1
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Wang G, Zuo T, Li R. The mechanism of Arhalofenate in alleviating hyperuricemia―Activating
PPARγ
thereby reducing caspase‐1 activity. Drug Dev Res 2020; 81:859-866. [PMID: 32506648 DOI: 10.1002/ddr.21699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Guihong Wang
- Department of Rheumatology and Immunology Anqing Hospital, affiliated Hospital of Anhui Medical University Anqing China
| | - Ting Zuo
- Department of Rheumatology and Immunology Anqing Hospital, affiliated Hospital of Anhui Medical University Anqing China
| | - Ran Li
- Department of Rheumatology and Immunology Anqing Hospital, affiliated Hospital of Anhui Medical University Anqing China
| |
Collapse
|
4
|
Kushwaha R, Mishra J, Gupta AP, Gupta K, Vishwakarma J, Chattopadhyay N, Gayen JR, Kamthan M, Bandyopadhyay S. Rosiglitazone up-regulates glial fibrillary acidic protein via HB-EGF secreted from astrocytes and neurons through PPARγ pathway and reduces apoptosis in high-fat diet-fed mice. J Neurochem 2018; 149:679-698. [PMID: 30311190 DOI: 10.1111/jnc.14610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/17/2022]
Abstract
The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India.,Babu Banarasi Das University, Lucknow, India
| | - Anand Prakash Gupta
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Keerti Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Jitendra Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Naibedya Chattopadhyay
- Department of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Jiaur Rahaman Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Mohan Kamthan
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| |
Collapse
|
5
|
Lau WL, Lin HYH, Wang PH. Urine mitochondrial DNA and diabetic nephropathy—a new frontier. Nephrol Dial Transplant 2018; 33:719-721. [DOI: 10.1093/ndt/gfy013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Hugo You-Hsien Lin
- UC Irvine Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of California-Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping H Wang
- UC Irvine Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of California-Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Yang M, Wang B, Miao L, Xu X, He X. Autophagy is involved in aldosterone‑induced mesangial cell proliferation. Mol Med Rep 2016; 14:4638-4642. [PMID: 27748808 PMCID: PMC5102028 DOI: 10.3892/mmr.2016.5807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate whether autophagy is involved in aldosterone (Aldo)-induced mesangial cell (MC) proliferation. MCs were incubated with 10‑7 M Aldo for 24 h. Proliferation of MCs, and the underlying mechanisms, were subsequently analyzed using [3H]thymidine assay, cell counting assay, western blotting and RNA interference (RNAi). Aldo was revealed to induce autophagy, as indicated by the increased conversion from microtubule‑associated protein 1A/1B‑light chain 3 (LC3)‑I to LC3‑II, the increased expression levels of autophagy‑related gene 7 (Atg7) and the increased degradation of p62, which was accompanied by MC proliferation. Notably, pharmacological inhibition of autophagy or RNAi‑mediated knockdown of Atg7 attenuated Aldo‑induced MC proliferation, suggesting that autophagy was at least partially responsible for this effect. The results of the present study provided evidence that autophagy is critical for regulating Aldo‑induced MC proliferation.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Wang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai 200040, P.R. China
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xianlin Xu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaozhou He
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
7
|
Pioglitazone inhibits EGFR/MDM2 signaling-mediated PPARγ degradation. Eur J Pharmacol 2016; 791:316-321. [DOI: 10.1016/j.ejphar.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023]
|
8
|
Xiao J, Chen W, Lu Y, Zhang X, Fu C, Yan Z, Zhang Z, Ye Z. Crosstalk between peroxisome proliferator-activated receptor-γ and mineralcorticoid receptor in TNF-α activated renal tubular cell. Inflamm Res 2015; 64:603-14. [PMID: 26072064 DOI: 10.1007/s00011-015-0838-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/31/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In our previous study, we observed the crosstalk between peroxisome proliferator-activated receptor-γ (PPAR-γ) and angiotensin II in activated renal tubular cells. The present study is aimed to further explore the crosstalk between PPAR-γ and mineralocorticoid receptor (MR) in tumor necrosis factor (TNF)-α activated renal tubular cells. METHODS Human proximal renal tubular epithelial cells HK-2 were cultured with the pre-treatment of PPAR-γ agonist, pioglitazone (5 μM), MR antagonist, eplerenone (5 μM), or their combined treatment, followed by activation with TNF-α (20 ng/ml). In the parallel experiment, PPAR-γ inhibitor GW9662 (25 µM) was used to study the independence of PPAR-γ. Gene expression and protein synthesis of intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), MR and PPAR-γ were measured by RT-PCR, ELISA and Western blot, respectively; nuclear factor κB (NF-κB) nuclear translocation activity in the nucleus was examined by EMSA assay. RESULTS TNF-α effectively activated HK-2 cells by up-regulating gene expression and protein synthesis of ICAM-1, IL-6 and MR and down-regulating PPAR-γ in a dose-dependent manner. TNF-α also significantly induced NF-κB nuclear translocation in HK-2 cells. Dual treatment of pioglitazone and eplerenone demonstrated synergistic effect on reducing ICAM-1 and IL-6 expression and alleviating NF-κB activation when compared with their monotherapies in TNF-α activated renal tubular cells. PPAR-γ antagonist, GW9662, significantly attenuated protective effect on ICAM-1, IL-6 and PPAR-γ expression by pioglitazone, eplerenone and their combined treatment. CONCLUSIONS Our data suggest that pioglitazone, in a PPAR-γ-dependent manner, trans-represses MR signaling by suppressing NF-κB activation. MR antagonist also restored PPAR-γ expression. Dual treatment of pioglitazone and eplerenone present better efficacy in attenuating excessive inflammatory response in activated renal tubular cells under stimulation of TNF-α than single treatment.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Han W, Zhao H, Jiao B, Liu F. EPA and DHA increased PPARγ expression and deceased integrin-linked kinase and integrin β1 expression in rat glomerular mesangial cells treated with lipopolysaccharide. Biosci Trends 2014; 8:120-5. [PMID: 24815389 DOI: 10.5582/bst.8.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.
