1
|
Wang H, Jiang Y, Zhu M, Li H, Chen H, Wang H, Zhang S, Guo Q, Hui H. LW-213, a derivative of wogonin, triggers reticulophagy-mediated cell death in NSCLC via lysosomal damage combined with NPC1 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155958. [PMID: 39241385 DOI: 10.1016/j.phymed.2024.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Maintaining intracellular equilibrium is essential for the viability of tumor cells, which tend to be particularly vulnerable to environmental stressors. Consequently, targeting the disruption of this homeostasis offers a promising approach for oncological treatments. LW-213, a novel derivative of wogonin, effectively induces apoptosis in cancer cells by initiating endoplasmic reticulum (ER) stress, although the precise molecular pathways involved remain intricate and multifaceted. PURPOSE This research aimed to explore how LW-213 prompts apoptosis in non-small cell lung cancer (NSCLC) cells and to clarify the detailed mechanisms that govern this process. METHODS Various NSCLC cell lines were utilized to delineate the apoptotic effects induced by LW-213. Advanced methodologies, including RNA sequencing (RNA-seq), Western blotting (WB), immunofluorescence (IF), immunoprecipitation (IP), flow cytometry (Fc), real-time quantitative polymerase chain reaction (RT-qPCR), and electron microscopy, were employed to investigate the underlying molecular interactions. The efficacy and mechanistic action of LW-213 were also assessed in a xenograft model using nude mice. RESULTS We demonstrated that LW-213, a small molecule cationic amphiphilic drug (CAD), inhibited Niemann-Pick C1 (NPC1) function and induced lysosomal membrane damage, thereby activating the phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. This activation promoted cholesterol transport from the ER to the lysosome, perpetuating a cholesterol-deficient state in the ER, including massive exocytosis of Ca2+ and activation of FAM134B-mediated reticulophagy. Ultimately, excessive reticulophagy induced lethal ER stress. CONCLUSIONS In summary, our study elucidates an organelle domino reaction initiated by lysosome damage and a series of self-rescue mechanisms that eventually lead to irreversible lethal effects, revealing a potential drug intervention strategy.
Collapse
Affiliation(s)
- Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yuexin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Haidi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Shuai Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 21009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Shi J, Wang Y, Liang T, Wang X, Xie J, Huang R, Xu X, Wei X. DMDD, isolated from Averrhoa carambola L., ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-autophagy crosstalk. Chin Med 2024; 19:125. [PMID: 39267098 PMCID: PMC11391757 DOI: 10.1186/s13020-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Studies have shown that Averrhoa carambola L. possesses therapeutic potential for diabetes and related complications. However, the specific beneficial effects and molecular mechanisms of 2-dodecyl-6-meth-oxycyclohexa-2,5-diene-1,4-dione (DMDD) isolated from Averrhoa carambola L. on diabetic nephropathy (DN) require further investigation. METHODS 80 C57BL/6 J male mice were subjected to a 1-week adaptive feeding, followed by a high-fat diet and intraperitoneal injection of 100 mg/kg streptozotocin (STZ) to construct an in vivo DN model. Additionally, human renal proximal tubular epithelial cells (HK-2) induced by high glucose (HG) were used as an in vitro DN model. The expression levels of epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS), and autophagy-related proteins in renal tubular cells were detected by Western Blot, flow cytometry, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) staining. Transcriptome analysis revealed was conducted to elucidate the specific mechanism of by which DMDD mitigates DN by inhibiting ERS and autophagy. HK-2 cells were transfected with IRE1α overexpression lentivirus to reveal the role of IRE1α overexpression in HG-induced HK-2. RESULTS The experimental data showed that DMDD significantly reduced blood glucose levels and improved renal pathological alterations in DN mice. Additionally, DMDD inhibited the calcium (Ca2+) pathway, manifested by decreased autophagosome formation and downregulation of LC3II/I, Beclin-1, and ATG5 expression. Moreover, in HG-induced HK-2 cells, DMDD suppressed the overexpression of GRP78, CHOP, LC3II/I, Beclin1, and ATG5. Notably, IRE1α overexpression significantly increased autophagy incidence; however, DMDD treatment subsequently reduced the expression of LC3II/I, Beclin1, and ATG5. CONCLUSION DMDD effectively inhibits excessive ERS and autophagy, thereby reducing renal cell apoptosis through the IRE1α pathway and Ca 2+ pathway.
Collapse
Affiliation(s)
- Jianmei Shi
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China
| | - Yuxiang Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Liang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University), Nanning, 530021, Guangxi, China
| | - Xixi Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China
| | - Jingxiao Xie
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaohui Xu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| | - Xiaojie Wei
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Je S, Choi BY, Kim E, Kim K, Lee Y, Yamaoka Y. Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2024; 65:916-927. [PMID: 37864404 DOI: 10.1093/pcp/pcad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Bae Young Choi
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eunbi Kim
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyungyoon Kim
- Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
5
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Ren L, Cui H, Wang Y, Ju F, Cai Y, Gang X, Wang G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed Pharmacother 2023; 161:114465. [PMID: 36870280 DOI: 10.1016/j.biopha.2023.114465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lipotoxicity is the dysregulation of the lipid environment and/or intracellular composition that leads to accumulation of harmful lipids and ultimately to organelle dysfunction, abnormal activation of intracellular signaling pathways, chronic inflammation and cell death. It plays an important role in the development of acute kidney injury and chronic kidney disease, including diabetic nephropathy, obesity-related glomerulopathy, age-related kidney disease, polycystic kidney disease, and the like. However, the mechanisms of lipid overload and kidney injury remain poorly understood. Herein, we discuss two pivotal aspects of lipotoxic kidney injury. First, we analyzed the mechanism of lipid accumulation in the kidney. Accumulating data indicate that the mechanisms of lipid overload in different kidney diseases are inconsistent. Second, we summarize the multiple mechanisms by which lipotoxic species affect the kidney cell behavior, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, dysregulated autophagy, and inflammation, highlighting the central role of oxidative stress. Blocking the molecular pathways of lipid accumulation in the kidney and the damage of the kidney by lipid overload may be potential therapeutic targets for kidney disease, and antioxidant drugs may play a pivotal role in the treatment of kidney disease in the future.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Ju
- Department of Orthopedics, Yuci District People's Hospital, Yuci 030600, Shanxi, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
7
|
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
8
|
Pan D, Yang Y, Nong A, Tang Z, Li QX. GRP78 Activity Moderation as a Therapeutic Treatment against Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15965. [PMID: 36498048 PMCID: PMC9739731 DOI: 10.3390/ijerph192315965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Glucose-regulated protein 78 (GRP78), a molecular chaperone, is overexpressed in patients suffering from obesity, fatty liver, hyperlipidemia and diabetes. GRP78, therefore, can be not only a biomarker to predict the progression and prognosis of obesity and metabolic diseases but also a potential therapeutic target for anti-obesity treatment. In this paper, GRP78 inhibitors targeting its ATPase domain have been reviewed. Small molecules and proteins that directly bind GRP78 have been described. Putative mechanisms of GRP78 in regulating lipid metabolism were also summarized so as to investigate the role of GRP78 in obesity and other related diseases and provide a theoretical basis for the development and design of anti-obesity drugs targeting GRP78.
