1
|
Zhou J, Fan Z, Bi Y, Li D, Chen X, Hou K, Ji S. The significance of serum Klotho to hearing loss: a potential protector under noise pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104464-104476. [PMID: 37700133 DOI: 10.1007/s11356-023-29788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The issue of hearing protection in the presence of noise pollution is of great importance in the fields of environmental science and clinical medicine. Currently, the clinical significance of Klotho in relation to hearing has not been revealed. The aim of this study was to examine the correlation between serum Klotho levels and Pure Tone Average (PTA) hearing thresholds among individuals in the U.S.. The analysis involved a sample of 1,781 individuals aged 20 to 69, obtained from the 2007-2012 National Health and Nutrition Examination Survey. Various methods were utilized for the analysis, including univariate and multivariate linear regression, stratified analysis, smooth curve fitting, a two-segment linear regression model, and log-likelihood ratio analysis. The results of the univariate analysis indicated that serum Klotho concentration, age, education level, hypertension, diabetes, and smoking all exhibited a significant influence on PTAs. After adjusting for potential confounding factors, it was observed that a decrease in serum Klotho was significantly associated with PTA thresholds at low frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.004), speech frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.007), and high frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.045). Specifically, for every 1 pg/ml decrease in serum Klotho concentration, the PTAs increased by 0.002 dB. Moreover, age and gender-specific analyses revealed significant associations. For individuals aged 59-69, a significant association was found between serum Klotho concentration and high-frequency PTA (β = -4.153; 95% CI: -7.948, -0.358; P = 0.032). Additionally, among females, significant associations were observed between serum Klotho concentration and speech-frequency PTA (β = -1.648, 95% CI: -3.197, -0.099; P = 0.037) as well as high-frequency PTA (β = -3.046; 95% CI: -5.319, -0.772; P = 0.009). Finally, the results of smooth curve fitting and threshold effect analyses indicated a potential negative linear correlation between serum Klotho concentration and PTA thresholds. In conclusion, a lower level of serum Klotho was found to be associated with increased hearing thresholds, particularly among the elderly population. This finding has significant implications for the prevention and treatment of hearing damage.
Collapse
Affiliation(s)
- Jingcheng Zhou
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Zheqi Fan
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Yiming Bi
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Dingchang Li
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Xuemin Chen
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Kun Hou
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Shuaifei Ji
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China.
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100083, China.
| |
Collapse
|
2
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
3
|
Xing D, Hage FG, Feng W, Guo Y, Oparil S, Sanders PW. Endothelial cells overexpressing CXCR1/2 are renoprotective in rats with acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F374-F386. [PMID: 36794755 PMCID: PMC10042609 DOI: 10.1152/ajprenal.00238.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Inflammation that develops with the release of chemokines and cytokines during acute kidney injury (AKI) has been shown to participate in functional renal recovery. Although a major research focus has been on the role of macrophages, the family of C-X-C motif chemokines that promote neutrophil adherence and activation also increases with kidney ischemia-reperfusion (I/R) injury. This study tested the hypothesis that intravenous delivery of endothelial cells (ECs) that overexpress (C-X-C motif) chemokine receptors 1 and 2 (CXCR1 and CXCR2, respectively) improves outcomes in kidney I/R injury. Overexpression of CXCR1/2 enhanced homing of endothelial cells to I/R-injured kidneys and limited interstitial fibrosis, capillary rarefaction, and tissue injury biomarkers (serum creatinine concentration and urinary kidney injury molecule-1) following AKI and also reduced expression of P-selectin and the rodent (C-X-C motif) chemokine cytokine-induced neutrophil chemoattractant (CINC)-2β as well as the number of myeloperoxidase-positive cells in the postischemic kidney. The serum chemokine/cytokine profile, including CINC-1, showed similar reductions. These findings were not observed in rats given endothelial cells transduced with an empty adenoviral vector (null-ECs) or a vehicle alone. These data indicate that extrarenal endothelial cells that overexpress CXCR1 and CXCR2, but not null-ECs or vehicle alone, reduce I/R kidney injury and preserve kidney function in a rat model of AKI.NEW & NOTEWORTHY Inflammation facilitates kidney ischemia-reperfusion (I/R) injury. Endothelial cells (ECs) that were modified to overexpress (C-X-C motif) chemokine receptor (CXCR)1/2 (CXCR1/2-ECs) were injected immediately following kidney I/R injury. The interaction of CXCR1/2-ECs, but not ECs transduced with an empty adenoviral vector, with injured kidney tissue preserved kidney function and reduced production of inflammatory markers, capillary rarefaction, and interstitial fibrosis. The study highlights a functional role for the C-X-C chemokine pathway in kidney damage following I/R injury.
