or 7.5 mg oral tolvaptan for 5 days after admission. Both groups also received intravenous carperitide and canrenoate potassium. As results, baseline patient characteristics were similar between the furosemide (n = 30) and the tolvaptan (n = 30) groups, with no significant difference in 5 day urine volume or fluid balance. Brain natriuretic peptide and body weight improvements were similar between groups. However, serum creatinine (Cr) level did not increase, and the incidence of worsening renal function was significantly lower in the tolvaptan group. Consequently, the Cr increase to gain 1000 mL urine was 2.5-fold lower in the tolvaptan group. Furthermore, the blood urea nitrogen (BUN)/Cr ratio significantly decreased in the tolvaptan group, suggesting that renal perfusion was preserved, and urea reuptake and passive water reabsorption were suppressed following tolvaptan treatment. Although catecholamine improvements after treatment were not significantly different, plasma renin activity was enhanced in the furosemide group. CONCLUSIONS As compared with furosemide, tolvaptan in patients with acute heart failure is associated with comparable decongestion, better preservation of renal function and less activation of renin-angiotensin system. (UMIN 000014134).
Collapse
Affiliation(s)
- Kentaro Jujo
- Department of CardiologyTokyo Women's Medical UniversityTokyoJapan; Department of CardiologyNishiarai Heart Center HospitalTokyoJapan
| | - Katsumi Saito
- Department of Cardiology Nishiarai Heart Center Hospital Tokyo Japan
| | - Issei Ishida
- Department of Cardiology Nishiarai Heart Center Hospital Tokyo Japan
| | - Yuho Furuki
- Department of Cardiology Nishiarai Heart Center Hospital Tokyo Japan
| | - Ahsung Kim
- Department of Cardiology Nishiarai Heart Center Hospital Tokyo Japan
| | - Yuki Suzuki
- Department of Cardiology Nishiarai Heart Center Hospital Tokyo Japan
| | - Haruki Sekiguchi
- Department of Cardiology, Aoyama Hospital Tokyo Women's Medical University Tokyo Japan
| | - Junichi Yamaguchi
- Department of Cardiology Tokyo Women's Medical University Tokyo Japan
| | - Hiroshi Ogawa
- Department of Cardiology Tokyo Women's Medical University Tokyo Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology Tokyo Women's Medical University Tokyo Japan
| |
Collapse
|