Collapse
Affiliation(s)
- Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunzhu Yang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Aihua Nong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenzhou Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
9
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
10
|
Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Klotho in kidney diseases: A crosstalk between the renin-angiotensin system and endoplasmic reticulum stress. Nephrol Dial Transplant 2021; 38:819-825. [PMID: 34850136 DOI: 10.1093/ndt/gfab340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/15/2022] Open
Abstract
Klotho is a transmembrane anti-ageing protein that exists in three forms, i.e., α-Klotho, β-Klotho, and γ-Klotho with distinct organ-specific expression and functions in the body. Here we focus on α-Klotho (mentioned as 'Klotho' only), abundantly expressed by the distal and proximal convoluted tubules of the kidney. Significant decline in systemic and renal Klotho level is a new hallmark for kidney disease progression. Emerging research portrays Klotho as a promising diagnostic as well as a therapeutic target for diabetic and non-diabetic kidney disease. Even so, the underlying mechanisms of Klotho regulation and the strategies to restore its systemic as well as the renal level are still lacking. Angiotensin-converting enzyme inhibitors (ACEi) and/or angiotensin receptor blockers (ARBs) are the current standard of care for kidney diseases where the molecular mechanisms for their nephroprotective action are still ambiguous. Moreover, endoplasmic reticulum stress (ER stress) also plays a crucial role in kidney disease progression. Few studies have claimed that RAAS has a direct relation with ER stress generation and vice versa in kidney disease. Interestingly, RAAS and ER stress modulation is associated with Klotho regulation in kidney disease. Here we focus on how the RAAS and ER stress connects with Klotho regulation in kidney disease. We also discuss Klotho and ER stress in an alliance with the concept of hemodynamic and metabolic overload in kidney disease. In addition, we highlight novel approaches to implement Klotho as a therapeutic target via RAAS and ER stress modulation for the treatment of diabetic and non-diabetic kidney disease.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
11
|
Zhang Y, Ge L, Song G, Zhang R, Li S, Shi H, Zhang H, Li Y, Pan J, Wang L, Han J. Azithromycin alleviates the severity of rheumatoid arthritis by targeting the UPR component GRP78. Br J Pharmacol 2021; 179:1201-1219. [PMID: 34664264 DOI: 10.1111/bph.15714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Azithromycin (AZM) is a macrolide antibiotic with well-described anti-inflammatory properties. This study aimed to substantiate the treatment potential of AZM in rheumatoid arthritis (RA). EXPERIMENTAL APPROACH Gene expression profiles were collected by RNA sequencing, and the effects of AZM were assessed in functional assays. In vitro and in vivo assays were performed to examine the effects of AZM-mediated blockade of glucose-regulated protein 78 (GRP78). Assays to define the anti-inflammatory activity of AZM using fibroblast-like synoviocytes (FLSs) from RA patients and collagen-induced arthritis (CIA) in DBA/1 mice were performed. Identification and characterization of the binding of AZM to GRP78 was performed using drug affinity responsive target stability assays, proteomics and cellular thermal shift assays. AZM-mediated inhibition of GRP78 and the dependence of the antiarthritic activity of AZM on GRP78 were assessed. KEY RESULTS AZM reduced proinflammatory factor production, cell migration, invasion and chemoattraction and enhanced apoptosis, thereby reducing the deleterious inflammatory response of RA FLSs in vitro. AZM ameliorated the severity of CIA lesions as efficiently as the anti-tumour necrosis factor (anti-TNF) biological agent etanercept (ETC). Transcriptional analyses suggested that AZM treatment impairs signalling cascades associated with cholesterol and lipid biosynthetic processes. GRP78 was identified as a novel target of AZM. AZM-mediated activation of the unfolded protein response (UPR) via the inhibition of GRP78 activity is required not only for inducing the expression of C/EBP-homologous protein (ChOP) but also for the activating sterol-regulatory element binding protein (SREBP) and its targeted genes involved in cholesterol and lipid biosynthetic processes. Furthermore, deletion of GRP78 abolished the antiarthritic activity of AZM. CONCLUSION AND IMPLICATIONS These findings confirmed that AZM is a therapeutic drug for RA treatment.
Collapse
Affiliation(s)
- Yongli Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ruojia Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Haojun Shi
- The second clinical medical college, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021; 9:biomedicines9101405. [PMID: 34680522 PMCID: PMC8533451 DOI: 10.3390/biomedicines9101405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and is characterized by exaggerated lipid accumulation, inflammation and even fibrosis. It has been shown that NAFLD increases the risk of other chronic diseases, particularly chronic kidney disease (CKD). Lipid in excess could lead to liver and kidney lesions and even end-stage disease through diverse pathways. Dysregulation of lipid uptake, oxidation or de novo lipogenesis contributes to the toxic effects of ectopic lipids which promotes the development and progression of NAFLD and CKD via triggering oxidative stress, apoptosis, pro-inflammatory and profibrotic responses. Importantly, dyslipidemia and release of pro-inflammatory cytokines caused by NAFLD (specifically, nonalcoholic steatohepatitis) are considered to play important roles in the pathological progression of CKD. Growing evidence of similarities between the pathogenic mechanisms of NAFLD and those of CKD has attracted attention and urged researchers to discover their common therapeutic targets. Here, we summarize the current understanding of molecular aberrations underlying the lipid metabolism of NAFLD and CKD and clinical evidence that suggests the relevance of these pathways in humans. This review also highlights the orchestrated inter-organ cross-talk in lipid disorders, as well as therapeutic options and opportunities to counteract NAFLD and CKD.
Collapse
|
13
|
Wang S, Yi P, Wang N, Song M, Li W, Zheng Y. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro. PLoS One 2021; 16:e0252761. [PMID: 34097717 PMCID: PMC8183992 DOI: 10.1371/journal.pone.0252761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/22/2021] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators in diabetic nephropathy. In this study, we investigated the potential role of lncRNA TUG1 in regulating endoplasmic reticulum stress (ERS)-mediated apoptosis in high glucose induced renal tubular epithelial cells. Human renal tubular epithelial cell line HK-2 was challenged with high glucose following transfection with lncRNA TUG1, miR-29c-3p mimics or inhibitor expression plasmid, either alone or in combination, for different experimental purposes. Potential binding effects between TUG1 and miR-29c-3p, as well as between miR-29c-3p and SIRT1 were verified. High glucose induced apoptosis and ERS in HK-2 cells, and significantly decreased TUG1 expression. Overexpressed TUG1 could prevent high glucose-induced apoptosis and alleviated ERS via negatively regulating miR-29c-3p. In contrast, miR-29c-3p increased HK-2 cells apoptosis and ERS upon high glucose-challenge. SIRT1 was a direct target gene of miR-29c-3p in HK-2 cells, which participated in the effects of miR-29c-3p on HK-2 cells. Mechanistically, TUG1 suppressed the expression of miR-29c-3p, thus counteracting its function in downregulating the level of SIRT1. TUG1 regulates miR-29c-3p/SIRT1 and subsequent ERS to relieve high glucose induced renal epithelial cells injury, and suggests a potential role for TUG1 as a promising diagnostic marker of diabetic nephropathy.
Collapse
Affiliation(s)
- Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Pengfei Yi
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Na Wang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Min Song
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Wenhui Li
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Yingying Zheng
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
- * E-mail:
| |
Collapse
|
14
|
Dong G, Huang X, Wu L, Jiang S, Tan Q, Chen S. SREBF2 triggers endoplasmic reticulum stress and Bax dysregulation to promote lipopolysaccharide-induced endothelial cell injury. Cell Biol Toxicol 2021; 38:185-201. [PMID: 33677747 DOI: 10.1007/s10565-021-09593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
An increased lipopolysaccharide (LPS) level in patients with cirrhosis induced the dysregulation of sterol regulatory element-binding transcription factor 2 (SREBF2), which participated in the modulation of tumor inflammatory microenvironment. However, the role of SREBF2 in the LPS-induced injury of portal vein endothelium was scarcely reported. This study aimed to investigate the effects of SREBF2 on the LPS-induced injury to endothelial cells (ECs) in vitro and in vivo and explore the underlying mechanism. In this study, we found that LPS increased SREBF2 expression through activating the TLR4/JNK/c-Jun pathway and suppressed UBE2I-mediated SREBF2 sumoylation to enhance its transcriptional activity. The dysregulation of SREBF2 induced ER stress by increasing the intracellular cholesterol level and facilitated Bax expression to cause additional damage to LPS-induced ECs. As a potential intervention, miR590-3p negatively regulated SREBF2 expression and upregulated UBE2I expression by targeting TLR4, thus alleviating LPS-induced injury. These results suggest that LPS-induced SREBF2 triggered ER stress and promoted Bax expression to injure ECs, which was reversed by miR590-3p. The mechanisms of SREBF2 mediated LPS-induced endothelial injury of portal vein, which might be the therapeutic target for PVT development in cirrhosis patients. 1. LPS promoted SREBF2 expression by activating the TLR4/JNK/c-Jun pathway and suppressed UBE2I-mediated SREBF2 sumoylation to upregulate SREBF2 transcriptional activity 2. SREBF2-mediated ER stress and Bax expression involved in LPS-induced EC injury 3. miR590-3p decreased SREBF2 expression by targeting TLR4 and mitigated LPS-induced EC injury.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ling Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Siyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qintian Tan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Evidence-Based Medicine, Fudan University, Shanghai, 200032, People's Republic of China. .,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
15
|
Cohen A, Ioannidis K, Ehrlich A, Regenbaum S, Cohen M, Ayyash M, Tikva SS, Nahmias Y. Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci Transl Med 2021; 13:eabd6299. [PMID: 33627489 PMCID: PMC8897043 DOI: 10.1126/scitranslmed.abd6299] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
The kidney plays a critical role in fluid homeostasis, glucose control, and drug excretion. Loss of kidney function due to drug-induced nephrotoxicity affects over 20% of the adult population. The kidney proximal tubule is a complex vascularized structure that is particularly vulnerable to drug-induced nephrotoxicity. Here, we introduce a model of vascularized human kidney spheroids with integrated tissue-embedded microsensors for oxygen, glucose, lactate, and glutamine, providing real-time assessment of cellular metabolism. Our model shows that both the immunosuppressive drug cyclosporine and the anticancer drug cisplatin disrupt proximal tubule polarity at subtoxic concentrations, leading to glucose accumulation and lipotoxicity. Impeding glucose reabsorption using glucose transport inhibitors blocked cyclosporine and cisplatin toxicity by 1000- to 3-fold, respectively. Retrospective study of 247 patients who were diagnosed with kidney damage receiving cyclosporine or cisplatin in combination with the sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin showed significant (P < 0.001) improvement of kidney function, as well as reduction in creatinine and uric acid, markers of kidney damage. These results demonstrate the potential of sensor-integrated kidney-on-chip platforms to elucidate mechanisms of action and rapidly reformulate effective therapeutic solutions, increasing drug safety and reducing the cost of clinical and commercial failures.