Collapse
Affiliation(s)
- Dongqi Xing
- Division of Pulmonary, Allergy and Critical Care Medicine, Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Fadi G Hage
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States
| | - Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yuanyuan Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Xia S, Zhang M, Liu H, Dong H, Wu N, Wiedermann CJ, Andaluz-Ojeda D, Chen H, Li N. Heme oxygenase-1 as a predictor of sepsis-induced acute kidney injury: a cross-sectional study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1177. [PMID: 36467337 PMCID: PMC9708490 DOI: 10.21037/atm-22-4793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 09/08/2023]
Abstract
BACKGROUND Sepsis patients suffer from severe inflammation and poor prognosis. Oxidative stress and local inflammation that results from sepsis can trigger organ injury, including acute kidney injury (AKI). Previous studies have shown that heme oxygenase-1 (HO-1) is overexpressed in proximal tubular cells under oxidative stress and has significant cytoprotective and anti-inflammatory effects. Heme-induced inflammation in sepsis is antagonized by increased tissue expression of heme oxygenase-1 (HO-1), which impacts on AKI development. The investigators observed intrarenal HO-1 expression and corresponding potential increases in plasma and urinary HO-1 protein concentrations in four different AKI models. Since serum levels of HO-1 reflect HO-1 expression, we aimed to investigate whether serum HO-1 could predict the development of AKI in sepsis patient. METHODS A total of 83 sepsis patients were enrolled in this study including septic patients with AKI and sepsis patients without AKI. According to the definition of septic shock and the global kidney diagnostic criteria described in the Kidney Disease: Improving Global Outcomes (KDIGO), patients were allocated to the sepsis and septic shock groups with and without AKI, respectively. The serum levels of HO-1 were measured by enzyme-linked immunosorbent assays (ELISA). Statistical analyses were performed using SPSS software. RESULTS There were statistically significant differences between septic patients with AKI and sepsis patients without AKI in terms of Sequential Organ Failure Assessment (SOFA) score, hospitalization time, and laboratory indicators including serum HO-1, creatine kinase MB (CK-MB), troponin I (TnI), urea, myoglobin (MYO), serum creatinine (Scr), procalcitonin, and activated partial thromboplastin time. Serum levels of alkaline phosphatase (ALP), urea, MYO, Scr, procalcitonin, activated partial thromboplastin time, and prothrombin time exhibited significant differences among the four groups. The concentration of serum HO-1 was higher in sepsis-induced AKI compared with sepsis patients without AKI. Serum HO-1 levels were increased in patients with sepsis shock-induced AKI. The area under the receiver operating characteristic (ROC) curve for serum HO-1 combined with Scr was 0.885 [95% confidence interval (CI): 0.761-1.000]. CONCLUSIONS Serum HO-1 is positively correlated with sepsis-induced AKI. These findings suggest that measurement of serum HO-1 may play a diagnostic and prediction role in sepsis-induced AKI.
Collapse
Affiliation(s)
- Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meishuai Zhang
- Emergency Department, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, Dalian, China
| | - Haibin Dong
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nannan Wu
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Christian J. Wiedermann
- Department of Public Health, Medical Decision Making and HTA, University of Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - David Andaluz-Ojeda
- Intensive Care Unit Department, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Madrid, Spain
| | - Huiqing Chen
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Li
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Lymphatic Vessel Regression and Its Therapeutic Applications: Learning From Principles of Blood Vessel Regression. Front Physiol 2022; 13:846936. [PMID: 35392370 PMCID: PMC8980686 DOI: 10.3389/fphys.2022.846936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.
