1
|
Mizdrak M, Smajic B, Mizdrak I, Ticinovic Kurir T, Kumric M, Paladin I, Batistic D, Bozic J. Endocrine Disorders in Nephrotic Syndrome-A Comprehensive Review. Biomedicines 2024; 12:1860. [PMID: 39200324 PMCID: PMC11351826 DOI: 10.3390/biomedicines12081860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Nephrotic syndrome is a clinical syndrome characterized by massive proteinuria, called nephrotic range proteinuria (over 3.5 g per day in adults or 40 mg/m2 per hour in children), hypoalbuminemia, oncotic edema, and hyperlipidemia, with an increasing incidence over several years. Nephrotic syndrome carries severe morbidity and mortality risk. The main pathophysiological event in nephrotic syndrome is increased glomerular permeability due to immunological, paraneoplastic, genetic, or infective triggers. Because of the marked increase in the glomerular permeability to macromolecules and the associated urinary loss of albumins and hormone-binding proteins, many metabolic and endocrine abnormalities are present. Some of them are well known, such as overt or subclinical hypothyroidism, growth hormone depletion, lack of testosterone, vitamin D, and calcium deficiency. The exact prevalence of these disorders is unknown because of the complexity of the human endocrine system and the differences in their prevalence. This review aims to comprehensively analyze all potential endocrine and hormonal complications of nephrotic syndrome and, vice versa, possible kidney complications of endocrine diseases that might remain unrecognized in everyday clinical practice.
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
| | - Bozo Smajic
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
| | - Ivan Mizdrak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (I.P.)
| | - Tina Ticinovic Kurir
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Ivan Paladin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (I.P.)
| | - Darko Batistic
- Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
2
|
Liu B, Hu Y, Tian D, Dong J, Li BF. Assessing the effects of tempol on renal fibrosis, inflammation, and oxidative stress in a high-salt diet combined with 5/6 nephrectomy rat model: utilizing oxidized albumin as a biomarker. BMC Nephrol 2024; 25:64. [PMID: 38395806 PMCID: PMC10893674 DOI: 10.1186/s12882-024-03495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Oxidative stress has been implicated in the pathogenesis of chronic kidney disease (CKD), prompting the exploration of antioxidants as a potential therapeutic avenue for mitigating disease progression. This study aims to investigate the beneficial impact of Tempol on the progression of CKD in a rat model utilizing oxidized albumin as a biomarker. METHODS After four weeks of treatment, metabolic parameters, including body weight, left ventricle residual weight, kidney weight, urine volume, and water and food intake, were measured. Systolic blood pressure, urinary protein, oxidized albumin level, serum creatinine (Scr), blood urea nitrogen (BUN), 8-OHdG, TGF-β1, and micro-albumin were also assessed. Renal fibrosis was evaluated through histological and biochemical assays. P65-NF-κB was quantified using an immunofluorescence test, while Smad3, P65-NF-κB, and Collagen I were measured using western blot. TNF-α, IL-6, MCP-1, TGF-β1, Smad3, and P65-NF-κB were analyzed by RT-qPCR. RESULTS Rats in the high-salt diet group exhibited impaired renal function, characterized by elevated levels of blood urea nitrogen, serum creatinine, 8-OHdG, urine albumin, and tubulointerstitial damage, along with reduced body weight. However, these effects were significantly ameliorated by Tempol administration. In the high-salt diet group, blood pressure, urinary protein, and oxidized albumin levels were notably higher compared to the normal diet group, but Tempol administration in the treatment group reversed these effects. Rats in the high-salt diet group also displayed increased levels of proinflammatory factors (TNF-α, IL-6, MCP1) and profibrotic factors (NF-κB activation, Collagen I), elevated expression of NADPH oxidation-related subunits (P65), and activation of the TGF-β1/Smad3 signaling pathway. Tempol treatment inhibited NF-κB-mediated inflammation and TGF-β1/Smad3-induced renal fibrosis signaling pathway activation. CONCLUSION These findings suggest that Tempol may hold therapeutic potential for preventing and treating rats undergoing 5/6 nephrectomy. Further research is warranted to elucidate the mechanisms underlying Tempol's protective effects and its potential clinical applications. Besides, there is a discernible positive relationship between oxidized albumin and other biomarkers, such as 8-OHG, urinary protein levels, mALB, Scr, BUN, and TGF-β1 in a High-salt diet combined with 5/6 nephrectomy rat model. These findings suggest the potential utility of oxidized albumin as a sensitive indicator for oxidative stress assessment.