Collapse
Affiliation(s)
- Wenchao Han
- Department of Pediatrics, the Second Affiliated Hospital of Shandong University
| | | | | | | |
Collapse
|
10
|
TGFβ can stimulate the p(38)/β-catenin/PPARγ signaling pathway to promote the EMT, invasion and migration of non-small cell lung cancer (H460 cells). Clin Exp Metastasis 2014; 31:881-95. [PMID: 25168821 DOI: 10.1007/s10585-014-9677-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
Signaling pathway(s) responsible for transforming growth factor β (TGFβ)-induced epithelial mesenchymal transition (EMT), invasion and migration of H460 cells (non-small cell lung cancer/NSCLC) was identified in the study. The results showed that TGFβ-induced p(38)/β-catenin/PPARγ signaling pathway played a critical role in the promotion of EMT, invasion and migration of H460 cells. All these pathological outcomes attributed to PPARγ-increased expression of p-EGFR, p-c-MET and Vimentin and the decrease of E-cadherin. Transforming growth factor β and p(38)-induced β-catenin not only stimulated the expression of PPARγ but also physically interacted with it. Blocking the ligand binding domain of PPARγ (with GW9662) could significantly interfere the binding between PPARγ and β-catenin, and interrupt the nuclear infiltration of both factors. These findings suggested that β-catenin was an upstream regulator and a ligand of PPARγ, and the binding between these two molecules was critical for their nuclear infiltration. Transforming growth factor β-induced tumor invasion and migration was also seen in U373 cells (brain glioma, with high inducible PPARγ) in a PPARγ-dependent manner, but not in CH27 cells (squamous NSCLC, with low PPARγ). PPARγ shRNA, GW9662, JW67 and 2,4-diaminoquinazoline were all revealed to have important values in the control of the intrinsic and TGFβ-induced EMT, tumor invasion and migration of H460 cells. The results further suggested that PPARγ and β-catenin may be the potential markers for the early diagnosis and/or treatment of metastatic tumors.
Collapse
|
11
|
Pan ZQ, Xie D, Choudhary V, Seremwe M, Tsai YY, Olala L, Chen X, Bollag WB. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells. Mol Cell Endocrinol 2014; 394:119-28. [PMID: 25038520 PMCID: PMC4237224 DOI: 10.1016/j.mce.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention.
Collapse
Affiliation(s)
- Zhi-qiang Pan
- Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA; School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ding Xie
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Vivek Choudhary
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Mutsa Seremwe
- Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Ying-Ying Tsai
- Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Lawrence Olala
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Xunsheng Chen
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Physiology, Georgia Regents University (Medical College of Georgia), 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Speeckaert MM, Vanfraechem C, Speeckaert R, Delanghe JR. Peroxisome proliferator-activated receptor agonists in a battle against the aging kidney. Ageing Res Rev 2014; 14:1-18. [PMID: 24503003 DOI: 10.1016/j.arr.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
As aging is a complex phenomenon characterized by intraindividual and interindividual diversities in the maintenance of the homeostatic condition of cells and tissues, changes in renal function are not uniform and depend on associated diseases and environmental factors. Multiple studies have investigated the possible underlying mechanisms of age-related decline in kidney function. Evolutionary, molecular, cellular and systemic theories have been postulated to explain the primary disease independent age-related changes and adaptive responses. As peroxisome proliferator-activated receptors (PPARs) are involved in a broad spectrum of biological processes, PPAR activation might have an effect on the prevention of cell senescence. In this review, we will focus on the experimental and clinical evidence of PPAR agonists in a battle against the aging kidney.
Collapse
Affiliation(s)
| | | | | | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
13
|
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014; 306:F367-78. [PMID: 24305473 DOI: 10.1152/ajprenal.00571.2013] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
14
|
Zhou TB, Drummen GPC, Jiang ZP, Long YB, Qin YH. Association of peroxisome proliferator-activated receptors/retinoic acid receptors with renal diseases. J Recept Signal Transduct Res 2013; 33:349-52. [PMID: 24050824 DOI: 10.3109/10799893.2013.838786] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ), belongs to the nuclear receptor superfamily, and is a nuclear transcription receptor involving in the regulation of several biochemical pathways, such as cell growth, differentiation, and apoptosis. The nuclear retinoic acid receptors (RARs) are transcriptional transregulators that control the expression of specific subsets of genes in a ligand-dependent manner, and include three subtypes (RARα, RARβ, and RARγ). These control the expression of specific gene subsets subsequent to ligand binding and to strictly control phosphorylation processes. The current status of knowledge indicates that there might be inter- or overlapping actions between PPARγ and RARs, and there might be an association of PPARγ/RARs with renal diseases. Various agonists of both receptor families seem to prevent or retard the progression of renal disease. Herein, we review if causal relationships can be established between PPARγ/RARs and renal diseases and its manifestations.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | |
Collapse
|
15
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
16
|
Du J, Xu R, Hu Z, Tian Y, Zhu Y, Gu L, Zhou L. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 2011; 6:e25213. [PMID: 21980400 PMCID: PMC3181265 DOI: 10.1371/journal.pone.0025213] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.
Collapse
Affiliation(s)
- Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yinhui Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yichao Zhu
- Cancer Center, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|