Collapse
|
6
|
Bone marrow-derived mesenchymal stem cells transplantation attenuates renal fibrosis following acute kidney injury by repairing the peritubular capillaries. Exp Cell Res 2021; 411:112983. [PMID: 34921827 DOI: 10.1016/j.yexcr.2021.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
After the severe initial insults of acute kidney injury, progressive kidney tubulointerstitial fibrosis may occur, the peritubular capillary (PTC) rarefaction plays a key role in the disease progression. However, the mechanisms of PTC damage were not fully understood and potential therapeutic interventions were not explored. Previous studies of our research team and others in this field suggested that bone marrow-derived mesenchymal stem cells (BMSCs) transplanted into the AKI rat model may preserve the kidney function and pathological changes. In the current study, with the ischemia/reperfusion AKI rat model, we revealed that BMSCs transplantation attenuated the renal function decrease in the AKI model through preserving the peritubular capillaries (PTCs) function. The density of PTCs is maintained by BMSCs transplantation in the AKI model, detachment and relocation of pericytes in the PTCs diminished. Then we established that BMSCs transplantation may attenuate the renal fibrosis and preserve the kidney function after AKI by repairing the PTCs. Improving the vitality of pericytes, suppressing the detachment and trans-differentiation of pericytes, directly differentiation of BMSCs into pericytes by BMSCs transplantation all participate in the PTC repair. Through these processes, BMSCs rescued the microvascular damage and improved the density of PTCs. As a result, a preliminary conclusion can be reached that BMSCs transplantation can be an effective therapy for delaying renal fibrosis after AKI.
Collapse
|
7
|
Vargas I, Stephenson DJ, Baldwin M, Gaut JP, Chalfant CE, Pan H, Wickline SA. Sustained local inhibition of thrombin preserves renal microarchitecture and function after onset of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 38:102449. [PMID: 34303838 PMCID: PMC8541929 DOI: 10.1016/j.nano.2021.102449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.
Collapse
Affiliation(s)
- Ian Vargas
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Joseph P Gaut
- Washington University in St. Louis, Department of Pathology and Immunology and Department of Medicine, St Louis, MO, USA
| | - Charles E Chalfant
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA; The Moffitt Cancer Center, Tampa, FL; Research Service, James A. Haley Veterans Hospital, Tampa, FL
| | - Hua Pan
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Samuel A Wickline
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Downregulated expression of organic anion transporting polypeptide (Oatp) 2b1 in the small intestine of rats with acute kidney injury. Drug Metab Pharmacokinet 2021; 40:100411. [PMID: 34284282 DOI: 10.1016/j.dmpk.2021.100411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The expression of transporters on the apical and basal membranes of renal tubular cells is modulated under acute kidney injury (AKI). However, little is known about alterations in non-renal transporters in the tissues other than the kidney under AKI situation. This study aimed to assess the modulation of organic anion transporting polypeptide (Oatp) 1a2 and Oatp2b1 expression/function in the small intestine of rats with drug-induced AKI. AKI was induced by intraperitoneal administration of cisplatin at a dose of 5 mg/kg. On day 3 after cisplatin administration, morphological changes in the small intestine, Oatp1a2 and Oatp2b1 expression, and absorption of pravastatin and theophylline were evaluated. Non-negligible atrophy was observed in the jejunum and ileum of the AKI rats. However, the absorption of theophylline was not affected. While intestinal Oatp2b1 expression was markedly decreased in the AKI rats, no alteration was observed in Oatp1a2 expression. The plasma levels of pravastatin after intraluminal administration declined significantly in the AKI rats. However, no such decline was observed after intravenous administration. This study suggested that the responses of intestinal Oatps to experimentally induced AKI was not unidirectional and that pravastatin absorption was governed more potently by Oatp2b1 than by Oatp1a2 in the rat intestine.
Collapse
|
9
|
Takeda F, Oda M, Terasaki M, Ichimura Y, Kojima H, Saitoh H. Downregulated expression of intestinal P-glycoprotein in rats with cisplatin-induced acute kidney injury causes amplification of its transport capacity to maintain "gatekeeper" function. Toxicol Appl Pharmacol 2021; 423:115570. [PMID: 33965372 DOI: 10.1016/j.taap.2021.115570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
The expression of transporters on the apical and basal membranes of renal proximal tubular cells are down- or upregulated to various extents under cisplatin (CDDP)-induced acute kidney injury (AKI). However, little is known about the changes in transporters in tissues other than the kidney under CDDP-induced AKI. This study aimed to investigate the modulation of the expression/function of intestinal efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), in CDDP-induced AKI rats. On day 3 after the intraperitoneal administration of CDDP (5 mg/kg) to rats, the expression levels of P-gp and Bcrp were compared with those of normal rats. Further, the absorption of three P-gp substrates (6α-methylprednisolone, rhodamine 123, and gatifloxacin) was evaluated in both groups using conventional loop techniques. In the CDDP-induced AKI rats, P-gp expression in the ileum was markedly decreased to approximately 38% of that in the normal rats. However, no significant changes in Bcrp expression were observed in the AKI rats. In contrast with the reduction in P-gp expression in the AKI rats, the absorption of the three P-gp substrates remained almost the same or decreased in the AKI group. The addition of verapamil (a potent P-gp inhibitor) increased the absorption of the three P-gp substrates to the values obtained from the normal rats. In conclusion, our results suggested that P-gp expression is downregulated in rats with CDDP-induced AKI but that P-gp maintains its potency as a "gatekeeper" against the absorption of xenobiotics by amplifying its individual transport capacity under these conditions.