Collapse
Affiliation(s)
- Aaron Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shaun Regenbaum
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Muneef Ayyash
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Muciño-Bermejo MJ. Mechanisms of kidney dysfunction in the cirrhotic patient: Non-hepatorenal acute-on-chronic kidney damage considerations. Ann Hepatol 2021; 19:145-152. [PMID: 31594758 DOI: 10.1016/j.aohep.2019.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
Renal dysfunction is a common finding in cirrhotic patients and has a great physiologic, and therefore, prognostic relevance. The combination of liver disease and renal dysfunction can occur as a result of systemic conditions that affect both the liver and the kidney, although primary disorders of the liver complicated by renal dysfunction are much more common. As most of the renal dysfunction scenarios in cirrhotic patients correspond to either prerenal azotemia or hepatorenal syndrome (HRS), physicians tend to conceive renal dysfunction in cirrhotic patients as mainly HRS. However, there are many systemic conditions that may cause both a "baseline" chronic kidney damage and a superimposed kidney dysfunction when this systemic condition worsens. The main aim of this article is to review some of the most important non prerenal non-HRS considerations regarding acute on chronic kidney dysfunction in cirrhotic patients, including renal manifestation of related to non-alcoholic steatohepatitis (NASH) viral hepatitis, the effect of cardiorenal syndrome in cirrhotics and corticosteroid-deficiency associated renal dysfunction.
Collapse
Affiliation(s)
- María-Jimena Muciño-Bermejo
- Medica Sur Clinical Foundation, Mexico City, Mexico; The American British Cowdray Medical Center, Mexico City, Mexico; International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.
| |
Collapse
|
17
|
Figueroa-Juárez E, Noriega LG, Pérez-Monter C, Alemán G, Hernández-Pando R, Correa-Rotter R, Ramírez V, Tovar AR, Torre-Villalvazo I, Tovar-Palacio C. The Role of the Unfolded Protein Response on Renal Lipogenesis in C57BL/6 Mice. Biomolecules 2021; 11:73. [PMID: 33430288 PMCID: PMC7825661 DOI: 10.3390/biom11010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022] Open
Abstract
Renal injury observed in several pathologies has been associated with lipid accumulation in the kidney. While it has been suggested that the accumulation of renal lipids depends on free fatty acids released from adipose tissue, it is not known whether in situ renal lipogenesis due to endoplasmic reticulum (ER) stress contributes to kidney injury. The aim of the present study was to elucidate the role of pharmacological ER stress in renal structure and function and its effect on renal lipid metabolism of C57BL/6 mice. ER stress increased serum creatinine and induced kidney structural abnormalities. Tunicamycin-administered mice developed hyperinsulinemia, augmented lipolysis and increased circulating leptin and adiponectin. Renal unfolded protein response (UPR) gene expression markers, the lipogenic transcription factor SREBP1 and the phosphorylation of eIF2α increased 8 h after tunicamycin administration. At 24 h, an increase in BiP protein content was accompanied by a reduction in p-eIF2α and increased SREBP-1 and FASn protein content, in addition to a significant increase in triglyceride content and a reduction in AMPK. Thus, ER stress induces in situ lipid synthesis, leading to renal lipid accumulation and functional alterations. Future pharmacological and/or dietary strategies must target renal ER stress to prevent kidney damage and the progression of metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth Figueroa-Juárez
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 1TN, UK;
- Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico;
| | - Lilia G. Noriega
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico; (L.G.N.); (G.A.); (A.R.T.)
| | - Carlos Pérez-Monter
- Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico;
| | - Gabriela Alemán
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico; (L.G.N.); (G.A.); (A.R.T.)
| | - Rogelio Hernández-Pando
- Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico;
| | - Ricardo Correa-Rotter
- Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico;
| | - Victoria Ramírez
- Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico;
| | - Armando R. Tovar
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico; (L.G.N.); (G.A.); (A.R.T.)
| | - Iván Torre-Villalvazo
- Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico; (L.G.N.); (G.A.); (A.R.T.)
| | - Claudia Tovar-Palacio
- División de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador CDMX 14080, Mexico
| |
Collapse
|
18
|
Charles KN, Shackelford JE, Faust PL, Fliesler SJ, Stangl H, Kovacs WJ. Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Front Cell Dev Biol 2020; 8:560266. [PMID: 33240873 PMCID: PMC7677142 DOI: 10.3389/fcell.2020.560266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cholesterol biosynthesis is a multi-step process involving several subcellular compartments, including peroxisomes. Cells adjust their sterol content by both transcriptional and post-transcriptional feedback regulation, for which sterol regulatory element-binding proteins (SREBPs) are essential; such homeostasis is dysregulated in peroxisome-deficient Pex2 knockout mice. Here, we compared the regulation of cholesterol biosynthesis in Chinese hamster ovary (CHO-K1) cells and in three isogenic peroxisome-deficient CHO cell lines harboring Pex2 gene mutations. Peroxisome deficiency activated expression of cholesterogenic genes, however, cholesterol levels were unchanged. 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein levels were increased in mutant cells, whereas HMGCR activity was significantly decreased, resulting in reduced cholesterol synthesis. U18666A, an inhibitor of lysosomal cholesterol export, induced cholesterol biosynthetic enzymes; yet, cholesterol synthesis was still reduced. Interestingly, peroxisome deficiency promoted ER-to-Golgi SREBP cleavage-activating protein (SCAP) trafficking even when cells were cholesterol-loaded. Restoration of functional peroxisomes normalized regulation of cholesterol synthesis and SCAP trafficking. These results highlight the importance of functional peroxisomes for maintaining cholesterol homeostasis and efficient cholesterol synthesis.
Collapse
Affiliation(s)
- Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | | | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Steven J. Fliesler
- Departments of Ophthalmology and Biochemistry and Gradate Program in Neuroscience, University at Buffalo-The State University of New York (SUNY), Buffalo, NY, United States
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Xie S, Su J, Lu A, Lai Y, Mo S, Pu M, Yang T. Soluble (pro)renin receptor promotes the fibrotic response in renal proximal tubule epithelial cells in vitro via the Akt/β-catenin/Snail signaling pathway. Am J Physiol Renal Physiol 2020; 319:F941-F953. [PMID: 32865015 DOI: 10.1152/ajprenal.00197.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tubulointerstitial fibrosis has been regarded as a critical event in the pathogenesis of chronic kidney disease. The soluble form of (pro)renin receptor (sPRR), generated by site-1 protease (S1P) cleavage of full-length PRR, can be detected in biological fluid and elevated under certain pathological conditions. The present study was designed to evaluate the potential role of sPRR in the regulation of the fibrotic response in a cultured human renal proximal tubular cell line (HK-2 cells) in the setting of transforming growth factor (TGF)-β or sPRR-His treatment. The TGF-β-induced fibrotic response of HK-2 cells was indicated by upregulation of fibronectin (FN) expression; meanwhile, TGF-β could also induce the generation of sPRR, due to enhanced cleavage of full-length PRR. To explore the role of sPRR in the fibrotic response of HK-2 cells, we blocked the production of sPRR with a the S1P inhibitor PF429242 and found that PF429242 remarkably suppressed TGF-β-induced sPRR generation and FN expression in HK-2 cells. Administration of sPRR-His restored the PF429242-attenuated FN expression in HK-2 cells, indicating that sPRR could promote the TGF-β-induced fibrotic response. Furthermore, sPRR-His alone also increased the abundance of FN in HK-2 cells. These data suggested that sPRR was sufficient and necessary for the TGF-β-induced fibrotic response of HK-2 cells. Mechanistically, sPRR activated the AKT and β-catenin pathway in HK-2 cells, and blockade of the AKT or β-catenin pathway significantly abrogated sPRR-induced FN and Snail expression. Taking together, sPRR promoted the fibrotic response of HK-2 cells by activating Akt/β-catenin/Snail signaling, and it may serve as a potential therapeutic target in renal fibrosis.
Collapse
Affiliation(s)
- Shiying Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Lai
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Su B, Han H, Ji C, Hu W, Yao J, Yang J, Fan Y, Li J. MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA. Am J Physiol Renal Physiol 2020; 319:F202-F214. [PMID: 32628541 DOI: 10.1152/ajprenal.00132.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kidney stone disease is a crystal concretion formed in the kidneys that has been associated with an increased risk of chronic kidney disease. MicroRNAs are functionally involved in kidney injury. Data mining using a microRNA array database suggested that miR-21 may be associated with calcium oxalate monohydrate (COM)-induced renal tubular cell injury. Here, we confirmed that COM exposure significantly upregulated miR-21 expression, inhibited proliferation, promoted apoptosis, and caused lipid accumulation in an immortalized renal tubular cell line (HK-2). Moreover, inhibition of miR-21 enhanced proliferation and decreased apoptosis and lipid accumulation in HK-2 cells upon COM exposure. In a glyoxylate-induced mouse model of renal calcium oxalate deposition, increased miR-21 expression, lipid accumulation, and kidney injury were also observed. In silico analysis and subsequent experimental validation confirmed the peroxisome proliferator-activated receptor (PPAR)-α gene (PPARA) a key gene in fatty acid oxidation, as a direct miR-21 target. Suppression of miR-21 by miRNA antagomiR or activation of PPAR-α by its selective agonist fenofibrate significantly reduced renal lipid accumulation and protected against renal injury in vivo. In addition, miR-21 was significantly increased in urine samples from patients with calcium oxalate renal stones compared with healthy volunteers. In situ hybridization of biopsy samples from patients with nephrocalcinosis revealed that miR-21 was also significantly upregulated compared with normal kidney tissues from patients with renal cell carcinoma who underwent radical nephrectomy. These results suggested that miR-21 promoted calcium oxalate-induced renal tubular cell injury by targeting PPARA, indicating that miR-21 could be a potential therapeutic target and biomarker for nephrolithiasis.