Collapse
Affiliation(s)
- Beibei Liu
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jianlong Dong
- Hebei University of Chinese Medicine, The First Affiliated Hospital, Shijiazhuang, China
| | - Bing-Feng Li
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Jung KH, Kim SE, Go HG, Lee YJ, Park MS, Ko S, Han BS, Yoon YC, Cho YJ, Lee P, Lee SH, Kim K, Hong SS. Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis. Biomol Ther (Seoul) 2023; 31:599-610. [PMID: 37183002 PMCID: PMC10616517 DOI: 10.4062/biomolther.2023.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kipyo Kim
- Divison of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
4
|
Kobroob A, Kongkaew A, Wongmekiat O. Melatonin Reduces Aggravation of Renal Ischemia-Reperfusion Injury in Obese Rats by Maintaining Mitochondrial Homeostasis and Integrity through AMPK/PGC-1α/SIRT3/SOD2 Activation. Curr Issues Mol Biol 2023; 45:8239-8254. [PMID: 37886963 PMCID: PMC10605397 DOI: 10.3390/cimb45100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
This study examined the potential benefits of melatonin against renal ischemia and reperfusion (IR) injury in obesity and explored the underlying mechanisms. Obesity was induced in Wistar rats by feeding a high-fat diet for 16 weeks. Three obese groups that underwent renal IR induction (30-min renal ischemia followed by 24-h reperfusion) were randomly assigned to receive melatonin at ischemic onset, reperfusion onset, or pretreatment for 4 weeks before IR induction. Groups of vehicle-treated obese and normal-diet-fed rats that underwent sham or IR induction were also included in the study. The results showed that renal functional and structural impairments after IR incidence were aggravated in obese rats compared to normal-diet-fed rats. The obese-IR rats also exhibited oxidative stress, mitochondrial dysfunction, apoptosis, and mitochondrial dynamics and mitophagy imbalances, which were all considerably improved upon melatonin treatment, irrespective of the treatment time. This study suggests the prophylactic and therapeutic efficacy of melatonin in IR-induced acute kidney injury (AKI) in obese individuals, which may improve the prognosis of AKI in these populations. The benefits of melatonin are likely mediated by the modification of various signaling molecules within the mitochondria that maintain mitochondrial redox balance and lead to the protection of mitochondrial homeostasis and integrity.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Simões E Silva AC, Oliveira EA, Cheung WW, Mak RH. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants (Basel) 2023; 12:antiox12040945. [PMID: 37107320 PMCID: PMC10136196 DOI: 10.3390/antiox12040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Wai W Cheung
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Marzougui H, Turki M, Ben Dhia I, Maaloul R, Chaker H, Makhlouf R, Agrebi I, Kammoun K, Jamoussi K, Ayadi F, Ben Hmida M, Hammouda O. Melatonin intake before intradialytic exercise reverses oxidative stress and improves antioxidant status in hemodialysis patients. Int J Artif Organs 2023; 46:264-273. [PMID: 37051719 DOI: 10.1177/03913988231165324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
PURPOSE The present study aimed to investigate for the first time the effects of melatonin (MEL) intake on oxidative stress and cellular damage during intradialytic exercise (IEX). METHODS Thirteen hemodialysis (HD) patients volunteered to participate in the current randomized crossover trial. Participants performed four HD sessions in four different conditions: (Exercise (EX)-MEL), (EX-Placebo (PLA)), (Control (C)-MEL), and (C-PLA). 3 mg of MEL or PLA were taken 60 min before starting exercise, or at the equivalent time in the C conditions. Blood samples were taken before HD (T0), immediately after the end of IEX (T1), 60 min after IEX (T2), or at the corresponding times in the C conditions to measure free radicals damage, antioxidant biomarkers, as well as biomarkers of muscle and liver damage. RESULTS Malondialdehyde and Advanced Oxidation Protein Products decreased in (C-MEL) (p < 0.05, d = 2.19; p < 0.01, d = 0.99, respectively) at T2 compared to T0. Catalase and total thiol levels increased in (C-MEL) (p < 0.01, d = 1.51; p < 0.01, d = 1.56, respectively) and in (EX-MEL) (p = 0.01, d = 1.28; p < 0.01, d = 1.52, respectively) at T1 compared to T0. Total bilirubin levels increased in (EX-MEL) and (C-MEL) at T2 compared to T0 (p < 0.001, d = 2.77; p < 0.001, d = 1.36, respectively), but only at T2 compared to T1 in (EX-MEL) (p < 0.001, d = 1.67). In all conditions, uric acid levels decreased at T1 compared to T0 and at T2 compared to T1, while biomarkers of muscle and liver damage remained unchanged. CONCLUSION This pilot study is the first to show that MEL ingestion, alone or combined with IEX, could improve oxidant-antioxidant balance during HD.