Collapse
Affiliation(s)
- Fuyo Takeda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masaru Terasaki
- Department of Health and Environmental Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- Department of Health and Environmental Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| |
Collapse
|
10
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
11
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Chang YH, Wu CH, Chou NK, Tseng LJ, Huang IP, Wang CH, Wu VC, Chu TS. High plasma C-terminal FGF-23 levels predict poor outcomes in patients with chronic kidney disease superimposed with acute kidney injury. Ther Adv Chronic Dis 2020; 11:2040622320964161. [PMID: 33133477 PMCID: PMC7576912 DOI: 10.1177/2040622320964161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Elevated plasma C-terminal fibroblast growth factor-23 (cFGF-23) levels are associated with higher mortality in patients with chronic kidney disease (CKD) and acute kidney injury (AKI). Our study explored the outcome forecasting accuracy of cFGF-23 in critically ill patients with CKD superimposed with AKI (ACKD). Methods: Urine and plasma biomarkers from 149 CKD patients superimposed with AKI before dialysis were checked in this multicenter prospective observational cohort study. Endpoints were 90-day mortality and 90 days free from dialysis after hospital discharge. Associations with study endpoints were assessed using hierarchical clustering analysis, the generalized additive model, the Cox proportional hazard model, competing risk analysis, and discrimination evaluation. Results: Over a median follow up of 40 days, 67 (45.0%) patients died before the 90th day after hospital discharge and 39 (26.2%) progressed to kidney failure with replacement therapy (KFRT). Hierarchical clustering analysis demonstrated that cFGF-23 levels had better predictive ability for 90-day mortality than did other biomarkers. Higher serum cFGF-23 levels were independently associated with greater risk for 90-day mortality [hazard ratio (HR): 2.5; 95% confidence interval (CI) 1.5–4.1; p < 0.001]. Moreover, adding plasma cFGF-23 to the Demirjian AKI risk score model substantially improved risk prediction for 90-day mortality than the Demirjian model alone (integrated discrimination improvement: 0.06; p < 0.05; 95% CI 0.02–0.10). The low plasma cFGF-23 group was predicted having more weaning from dialysis in surviving patients (HR = 0.53, 95% CI, 0.29–0.95, p = 0.05). Conclusions: In patients with ACKD, plasma cFGF-23 levels are an independent risk factor to forecast 90-day mortality and 90-day progression to KFRT. In combination with the clinical risk score, plasma cFGF-23 levels could substantially improve mortality risk prediction.