Collapse
Affiliation(s)
- Boxing Su
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chaoyue Ji
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Weiguo Hu
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingjing Yao
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianghui Yang
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfei Fan
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianxing Li
- Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wei S, Lv Y, Wu R. Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol 2020; 236:931-945. [PMID: 32583428 DOI: 10.1002/jcp.29903] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Ischemia reperfusion (I/R)-induced acute kidney injury (AKI) is a common and serious condition. Irisin, an exercise-induced hormone, improves mitochondrial function and reduces reactive oxygen species (ROS) production. Glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis and its inactivation aggravates renal I/R injury by inducing ROS production. However, the effect of irisin on GPX4 and I/R-induced AKI is still unknown. To study this, male adult mice were subjected to renal I/R by occluding bilateral renal hilum for 30 min, which was followed by 24 hr reperfusion. Our results showed serum irisin levels were decreased in renal I/R mice. Irisin (250 μg/kg) treatment alleviated renal injury, downregulated inflammatory response, improved mitochondrial function, and reduced ER stress and oxidative stress after renal I/R, which were associated with upregulation of GPX4. Treated with RSL3 (a GPX4 inhibitor) abolished irisin's protective effect. Thus, irisin attenuates I/R-induced AKI through upregulating GPX4.
Collapse
Affiliation(s)
- Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Peng CC, Chen CR, Chen CY, Lin YC, Chen KC, Peng RY. Nifedipine Upregulates ATF6-α, Caspases -12, -3, and -7 Implicating Lipotoxicity-Associated Renal ER Stress. Int J Mol Sci 2020; 21:ijms21093147. [PMID: 32365658 PMCID: PMC7246953 DOI: 10.3390/ijms21093147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023] Open
Abstract
Nifedipine (NF) is reported to have many beneficial effects in antihypertensive therapy. Recently, we found that NF induced lipid accumulation in renal tubular cells. Palmitic acid-induced renal lipotoxicity was found to be partially mediated by endoplasmic reticular (ER) stress, while it can also be elicited by NF in kidney cells; we examined the induction of suspected pathways in both in vitro and in vivo models. NRK52E cells cultured in high-glucose medium were treated with NF (30 µM) for 24–48 h. ER stress-induced lipotoxicity was explored by staining with thioflavin T and Nile red, transmission electron microscopy, terminal uridine nick-end labeling, and Western blotting. ER stress was also investigated in rats with induced chronic kidney disease (CKD) fed NF for four weeks. NF induced the production of unfolded protein aggregates, resulting in ER stress, as evidenced by the upregulation of glucose-regulated protein, 78 kDa (GRP78), activating transcription factor 6α (ATF6α), C/EBP-homologous protein (CHOP), and caspases-12, -3, and -7. In vitro early apoptosis was more predominant than late apoptosis. Most importantly, ATF6α was confirmed to play a unique role in NF-induced ER stress in both models. CKD patients with hypertension should not undergo NF therapy. In cases where it is required, alleviation of ER stress should be considered to avoid further damaging the kidneys.
Collapse
Affiliation(s)
- Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chang-Rong Chen
- International Medical Doctor Program, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Chang-Yu Chen
- Program of Biomedical Sciences, College of Arts and Sciences, California Baptist University, Riverside, CA 92504, USA;
| | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, Zhong-He District, New Taipei City 23561, Taiwan
- Correspondence:
| | - Robert Y. Peng
- Department of Biotechnology, College of Medical and Health Care, Hungkuang University, Shalu District, Taichung 43302, Taiwan;
| |
Collapse
|
23
|
Schley G, Grampp S, Goppelt-Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res 2020; 381:125-140. [PMID: 32189058 PMCID: PMC7306052 DOI: 10.1007/s00441-020-03186-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
The role of the hypoxia-inducible transcription factor (HIF) pathway in renal lipid metabolism is largely unknown. As HIF stabilizing prolyl hydroxylase (PHD) inhibitors are currently investigated in clinical trials for the treatment of renal anemia, we studied the effects of genetic deletion and pharmacological inhibition of PHDs on renal lipid metabolism in transgenic mice and human primary tubular epithelial cells (hPTEC). Tubular cell-specific deletion of HIF prolyl hydroxylase 2 (Phd2) increased the size of Oil Red-stained lipid droplets in mice. In hPTEC, the PHD inhibitors (PHDi) DMOG and ICA augmented lipid accumulation, which was visualized by Oil Red staining and assessed by microscopy and an infrared imaging system. PHDi-induced lipid accumulation required the exogenous availability of fatty acids and was observed in both proximal and distal hPTEC. PHDi treatment was not associated with structural features of cytotoxicity in contrast to treatment with the immunosuppressant cyclosporine A (CsA). PHDi and CsA differentially upregulated the expression of the lipid droplet-associated genes PLIN2, PLIN4 and HILPDA. Both PHDi and CsA activated AMP-activated protein kinase (AMPK) indicating the initiation of a metabolic stress response. However, only CsA triggered endoplasmic reticulum (ER) stress as determined by the increased mRNA expression of multiple ER stress markers but CsA-induced ER stress was not linked to lipid accumulation. Our data raise the possibility that PHD inhibition may protect tubular cells from toxic free fatty acids by trapping them as triacylglycerides in lipid droplets. This mechanism might contribute to the renoprotective effects of PHDi in experimental kidney diseases.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany.
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| |
Collapse
|
24
|
Zhang D, Lin W, Liu Y, Guo H, Wang L, Yang L, Li L, Li D, Tang R. Chronic Microcystin-LR Exposure Induces Abnormal Lipid Metabolism via Endoplasmic Reticulum Stress in Male Zebrafish. Toxins (Basel) 2020; 12:toxins12020107. [PMID: 32046144 PMCID: PMC7076763 DOI: 10.3390/toxins12020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
In order to explore effects of low levels of continuous microcystin-LR (MC-LR) (a cyanotoxin) exposure on hepatic lipid metabolism on the basis of the endoplasmic reticulum stress (ERS) pathway, we exposed adult male zebrafish to MC-LR (0, 1, 5, and 25 μg/L) for 60 days, and hepatic histopathology as well as lipid metabolic parameters were determined with mRNA levels of ERS signal molecules and downstream factors, along with genes associated with lipid metabolism in zebrafish liver. The results revealed that prolonged exposure to MC-LR remarkably altered the levels of hepatic total cholesterol and triglyceride and led to hepatic steatosis, which was also confirmed by hepatic cytoplasmic vacuolization in Hematoxylin/eosin (H&E) stain and lipid droplet accumulation in Oil Red O stain. The severity of hepatic damage and lipidation was increased in a dose-related manner. MC-LR exposure significantly upregulated transcriptional levels of ERS markers including hspa5, mapk8, and chop, indicating the occurrence of ERS in the liver of zebrafish. Concurrently, MC-LR significantly improved mRNA expression of unfolded protein response (UPR) pathway-related genes including atf6, eif2ak3, ern1, and xbp1s, suggesting that all of the three UPR branches were activated by MC-LR. MC-LR also induced significant upregulation of downstream lipid metabolism-related factors and genes including srebf1, srebf2, fatty acid synthase (fasn), acetyl-CoA carboxylase (acaca), stearoyl-CoA desaturase (scd), HMG CoA reductase (hmgcra), and HMG CoA synthase (hmgcs1), and downregulation of genes associated with lipolysis such as triglyceride hydrolase gene (atgl), hormone-sensitive enzyme gene (hsla), and carnitine palmitoyltransferase gene (cpt1aa). Our present results indicated that the cause of hepatic lipid accumulation by MC-LR was mainly by upregulating lipogenic and cholesterol genes but downregulating the expression of lipolytic genes through the induction of srebf1 and srebf2, which were involved in the activation of ERS signal pathways.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Yinjie Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (W.L.); (Y.L.); (H.G.); (L.W.); (L.Y.); (D.L.); (R.T.)