Collapse
Affiliation(s)
- Houssem Marzougui
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Biochemistry Department, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Imen Ben Dhia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Research Laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Rami Maaloul
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Hanen Chaker
- Nephrology Department, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
- Research Laboratory of Renal Pathology, LR19ES11, Faculty of Medicine, University of Sfax, Sfax,Tunisia
| | - Rihab Makhlouf
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Biochemistry Department, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Ikram Agrebi
- Nephrology Department, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
- Research Laboratory of Renal Pathology, LR19ES11, Faculty of Medicine, University of Sfax, Sfax,Tunisia
| | - Khawla Kammoun
- Nephrology Department, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
- Research Laboratory of Renal Pathology, LR19ES11, Faculty of Medicine, University of Sfax, Sfax,Tunisia
| | - Kamel Jamoussi
- Biochemistry Department, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Fatma Ayadi
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Biochemistry Department, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mohamed Ben Hmida
- Nephrology Department, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
- Research Laboratory of Renal Pathology, LR19ES11, Faculty of Medicine, University of Sfax, Sfax,Tunisia
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre University, Nanterre, France
| |
Collapse
|
7
|
Li D, Pan JH, Huang XF, Liao YQ, Ling YJ, Luo JY. Effect of melatonin on oxidative stress indicators in animal models of fibrosis: A systematic review and meta-analysis. Free Radic Biol Med 2023; 195:158-177. [PMID: 36586451 DOI: 10.1016/j.freeradbiomed.2022.12.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Imbalance of oxidative stress has been detected in a range of fibrotic diseases. Melatonin as an indoleamine hormone plays an important role in regulating the circadian rhythm of human, while in recent years, its antioxidant effect has also attracted increasing attention. This study aimed to perform a systematic review and meta-analysis to comprehensively evaluate the antioxidant effect of melatonin in animal models of fibrosis. METHODS The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database (VIP), and SinoMed databases were searched from inception to March 1st, 2022 to retrieve eligible studies that evaluated the effect of melatonin supplementation on the levels of malondialdehyde (MDA), lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) in animal models of fibrosis. RESULTS A total of 64 studies were included in this meta-analysis. The results showed that melatonin supplementation significantly reduced the levels of oxidative indicators including MDA (P < 0.00001), LPO (P < 0.00001) and NO (P < 0.0001), and elevated the levels of antioxidant indicators including GSH (P < 0.00001), GPx (P < 0.00001) and SOD (P < 0.00001) in fibrotic diseases. CONCLUSIONS Our research findings showed that melatonin supplementation could significantly reduce the levels of oxidative indicators including MDA, LPO and NO and elevate the levels of antioxidant indicators including GSH, GPx and SOD so as to correct oxidative stress in animal models of fibrosis. However, no significant changes were observed in CAT level. More clinical studies are needed to further confirm the beneficial role of melatonin in fibrotic diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Jun-Hua Pan
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Xiao-Fang Huang
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Yu-Qing Liao
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Yong-Jin Ling
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Jing-Ying Luo
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China.