Collapse
Affiliation(s)
- Yu-Hsing Chang
- Division of Nephrology, National Taiwan University Hospital, Taipei NSARF Group (National Taiwan University Hospital Study Group of ARF), Taipei
| | - Che-Hsiung Wu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City School of Medicine, Tzu Chi University, Hualien NSARF Group (National Taiwan University Hospital Study Group of ARF), Taipei
| | - Nai-Kuan Chou
- Division of Surgery, National Taiwan University Hospital, Taipei
| | - Li-Jung Tseng
- Division of Surgery, National Taiwan University Hospital, Taipei
| | - I-Ping Huang
- Division of Surgery, National Taiwan University Hospital, Taipei
| | - Chih-Hsien Wang
- Division of Surgery, National Taiwan University Hospital, Taipei
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Room 1555, Clinical Research Building, 7 Chung-Shan South Road, Taipei 100
| | - Tzong-Shinn Chu
- Division of Nephrology, National Taiwan University Hospital, Taipei NSARF Group (National Taiwan University Hospital Study Group of ARF), Taipei
| |
Collapse
|
13
|
Hou Q, Yu X, Cheng Z, Han Z, Liu F, Dou J, An C, Chen X, Yu J, Liang P. Acute kidney injury after nephron sparing surgery and microwave ablation: focus on incidence, survival impact and prediction. Int J Hyperthermia 2020; 37:470-478. [PMID: 32396482 DOI: 10.1080/02656736.2020.1752944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose: To compare acute kidney injury (AKI) incidence between nephron sparing surgery (NSS) and microwave ablation (MWA) for T1a RCC patients, reveal the effect of AKI on survival prognosis, construct AKI nomogram and use Law of Total Probability for survival probability (SP) prediction.Materials and methods: Patients were studied retrospectively after NSS (n = 1267) or MWA (n = 210) from January 1, 2011 to June 30, 2017. Using one to one Propensity Score Matching (PSM), 158 pairs of patients were identified for the cohort study. AKI incidence, risk factors and impact on survival outcomes were analyzed using Chi-square test, logistic and cox regression analysis. AKI risk and SP were predicted by nomogram and Law of Total Probability. The performance of the nomogram was assessed with respect to its discrimination, calibration, and clinical usefulness.Results: AKI occurred more commonly in NSS (27.85%) cohort, when compared to MWA (17.72%) cohort (p = 0.032), but treatment modality was not independently predictive of AKI occurrence (odds ratio [OR]: 0.598; 95% confidence interval [CI]: 0.282-1.265; p = 0.178). The 5-yr overall survival (OS) was lower in AKI patients (73.5%) compared with non-AKI patients (94.8%; p < 0.001). AKI was an independent risk factor for all-cause mortality in RCC patients (hazard ratio [HR]: 2.820; 95% confidence interval [CI]: 1.110-7.165; p = 0.029). Predictors for both NSS- and MWA-related AKI included tumor diameter, baseline eGFR and CCI score. RENAL score and tumor blood supply can predict AKI after NSS and MWA, respectively. The AKI normograms demonstrated good discrimination, with AUCs >0.86, excellent calibration and net benefits at the decision curve analysis with probabilities ≥5%. SP predicted by Law of Total Probability was comparable to actual OS.Conclusion: AKI was an early indicator for poor overall survival in RCC patients. It can be predicted by several oncological parameters. Nomogram and Law of Total Probability can accurately predict AKI risk and SP.
Collapse
Affiliation(s)
- Qidi Hou
- School of Medicine, Nankai University, Tianjin, China.,Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jianping Dou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Chao An
- Department of Minimal invasive intervention, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China
| | - Xiaoqiong Chen
- Department of Ultrasonic imaging, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- School of Medicine, Nankai University, Tianjin, China.,Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Martinez-Moreno JM, Fontecha-Barriuso M, Martín-Sánchez D, Sánchez-Niño MD, Ruiz-Ortega M, Sanz AB, Ortiz A. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Front Pharmacol 2020; 11:393. [PMID: 32308622 PMCID: PMC7145939 DOI: 10.3389/fphar.2020.00393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are the most severe consequences of kidney injury. They are interconnected syndromes as CKD predisposes to AKI and AKI may accelerate CKD progression. Despite their growing impact on the global burden of disease, there is no satisfactory treatment for AKI and current therapeutic approaches to CKD remain suboptimal. Recent research has focused on the therapeutic target potential of epigenetic regulation of gene expression, including non-coding RNAs and the covalent modifications of histones and DNA. Indeed, several drugs targeting histone modifications are in clinical use or undergoing clinical trials. Acyl-lysine histone modifications (e.g. methylation, acetylation, and crotonylation) have modulated experimental kidney injury. Most recently, increased histone lysine crotonylation (Kcr) was observed during experimental AKI and could be reproduced in cultured tubular cells exposed to inflammatory stress triggered by the cytokine TWEAK. The degree of kidney histone crotonylation was modulated by crotonate availability and crotonate supplementation protected from nephrotoxic AKI. We now review the functional relevance of histone crotonylation in kidney disease and other pathophysiological contexts, as well as the implications for the development of novel therapeutic approaches. These studies provide insights into the overall role of histone crotonylation in health and disease.
Collapse
Affiliation(s)
- Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Diego Martín-Sánchez
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Maria D Sánchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,IRSIN, Madrid, Spain
| |
Collapse
|
15
|
Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, de Caestecker MP. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am J Physiol Renal Physiol 2019; 317:F1383-F1397. [PMID: 31509009 DOI: 10.1152/ajprenal.00366.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.
Collapse
Affiliation(s)
- Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|