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Shen W, Xu T, Chen D, Tan X. Targeting SREBP1 chemosensitizes colorectal cancer cells to gemcitabine by caspase-7 upregulation. Bioengineered 2019; 10:459-468. [PMID: 31601152 PMCID: PMC6802928 DOI: 10.1080/21655979.2019.1676485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Biomarkers for predicting chemotherapy response are important for treatment of colorectal cancer (CRC) patients.SREBP1is involved in cancer cell chemoresistance, but the biological consequences of this activity in CRC are poorly understood. We set up biochemical and cell biology analyzes to analyze SREBP1 expression and chemoresistance. We found that SREBP1 was overexpressed in chemoresistant CRC samples, and that SREBP1 overexpression was correlated with poorer patient survival. Targeting SREBP1 increased chemosensitivity to gemcitabine (Gem) in CRC cells. Additionally, SREBP1 overexpression increased chemoresistance to Gem in CRC cells. SREBP1 overexpression downregulated caspase-7 and decreased CRC cell sensitivity to Gem. Low SREBP1 expression was correlated with high caspase-7 expression in CRC patient samples. Low caspase-7 expression was correlated with poor patient survival. Our findings indicated that upregulation of caspase-7 caused by downregulation of SREBP1 may be a novel prognostic biomarker, and may represent a new therapeutic target in CRC.
Collapse
Affiliation(s)
- Wenlong Shen
- Department of Anorectal, Qilu Hospital of Shandong University, Qingdao, Shandong, PR China
| | - Ting Xu
- Department of Geratology, The 971th Hospital of PLA, Qingdao, Shandong, China
| | - Dong Chen
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojie Tan
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Farrah TE, Anand A, Gallacher PJ, Kimmitt R, Carter E, Dear JW, Mills NL, Webb DJ, Dhaun N. Endothelin Receptor Antagonism Improves Lipid Profiles and Lowers PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) in Patients With Chronic Kidney Disease. Hypertension 2019; 74:323-330. [PMID: 31177906 PMCID: PMC6635059 DOI: 10.1161/hypertensionaha.119.12919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dyslipidemia is common in chronic kidney disease (CKD). Despite statins, many patients fail to adequately lower lipids and remain at increased risk of cardiovascular disease. Selective ETA (endothelin-A) receptor antagonists reduce cardiovascular disease risk factors. Preclinical data suggest that ETA antagonism has beneficial effects on circulating lipids. We assessed the effects of selective ETA antagonism on circulating lipids and PCSK9 (proprotein convertase subtilisin/kexin type 9) in CKD. This was a secondary analysis of a fully randomized, double-blind, 3-phase crossover study. Twenty-seven subjects with predialysis CKD on optimal cardio- and renoprotective treatment were randomly assigned to receive 6 weeks dosing with placebo, the selective ETA receptor antagonist, sitaxentan, or long-acting nifedipine. We measured circulating lipids and PCSK9 at baseline and then after 3 and 6 weeks. Baseline lipids and PCSK9 did not differ before each study phase. Whereas placebo and nifedipine had no effect on lipids, 6 weeks of ETA antagonism significantly reduced total (-11±1%) and low-density lipoprotein-associated (-20±3%) cholesterol, lipoprotein (a) (-16±2%) and triglycerides (-20±4%); high-density lipoprotein-associated cholesterol increased (+14±2%), P<0.05 versus baseline for all. Additionally, ETA receptor antagonism, but neither placebo nor nifedipine, reduced circulating PCSK9 (-19±2%; P<0.001 versus baseline; P<0.05 versus nifedipine and placebo). These effects were independent of statin use and changes in blood pressure or proteinuria. Selective ETA antagonism improves lipid profiles in optimally-managed patients with CKD, effects that may occur through a reduction in circulating PCSK9. ETA receptor antagonism offers a potentially novel strategy to reduce cardiovascular disease risk in CKD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT00810732.
Collapse
Affiliation(s)
- Tariq E. Farrah
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.),Department of Renal Medicine, Royal Infirmary of Edinburgh (T.E.F., P.J.G., N.D.)
| | - Atul Anand
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - Peter J. Gallacher
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.),Department of Renal Medicine, Royal Infirmary of Edinburgh (T.E.F., P.J.G., N.D.)
| | - Robert Kimmitt
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - Edwin Carter
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - James W. Dear
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - Nicholas L. Mills
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - David J. Webb
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.)
| | - Neeraj Dhaun
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute (T.E.F., A.A., P.J.G., R.K., E.C., J.W.D., N.L.M., D.J.W., N.D.),Department of Renal Medicine, Royal Infirmary of Edinburgh (T.E.F., P.J.G., N.D.)
| |
Collapse
|
27
|
Wang S, Kwon SH, Su Y, Dong Z. Stress granules are formed in renal proximal tubular cells during metabolic stress and ischemic injury for cell survival. Am J Physiol Renal Physiol 2019; 317:F116-F123. [PMID: 31091124 DOI: 10.1152/ajprenal.00139.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stress granules (SGs) are a type of cytoplasmic structures formed in eukaryotic cells upon cell stress, which mainly contain RNA-binding proteins and RNAs. The formation of SGs is generally regarded as a mechanism for cells to survive a harsh insult. However, little is known about SG formation and function in kidneys. To address this, we applied different kinds of stressors to cultured proximal tubular cells as well as a short period of ischemia-reperfusion to mouse kidneys. It was found that glycolytic inhibitors such as 2-deoxy-d-glucose and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one induced SG formation within 30 min in these cells. Similarly, SGs were induced by inhibitors of mitochondrial respiration such as sodium azide and CCCP. Renal ischemia-reperfusion induced SG formation in the cells of proximal tubules. To test the role of SGs, we stably knocked down G3bp1, a SG core protein, in renal tubular cells by shRNA viral transduction. As expected, knockdown of G3bp1 largely disrupted the assembly of SGs. After azide or cisplatin treatment, more dead cells were found in knockdown cells compared with controls, accompanied by increases in cleaved/active caspase-3. Reintroduction of exogenous G3bp1 into knockdown cells could rescue the cell death phenotype. Taken together, our data provide the first evidence of SG formation in renal tubular cells during metabolic stress and acute kidney injury. SGs are formed to protect proximal tubular cells under these conditions. Modulation of SG biogenesis may provide a novel approach to lessen the severity of renal diseases.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
28
|
Abstract
The molecular mechanisms in acute tubular injury (ATI) are complex and enigmatic. Moreover, we currently lack validated tissue injury markers that can be integrated into the kidney biopsy analysis to guide nephrologists in their patient's management of AKI. Although recognizing the ATI lesion by light microscopy is fairly straightforward, the staging of tubular lesions in the context of clinical time course and etiologic mechanism currently is not adapted to the renal pathology practice. To the clinician, the exact time point when an ischemic or toxic injury has occurred often is not known and cannot be discerned from the review of the biopsy sample. Moreover, the assessment of the different types of organized necrosis as the underlying cell death mechanism, which can be targeted using specific inhibitors, has not yet reached clinical practice. The renal pathology laboratory is uniquely qualified to assess the time course and etiology of ATI using established analytic techniques, such as immunohistochemistry and electron microscopy. Recent advances in the understanding of pathophysiological mechanisms of ATI and the important role that certain types of tubular cell organelles play in different stages of the ATI lesions may allow differentiation of early versus late ATI. Furthermore, the determination of respective cell injury pathways may help to differentiate ischemic versus toxic etiology in a reliable fashion. In the future, such a kidney biopsy-based classification system of ATI could guide the nephrologist's management of patients in regard to treatment modality and drug choice.