| |
Collapse
|
8
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
9
|
Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators Inflamm 2022; 2022:5824657. [PMID: 35418806 PMCID: PMC9001093 DOI: 10.1155/2022/5824657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
Background Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are mainly characterized by progressive motor, sensory, or cognitive dysfunction in patients. Such diseases mostly occur in middle-aged and elderly people, and there is no effective cure. Studies have shown that neurodegenerative diseases are accompanied by neuroinflammation. The proinflammatory mediators produced neuroinflammation further damage neurons and aggravate the process of neurodegenerative diseases. Therefore, inhibiting neuroinflammation might be an effective way to alleviate neurodegenerative diseases. Pomiferin extracted from the fruit of the orange mulberry has a wide range of antioxidation and anti-inflammatory effects in peripheral tissues. However, it is not clear whether it plays a role on neuroinflammation. Methods In our experiment, we studied the effect of Pomiferin on BV2 cell inflammation and its mechanism with cck-8, LDH, quantitative PCR, and ELISA and methods. We then investigated the effect of Pomiferin on the classical inflammatory pathway by Western blot methods. Results The results showed that Pomiferin inhibited the production of ROS, NO, and proinflammatory mediators (IL-6, TNF-α, iNOS, and COX2) in BV2 cells. Further mechanism studies showed that Pomiferin activated the Akt/Nrf2 pathway and inhibited the NF-κB pathway. Conclusion Our study demonstrated that Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
|
10
|
Possible benefits of exogenous melatonin for individuals on dialysis: a narrative review on potential mechanisms and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1599-1611. [PMID: 34097094 DOI: 10.1007/s00210-021-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Prevention of oxidative stress and inflammation in chronic kidney disease patients (CKD) on dialysis may reduce dialysis-associated complications. Administration of powerful antioxidants may improve the consequences of peritoneal dialysis (PD) and hemodialysis (HD). This narrative review aimed to show the potential therapeutic effects of melatonin (MLT) on the consequences of CKD patients receiving HD or PD. The results of preclinical and clinical studies have proven that CKD and dialysis are accompanied by reduced endogenous MLT levels and related complications such as sleep disorders. Enhanced oxidative stress, inflammation, cellular damages, and renal fibrosis, along with dysregulation of the renin-angiotensin system (RAS), have been observed in CKD and patients on dialysis. Results of studies have revealed that the restoration of MLT via the exogenous source may regulate oxidative stress, inflammation, and RAS functions, inhibit fibrosis, and improve complications in patients with long-term dialysis patients. In summary, treatment of patients with CKD and dialysis with exogenous MLT is suggested as a practical approach in reducing the outcomes and improving the quality of life in patients via antioxidant, anti-inflammatory, and anti-fibrotic signaling pathways. Therefore, this hormone can be considered in clinical practice to manage dialysis-related complications.
Collapse
|
11
|
Cyst Reduction by Melatonin in a Novel Drosophila Model of Polycystic Kidney Disease. Molecules 2020; 25:molecules25225477. [PMID: 33238462 PMCID: PMC7700119 DOI: 10.3390/molecules25225477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) causes progressive cystic degeneration of the renal tubules, the nephrons, eventually severely compromising kidney function. ADPKD is incurable, with half of the patients eventually needing renal replacement. Treatments for ADPKD patients are limited and new effective therapeutics are needed. Melatonin, a central metabolic regulator conserved across all life kingdoms, exhibits oncostatic and oncoprotective activity and no detected toxicity. Here, we used the Bicaudal C (BicC) Drosophila model of polycystic kidney disease to test the cyst-reducing potential of melatonin. Significant cyst reduction was found in the renal (Malpighian) tubules upon melatonin administration and suggest mechanistic sophistication. Similar to vertebrate PKD, the BicC fly PKD model responds to the antiproliferative drugs rapamycin and mimics of the second mitochondria-derived activator of caspases (Smac). Melatonin appears to be a new cyst-reducing molecule with attractive properties as a potential candidate for PKD treatment.