Collapse
Affiliation(s)
- Gilbert W Moeckel
- Renal Pathology and Electron Microscopy Laboratory, Department of Pathology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
29
|
Jao TM, Nangaku M, Wu CH, Sugahara M, Saito H, Maekawa H, Ishimoto Y, Aoe M, Inoue T, Tanaka T, Staels B, Mori K, Inagi R. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int 2019; 95:577-589. [PMID: 30639234 DOI: 10.1016/j.kint.2018.09.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
Tubulointerstitial fibrosis is a strong predictor of progression in patients with chronic kidney disease, and is often accompanied by lipid accumulation in renal tubules. However, the molecular mechanisms modulating the relationship between lipotoxicity and tubulointerstitial fibrosis remain obscure. ATF6α, a transcription factor of the unfolded protein response, is reported to be an upstream regulator of fatty acid metabolism. Owing to their high energy demand, proximal tubular cells (PTCs) use fatty acids as their main energy source. We therefore hypothesized that ATF6α regulates PTC fatty acid metabolism, contributing to lipotoxicity-induced tubulointerstitial fibrosis. Overexpression of activated ATF6α transcriptionally downregulated peroxisome proliferator-activated receptor-α (PPARα), the master regulator of lipid metabolism, leading to reduced activity of fatty acid β-oxidation and cytosolic accumulation of lipid droplets in a human PTC line (HK-2). ATF6α-induced lipid accumulation caused mitochondrial dysfunction, enhanced apoptosis, and increased expression of connective tissue growth factor (CTGF), as well as reduced cell viability. Atf6α-/- mice had sustained expression of PPARα and less tubular lipid accumulation following unilateral ischemia-reperfusion injury (uIRI), resulting in the amelioration of apoptosis; reduced expression of CTGF, α-smooth muscle actin, and collagen I; and less tubulointerstitial fibrosis. Administration of fenofibrate, a PPARα agonist, reduced lipid accumulation and tubulointerstitial fibrosis in the uIRI model. Taken together, these findings suggest that ATF6α deranges fatty acid metabolism in PTCs, which leads to lipotoxicity-mediated apoptosis and CTGF upregulation, both of which promote tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mari Aoe
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Bart Staels
- Evaluation et Gestion Informatique de la Diversité Génétique, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1011, Lille, France
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
30
|
Qiu M, Li S, Jin L, Feng P, Kong Y, Zhao X, Lin Y, Xu Y, Li C, Wang W. Combination of Chymostatin and Aliskiren attenuates ER stress induced by lipid overload in kidney tubular cells. Lipids Health Dis 2018; 17:183. [PMID: 30064425 PMCID: PMC6069859 DOI: 10.1186/s12944-018-0818-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
Background Lipotoxicity plays an important role in the pathogenesis of kidney injury. Our previous study demonstrated that activation of local renin-angiotensin system (RAS) was involved in saturated free fatty acids palmitic acid (PA)-induced tubular cell injuries. The current study aims to investigate whether suppression of RAS by combination of direct renin inhibitor aliskiren and noncanonical RAS pathway chymase inhibitor chymostatin attenuates PA or cholesterol induced-endoplasmic reticulum stress (ER stress) and apopotosis in cultured human proximal tubular HK2 cells. Methods HK2 cells were treated with saturated fatty acid PA (0.6 mM) for 24 h or cholesterol (10 μg/ml) for 6d with or without chymostatin and/or aliskiren. Expressions of the ER stress associated proteins and apoptosis markers were detected by western blotting. The mRNA levels of RAS components were measured by real-time qPCR. Results Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress, as reflected by increased BiP, IRE1α, phosphorylated-eIF2α and ATF4 as well as proapoptotic transcription factor CHOP. The ratio of Bax/Bcl-2 and cleaved caspase-3, two markers of apoptosis were upregulated by PA or cholesterol treatment. PA treatment was also associated with increased levels of angiotensinogen and angiotensin type 1 receptor (AT1R) mRNA expression. Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress and apoptosis. The protective effect of two inhibitors was also observed in primary cultured cortical tubular cells treated with PA. In contrast, chymostatin and/or aliskiren failed to prevent ER stress induced by tunicamycin. Conclusions These results suggested that combination treatment of chymostatin and aliskiren attenuates lipid-induced renal tubular cell injury, likely through suppressing activation of intracellular RAS. Electronic supplementary material The online version of this article (10.1186/s12944-018-0818-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lizi Jin
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunyun Xu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Lebeau P, Platko K, Al-Hashimi AA, Byun JH, Lhoták Š, Holzapfel N, Gyulay G, Igdoura SA, Cool DR, Trigatti B, Seidah NG, Austin RC. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem 2018; 293:7329-7343. [PMID: 29593095 DOI: 10.1074/jbc.ra117.001049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.
Collapse
Affiliation(s)
- Paul Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Suleiman A Igdoura
- Departments of Biology and Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - David R Cool
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435-0001
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
32
|
ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis. Cell Rep 2018; 19:1794-1806. [PMID: 28564599 DOI: 10.1016/j.celrep.2017.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/31/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.
Collapse
|
33
|
Endoplasmic Reticulum Stress Inducer Tunicamycin Alters Hepatic Energy Homeostasis in Mice. Int J Mol Sci 2017; 18:ijms18081710. [PMID: 28777337 PMCID: PMC5578100 DOI: 10.3390/ijms18081710] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022] Open
Abstract
Disorders of hepatic energy metabolism, which can be regulated by endoplasmic reticulum (ER) stress, lead to metabolic diseases such as hepatic steatosis and hypoglycemia. Tunicamycin, a pharmacological ER stress inducer, is used to develop an anti-cancer drug. However, the effects of tunicamycin on hepatic energy metabolism have not been well elucidated. Mice were intraperitoneally injected with tunicamycin or vehicle. Twenty-four hours later, hepatic triglyceride and glycogen content and serum lipids profiles were analyzed, as well as the expression of lipogenic and gluconeogenic genes. Tunicamycin significantly induced hepatic a yellowish color and ER stress, as well as increasing serum levels of aspartate transaminase and alanine transaminase. Besides, tunicamycin remarkably increased hepatic triglyceride content and suppressed the expression of apolipoprotein B100. In addition, tunicamycin-treated mice had lower serum levels of triglyceride, apolipoprotein B, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Gene expression of peroxisome proliferator-activated receptor α was decreased by tunicamycin, but the protein level was increased. Furthermore, blood glucose level and hepatic glycogen content were decreased in tunicamycin-treated mice. Protein kinase B signaling was attenuated in the tunicamycin-treated liver, but the expression and activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were unchanged. Tunicamycin alters hepatic energy homeostasis by increasing triglyceride accumulation and decreasing glycogen content.
Collapse
|
34
|
Fan Y, Zhang J, Xiao W, Lee K, Li Z, Wen J, He L, Gui D, Xue R, Jian G, Sheng X, He JC, Wang N. Rtn1a-Mediated Endoplasmic Reticulum Stress in Podocyte Injury and Diabetic Nephropathy. Sci Rep 2017; 7:323. [PMID: 28336924 PMCID: PMC5428279 DOI: 10.1038/s41598-017-00305-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
We previously reported a critical role of reticulon (RTN) 1A in mediating endoplasmic reticulum (ER) stress in kidney tubular cells and the expression of RTN1A correlates with the renal function and the severity of kidney injury in patients with diabetic nephropathy (DN). Here, we determined the roles of RTN1A and ER stress in podocyte injury and DN. We used db/db mice with early unilateral nephrectomy (Unx) as a murine model of progressive DN and treated mice with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress. We found increased expression of RTN1A and ER stress markers in the kidney of db/db-Unx mice. Treatment of TUDCA not only attenuated proteinuria and kidney histological changes, but also ameliorated podocyte and glomeruli injury in diabetic mice, which were associated with reduction of RTN1A and ER stress marker expression in the podocytes of TUDCA-treated mice. In vitro, we showed RTN1A mediates albumin-induced ER stress and apoptosis in human podocytes. A positive feedback loop between RTN1A and CHOP was found leading to an enhanced ER stress in podocytes. Our data suggest that ER stress plays a major role in podocyte injury in DN and RTN1A might be a key regulator of ER stress in podocytes.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenzhen Xiao
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Zhengzhe Li
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohua Sheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States. .,Renal Section, James J Peter Veterans Administration Medical Center, Bronx, NY, United States.
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. RECENT FINDINGS As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1243, New York, NY, 10029, USA
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1243, New York, NY, 10029, USA.
- Renal Section, James J Peters VAMC, Bronx, NY, USA.
| |
Collapse
|
36
|
Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci Rep 2017; 7:43152. [PMID: 28230089 PMCID: PMC5322462 DOI: 10.1038/srep43152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ETB deficient (ETB def) or transgenic control (TG-con) rats were used in the presence or absence of ETA receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ETB def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ETA blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ETB def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ETA receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ETB receptor has protective effects. These results highlight targeting the ETA receptor as a therapeutic approach against ER stress-induced kidney injury.
Collapse
|
37
|
Yum V, Carlisle RE, Lu C, Brimble E, Chahal J, Upagupta C, Ask K, Dickhout JG. Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat. Am J Physiol Renal Physiol 2017; 312:F230-F244. [DOI: 10.1152/ajprenal.00119.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
Proteinuria is one of the primary risk factors for the progression of chronic kidney disease (CKD) and has been implicated in the induction of endoplasmic reticulum (ER) stress. We hypothesized that the suppression of ER stress with a low molecular weight chemical chaperone, 4-phenylbutyric acid (4-PBA), would reduce the severity of CKD and proteinuria in the Dahl salt-sensitive (SS) hypertensive rat. To induce hypertension and CKD, 12-wk-old male rats were placed on a high-salt (HS) diet for 4 wk with or without 4-PBA treatment. We assessed blood pressure and markers of CKD, including proteinuria, albuminuria, and renal pathology. Furthermore, we determined if HS feeding resulted in an impaired myogenic response, subsequent to ER stress. 4-PBA treatment reduced salt-induced hypertension, proteinuria, and albuminuria and preserved myogenic constriction. Furthermore, renal pathology was reduced with 4-PBA treatment, as indicated by lowered expression of profibrotic markers and fewer intratubular protein casts. In addition, ER stress in the glomerulus was reduced, and the integrity of the glomerular filtration barrier was preserved. These results suggest that 4-PBA treatment protects against proteinuria in the SS rat by preserving the myogenic response and by preventing ER stress, which led to a breakdown in the glomerular filtration barrier. As such, alleviating ER stress serves as a viable therapeutic strategy to preserve kidney function and to delay the progression of CKD in the animal model under study.
Collapse
Affiliation(s)
- Victoria Yum
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Chao Lu
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Elise Brimble
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Jasmine Chahal
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Chandak Upagupta
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| | - Kjetil Ask
- Department of Medicine, Division of Respirology, McMaster University, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada; and
| |
Collapse
|
38
|
Lebeau P, Al-Hashimi A, Sood S, Lhoták Š, Yu P, Gyulay G, Paré G, Chen SRW, Trigatti B, Prat A, Seidah NG, Austin RC. Endoplasmic Reticulum Stress and Ca2+ Depletion Differentially Modulate the Sterol Regulatory Protein PCSK9 to Control Lipid Metabolism. J Biol Chem 2016; 292:1510-1523. [PMID: 27909053 DOI: 10.1074/jbc.m116.744235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence implicates endoplasmic reticulum (ER) stress as a mediator of impaired lipid metabolism, thereby contributing to fatty liver disease and atherosclerosis. Previous studies demonstrated that ER stress can activate the sterol regulatory element-binding protein-2 (SREBP2), an ER-localized transcription factor that directly up-regulates sterol regulatory genes, including PCSK9 Given that PCSK9 contributes to atherosclerosis by targeting low density lipoprotein (LDL) receptor (LDLR) degradation, this study investigates a novel mechanism by which ER stress plays a role in lipid metabolism by examining its ability to modulate PCSK9 expression. Herein, we demonstrate the existence of two independent effects of ER stress on PCSK9 expression and secretion. In cultured HuH7 and HepG2 cells, agents or conditions that cause ER Ca2+ depletion, including thapsigargin, induced SREBP2-dependent up-regulation of PCSK9 expression. In contrast, a significant reduction in the secreted form of PCSK9 protein was observed in the media from both thapsigargin- and tunicamycin (TM)-treated HuH7 cells, mouse primary hepatocytes, and in the plasma of TM-treated C57BL/6 mice. Furthermore, TM significantly increased hepatic LDLR expression and reduced plasma LDL concentrations in mice. Based on these findings, we propose a model in which ER Ca2+ depletion promotes the activation of SREBP2 and subsequent transcription of PCSK9. However, conditions that cause ER stress regardless of their ability to dysregulate ER Ca2+ inhibit PCSK9 secretion, thereby reducing PCSK9-mediated LDLR degradation and promoting LDLR-dependent hepatic cholesterol uptake. Taken together, our studies provide evidence that the retention of PCSK9 in the ER may serve as a potential strategy for lowering LDL cholesterol levels.
Collapse
Affiliation(s)
- Paul Lebeau
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Ali Al-Hashimi
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Sudesh Sood
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Šárka Lhoták
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Pei Yu
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Gabriel Gyulay
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Guillaume Paré
- the Population Health Research Institute and the Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, Ontario L8L 2X2
| | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 2T9, and
| | - Bernardo Trigatti
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Annik Prat
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, .,the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2
| |
Collapse
|
39
|
Abstract
Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD).
Collapse
Affiliation(s)
- Anna Zuk
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115;
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115; .,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
40
|
Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC. SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Renal Physiol 2016; 311:F614-25. [DOI: 10.1152/ajprenal.00140.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tubulointerstitial fibrosis is a major feature associated with declining kidney function in chronic kidney disease of diverse etiology. No effective means as yet exists to prevent the progression of fibrosis. We have shown that the transcription factor sterol-regulatory element-binding protein 1 (SREBP-1) is an important mediator of the profibrotic response to transforming growth factor-β (TGF-β) and angiotensin II, both key cytokines in the fibrotic process. Here, we examined the role of SREBP in renal interstitial fibrosis in the unilateral ureteral obstruction (UUO) model. The two isoforms of SREBP (-1 and -2) were activated by 3 days after UUO, with SREBP-1 showing a more sustained activation to 21 days. We then examined whether SREBP1/2 inhibition with the small-molecule inhibitor fatostatin could attenuate fibrosis after 14 days of UUO. SREBP activation was confirmed to be inhibited by fatostatin. Treatment decreased interstitial fibrosis, TGF-β signaling, and upregulation of α-smooth muscle actin (SMA), a marker of fibroblast activation. Fatostatin also attenuated inflammatory cell infiltrate and apoptosis. Associated with this, fatostatin preserved proximal tubular mass. The significant increase in atubular glomeruli observed after UUO, known to correlate with irreversible renal functional decline, was also decreased by treatment. In cultured primary fibroblasts, TGF-β1 induced the activation of SREBP-1 and -2. Fatostatin blocked TGF-β1-induced α-SMA and matrix protein upregulation. The inhibition of SREBP is thus a potential novel therapeutic target in the treatment of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Mustafa
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Tony N. Wang
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Joan C. Krepinsky
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R. Emerging Liver-Kidney Interactions in Nonalcoholic Fatty Liver Disease. Trends Mol Med 2016; 21:645-662. [PMID: 26432021 DOI: 10.1016/j.molmed.2015.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/07/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence connects non-alcoholic fatty liver disease (NAFLD) to chronic kidney disease (CKD). We review emerging mechanistic links between NAFLD and CKD, including altered activation of angiotensin converting enzyme (ACE)-2, nutrient/energy sensors sirtuin-1 and AMP-activated kinase, as well as impaired antioxidant defense mediated by nuclear factor erythroid 2-related factor-2 (Nrf2). Dietary fructose excess may also contribute to NAFLD and CKD. NAFLD affects renal injury through lipoprotein dysmetabolism and altered secretion of the hepatokines fibroblast growth factor-21, fetuin-A, insulin-like growth factor-1, and syndecan-1. CKD may mutually aggravate NAFLD and associated metabolic disturbances through altered intestinal barrier function and microbiota composition, the accumulation of uremic toxic metabolites, and alterations in pre-receptor glucocorticoid metabolism. We conclude by discussing the implications of these findings for the treatment of NAFLD and CKD.
Collapse
Affiliation(s)
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Solomon Cohney
- Department of Nephrology, Royal Melbourne and Western Hospital, Victoria, University of Melbourne, Melbourne, Australia
| | - Silvia Pinach
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Francesca Saba
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
42
|
Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 2016; 12:453-71. [PMID: 27263398 DOI: 10.1038/nrneph.2016.75] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of obesity-related glomerulopathy is increasing in parallel with the worldwide obesity epidemic. Glomerular hypertrophy and adaptive focal segmental glomerulosclerosis define the condition pathologically. The glomerulus enlarges in response to obesity-induced increases in glomerular filtration rate, renal plasma flow, filtration fraction and tubular sodium reabsorption. Normal insulin/phosphatidylinositol 3-kinase/Akt and mTOR signalling are critical for podocyte hypertrophy and adaptation. Adipokines and ectopic lipid accumulation in the kidney promote insulin resistance of podocytes and maladaptive responses to cope with the mechanical forces of renal hyperfiltration. Although most patients have stable or slowly progressive proteinuria, up to one-third develop progressive renal failure and end-stage renal disease. Renin-angiotensin-aldosterone blockade is effective in the short-term but weight loss by hypocaloric diet or bariatric surgery has induced more consistent and dramatic antiproteinuric effects and reversal of hyperfiltration. Altered fatty acid and cholesterol metabolism are increasingly recognized as key mediators of renal lipid accumulation, inflammation, oxidative stress and fibrosis. Newer therapies directed to lipid metabolism, including SREBP antagonists, PPARα agonists, FXR and TGR5 agonists, and LXR agonists, hold therapeutic promise.
Collapse
|
43
|
Wang J, Sun H, Fu Z, Liu M. Chondroprotective effects of alpha-lipoic acid in a rat model of osteoarthritis. Free Radic Res 2016; 50:767-80. [PMID: 27055478 DOI: 10.1080/10715762.2016.1174775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate whether alpha-lipoic acid (ALA) confers a chondroprotective effect on articular cartilage in rats with monosodium iodoacetate (MIA)-induced osteoarthritis (OA). METHODS Fifty male SD rats were divided into five groups, including SHAM-operated, MIA-induced OA, and three experimental groups treated with 50-, 100-, or 200-mg/kg ALA. After 14 d of ALA treatment, rats were sacrificed for joint macroscopic and histology assessments. The gene and protein expressions of markers related to chondrocyte phenotype, caspase proteins, NADPH oxidase 4 (Nox4), p22(phox), activation of nuclear factor-κB (NF-κB), and endoplasmic reticulum (ER) stress were measured by Western blot analyses or qRT-PCR. RESULTS The results showed that MIA injection successfully induced OA by causing cartilage degeneration. Morphological and histological examinations demonstrated that ALA treatment, especially 200 mg/kg of ALA, significantly ameliorated cartilage degeneration in rats with MIA-induced OA. ALA could effectively increase the levels of the collagen type II and aggrecan genes and inhibit apoptosis-related proteins expression. ALA reduced biomakers of oxidative damage and over-expression levels of Nox4 and p22(phox). ALA also suppressed ER stress and inhibited the activation of NF-κB pathway. Moreover, ALA obviously inhibited TNF-α secretion and Wnt/β-catenin signaling way. CONCLUSION These findings indicated that ALA might be a potential therapeutic agent for the protection of articular cartilage against progression of OA through inhibition of oxidative stress, ER stress, inflammatory cytokine secretion, and Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Ji Wang
- a Department of Orthopaedics , First Affiliated Hospital, Dalian Medical University , Dalian , China
| | - Huijun Sun
- b Department of Clinical Pharmacology, College of Pharmacy , Dalian Medical University , Dalian , China
| | - Zhuodong Fu
- a Department of Orthopaedics , First Affiliated Hospital, Dalian Medical University , Dalian , China
| | - Mozhen Liu
- a Department of Orthopaedics , First Affiliated Hospital, Dalian Medical University , Dalian , China
| |
Collapse
|
44
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
45
|
Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Renal Physiol 2015; 310:F351-63. [PMID: 26672616 DOI: 10.1152/ajprenal.00223.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid.