Collapse
|
12
|
Rysz J, Franczyk B, Ławiński J, Gluba-Brzózka A. Oxidative Stress in ESRD Patients on Dialysis and the Risk of Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9111079. [PMID: 33153174 PMCID: PMC7693989 DOI: 10.3390/antiox9111079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease is highly prevalent worldwide. The decline of renal function is associated with inadequate removal of a variety of uremic toxins that exert detrimental effects on cells functioning, thus affecting the cardiovascular system. The occurrence of cardiovascular aberrations in CKD is related to the impact of traditional risk factors and non-traditional CKD-associated risk factors, including anemia; inflammation; oxidative stress; the presence of some uremic toxins; and factors related to the type, frequency of dialysis and the composition of dialysis fluid. Cardiovascular diseases are the most frequent cause for the deaths of patients with all stages of renal failure. The kidney is one of the vital sources of antioxidant enzymes, therefore, the impairment of this organ is associated with decreased levels of these enzymes as well as increased levels of pro-oxidants. Uremic toxins have been shown to play a vital role in the onset of oxidative stress. Hemodialysis itself also enhances oxidative stress. Elevated oxidative stress has been demonstrated to be strictly related to kidney and cardiac damage as it aggravates kidney dysfunction and induces cardiac hypertrophy. Antioxidant therapies may prove to be beneficial since they can decrease oxidative stress, reduce uremic cardiovascular toxicity and improve survival.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-639-3750
| |
Collapse
|
13
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
15
|
Promsan S, Lungkaphin A. The roles of melatonin on kidney injury in obese and diabetic conditions. Biofactors 2020; 46:531-549. [PMID: 32449276 DOI: 10.1002/biof.1637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes. Chronic kidney disease (CKD) is a complication occurring as a result of obesity and diabetic conditions that lead to an increased mortality rate. There are several mechanisms and pathways contributing to kidney injury in obese and diabetic conditions. The expansion of adipocytes triggers proinflammatory cytokines release into blood circulation and bind with the receptors at the cell membranes of renal tissues leading to kidney injury. Obesity-mediated inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are the important causes and progression of CKD. Melatonin (N-acetyl-5-methoxytryptamine) is a neuronal hormone that is synthesized by the pineal gland and plays an essential role in regulating several physiological functions in the human body. Moreover, melatonin has pleiotropic effects such as antioxidant, anti-inflammation, antiapoptosis. In this review, the relationship between obesity, diabetic condition, and kidney injury and the renoprotective effect of melatonin in obese and diabetic conditions from in vitro and in vivo studies have been summarized and discussed.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Melatonin/metabolism
- Melatonin/pharmacology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Oxidative Stress/drug effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
Collapse
Affiliation(s)
- Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University Chiang Mai, Thailand
| |
Collapse
|
16
|
Raza Z, Naureen Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrologia 2019; 40:12-25. [PMID: 31735377 DOI: 10.1016/j.nefro.2019.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Drug-induced nephrotoxicity is a frequent adverse event that can lead to acute or chronic kidney disease and increase the healthcare expenditure. It has high morbidity and mortality incidence in 40-70% of renal injuries and accounts for 66% cases of renal failure in elderly population. OBJECTIVE Amelioration of drug-induced nephrotoxicity has been long soughed to improve the effectiveness of therapeutic drugs. This study was conducted to review the melatonin potential to prevent the pathogenesis of nephrotoxicity induced by important nephrotoxic drugs. METHODS We analyzed the relevant studies indexed in Pubmed, Medline, Scielo and Web of science to explain the molecular improvements following melatonin co-administration with special attention to oxidative stress, inflammation and apoptosis as key players of drug-induced nephrotoxicity. RESULTS A robust consensus among researchers of these studies suggested that melatonin efficiently eradicate the chain reaction of free radical production and induced the endogenous antioxidant enzymes which attenuate the lipid peroxidation of cellular membranes and subcellular oxidative stress in drug-induced nephrotoxicity. This agreement was further supported by the melatonin role in disintegration of inflammatory process through inhibition of principle pro-inflammatory or apoptotic cytokines such as TNF-α and NF-κB. These studies highlighted that alleviation of drug-induced renal toxicity is a function of melatonin potential to down regulate the cellular inflammatory and oxidative injury process and to stimulate the cellular repair or defensive mechanisms. CONCLUSION The comprehensive nephroprotection and safer profile suggests the melatonin to be a useful adjunct to improve the safety of nephrotoxic drugs.