Collapse
Affiliation(s)
- Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoming Chen
- Department of Orthopedics, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| | - Peili Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Moshe Levi
- Department of Medicine, Division of Hypertension and Renal Diseases, University of Colorado Denver, Aurora, Colorado; and
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Medicine, Division of Renal Diseases and Hypertension, University of Utah, Salt Lake City, Utah
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Silver SA, Cardinal H, Colwell K, Burger D, Dickhout JG. Acute kidney injury: preclinical innovations, challenges, and opportunities for translation. Can J Kidney Health Dis 2015; 2:30. [PMID: 26331054 PMCID: PMC4556308 DOI: 10.1186/s40697-015-0062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a clinically important condition that has attracted a great deal of interest from the biomedical research community. However, acute kidney injury AKI research findings have yet to be translated into significant changes in clinical practice. OBJECTIVE This article reviews many of the preclinical innovations in acute kidney injury AKI treatment, and explores challenges and opportunities to translate these finding into clinical practice. SOURCES OF INFORMATION MEDLINE, ISI Web of Science. FINDINGS This paper details areas in biomedical research where translation of pre-clinical findings into clinical trials is ongoing, or nearing a point where trial design is warranted. Further, the paper examines ways that best practice in the management of AKI can reach a broader proportion of the patient population experiencing this condition. LIMITATIONS This review highlights pertinent literature from the perspective of the research interests of the authors for new translational work in AKI. As such, it does not represent a systematic review of all of the AKI literature. IMPLICATIONS Translation of findings from biomedical research into AKI therapy presents several challenges. These may be partly overcome by targeting populations for interventional trials where the likelihood of AKI is very high, and readily predictable. Further, specific clinics to follow-up with patients after AKI events hold promise to provide best practice in care, and to translate therapies into treatment for the broadest possible patient populations.
Collapse
Affiliation(s)
- Samuel A. Silver
- />Division of Nephrology, St. Michael’s Hospital, University of Toronto, Toronto, Canada
| | - Héloise Cardinal
- />Division of Nephrology, Centre Hospitalier de l’Université de Montréal and CHUM research center, Montreal, Quebec Canada
| | - Katelyn Colwell
- />Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Dylan Burger
- />Kidney Research Centre, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Jeffrey G. Dickhout
- />Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6 Canada
| |
Collapse
|
47
|
Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease. J Immunol Res 2015; 2015:428508. [PMID: 25977931 PMCID: PMC4419235 DOI: 10.1155/2015/428508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
The chronic inflammatory response is emerging as an important therapeutic target in progressive chronic kidney disease. A key transcription factor in the induction of chronic inflammation is NF-κB. Recent studies have demonstrated that sustained activation of the unfolded protein response (UPR) can initiate this NF-κB signaling phenomenon and thereby induce chronic kidney disease progression. A key factor influencing chronic kidney disease progression is proteinuria and this condition has now been demonstrated to induce sustained UPR activation. This review details the crosstalk between the UPR and NF-κB pathways as pertinent to chronic kidney disease. We present potential tools to study this phenomenon as well as potential therapeutics that are emerging to regulate the UPR. These therapeutics may prevent inflammation specifically induced in the kidney due to proteinuria-induced sustained UPR activation.
Collapse
|
48
|
Wang ZS, Xiong F, Xie XH, Chen D, Pan JH, Cheng L. Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. BMC Nephrol 2015; 16:44. [PMID: 25886386 PMCID: PMC4387678 DOI: 10.1186/s12882-015-0031-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of Chronic Kidney Disease and End-Stage Renal Disease throughout the world; however, the reversibility of diabetic nephropathy remains controversial. Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of DN. Astragaloside IV (AS-IV) is derived from Astragalus membranaceus (Fisch) Bge, a widely used traditional herbal medicine in China, and has diverse pharmacological activities including the attenuation of podocyte injury and amelioration of proteinuria in idiopathic nephrotic syndrome. The present study aimed to investigate the effect and mechanism of AS-IV on proteinuria in the rat streptozotocin (STZ)-induced model of diabetes. Methods Male Sprague–Dawley (SD) rats were randomly divided into four groups: normal control (Normal group), diabetic nephropathy (Model group), diabetic nephropathy plus AS-IV treatment (AS-IV group) and diabetic nephropathy plus 4-phenyl butyric acid treatment (PBA group). ER stress was induced in cultured human podocytes, pretreated with or without AS-IV, with tunicamycin (TM). At the end of 8 weeks, serum creatinine (Scr), blood urea nitrogen (BUN) and 24-hour urinary protein excretion rate (UAER) were determined. Renal morphology was examined after periodic acid-Schiff staining of kidney sections. Apoptosis of podocytes was measured by flow cytometry. The total expression and phosphorylation of eIF2α, PERK and JNK, and the expression of CHOP and cleaved caspase-3 were determined by western blotting. The expression of glucose-regulated protein 78 (GRP78) and 150 kDa oxygen-regulated protein (ORP150) mRNA and protein was determined by real-time PCR and western blotting respectively. Results AS-IV treatment significantly reduced urinary albumin excretion, plasma creatinine and blood urea nitrogen levels, and prevented the mesangial matrix expansion and increase in mean mesangial induced by STZ. AS-IV also prevented the phosphorylation of eIF2α, PERK and JNK, and inhibited the expression of GRP78 and ORP150 markedly, both in vivo and in vitro. AS-IV inhibited the TM-induced apoptosis of podocytes, concomitant with decreased CHOP expression and cleaved caspase-3. Conclusions This study supports the hypothesis that AS-IV reduces proteinuria and attenuates diabetes, which is associated with decreased ER stress. This might be an important mechanism in the renoprotective function of AS-IV in the pathogenesis of DN.
Collapse
Affiliation(s)
- Zeng Si Wang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Xiao Hang Xie
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Dan Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Jian Hua Pan
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Li Cheng
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| |
Collapse
|
49
|
Elimam H, Papillon J, Takano T, Cybulsky AV. Calcium-independent phospholipase A2γ enhances activation of the ATF6 transcription factor during endoplasmic reticulum stress. J Biol Chem 2014; 290:3009-20. [PMID: 25492867 DOI: 10.1074/jbc.m114.592261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Injury of visceral glomerular epithelial cells (GECs) causes proteinuria in many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated GEC injury. Because iPLA2γ is localized at the endoplasmic reticulum (ER), this study addressed whether the cytoprotective effect of iPLA2γ involves the ER stress unfolded protein response (UPR). In cultured rat GECs, overexpression of the full-length iPLA2γ, but not a mutant iPLA2γ that fails to associate with the ER, augmented tunicamycin-induced activation of activating transcription factor-6 (ATF6) and induction of the ER chaperones, glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78). Augmented responses were inhibited by the iPLA2γ inhibitor, (R)-bromoenol lactone, but not by the cyclooxygenase inhibitor, indomethacin. Tunicamycin-induced cytotoxicity was reduced in GECs expressing iPLA2γ, and the cytoprotection was reversed by dominant-negative ATF6. GECs from iPLA2γ knock-out mice showed blunted ATF6 activation and chaperone up-regulation in response to tunicamycin. Unlike ATF6, the two other UPR pathways, i.e. inositol-requiring enzyme 1α and protein kinase RNA-like ER kinase pathways, were not affected by iPLA2γ. Thus, in GECs, iPLA2γ amplified activation of the ATF6 pathway of the UPR, resulting in up-regulation of ER chaperones and cytoprotection. These effects were dependent on iPLA2γ catalytic activity and association with the ER but not on prostanoids. Modulating iPLA2γ activity may provide opportunities for pharmacological intervention in glomerular diseases associated with ER stress.
Collapse
Affiliation(s)
- Hanan Elimam
- From the Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Joan Papillon
- From the Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Tomoko Takano
- From the Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Andrey V Cybulsky
- From the Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
50
|
Bogdanovic E, Kraus N, Patsouris D, Diao L, Wang V, Abdullahi A, Jeschke MG. Endoplasmic reticulum stress in adipose tissue augments lipolysis. J Cell Mol Med 2014; 19:82-91. [PMID: 25381905 PMCID: PMC4288352 DOI: 10.1111/jcmm.12384] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/04/2014] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca2+ homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24–48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.
Collapse
Affiliation(s)
- Elena Bogdanovic
- Division of Plastic Surgery, Division of General Surgery, Department of Surgery, Department of Immunology, University of Toronto, Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|