Collapse
Affiliation(s)
- Zohaib Raza
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zainab Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
17
|
Ostadmohammadi V, Soleimani A, Bahmani F, Aghadavod E, Ramezani R, Reiter RJ, Mansournia MA, Banikazemi Z, Soleimani M, Zaroudi M, Asemi Z. The Effects of Melatonin Supplementation on Parameters of Mental Health, Glycemic Control, Markers of Cardiometabolic Risk, and Oxidative Stress in Diabetic Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. J Ren Nutr 2019; 30:242-250. [PMID: 31597622 DOI: 10.1053/j.jrn.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study evaluated the effects of melatonin supplementation on parameters of mental health, glycemic control, markers of cardiometabolic risk, and oxidative stress in diabetic hemodialysis (HD) patients. DESIGN A randomized, double-blind, placebo-controlled clinical trial was conducted in 60 diabetic HD patients, 18-80 years of age. Participants were randomly divided into 2 groups to take either melatonin (2 x 5mg/day) (n = 30) or placebo (n = 30) 1 hour before bedtime for 12 weeks. The effects of melatonin on mental health, metabolic status, and gene expression related to metabolic status were assessed using multiple linear regression adjusting for age and BMI. RESULTS Melatonin supplementation significantly decreased Pittsburgh Sleep Quality Index (P = .007), Beck Depression Inventory index (P = .001), and Beck Anxiety Inventory index (P = .01) compared with the placebo. Additionally, melatonin administration significantly reduced fasting plasma glucose (β = -21.77 mg/dL, 95% CI -33.22 to -10.33, P < .001), serum insulin levels (β = -1.89 μIU/mL, 95% CI -3.34 to -0.45, P = .01), and homeostasis model of assessment-insulin resistance (β = -1.45, 95% CI -2.10 to -0.80, P < .001), and significantly increased the quantitative insulin sensitivity check index (β = 0.01, 95% CI 0.007-0.02, P < .001) compared with placebo treated subjects. In addition, melatonin administration resulted in a significant reduction in serum high sensitivity C-reactive protein (β = -1.92 mg/L, 95% CI -3.02 to -0.83, P = .001) and plasma malondialdehyde (β = -0.21 μmol/L, 95% CI -0.36 to -0.06, P = .005); also, significant rises in plasma total antioxidant capacity (β = 253.87 mmol/L, 95% CI 189.18-318.56, P < .001) and nitric oxide levels (β = 2.99 μmol/L, 95% CI 0.71-5.28, P = .01) were observed compared with the placebo. CONCLUSION Overall, melatonin supplementation for 12 weeks to diabetic HD patients had beneficial effects on mental health, glycemic control, inflammatory markers, and oxidative stress.
Collapse
Affiliation(s)
- Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Ramezani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, Texas
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Soleimani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Marsa Zaroudi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Zamorskii I, Shchudrova T, Dudka E. Rhabdomyolysis-Induced Acute Kidney Injury and Kidney Protection with Melatonin. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Melatonin therapy protects against renal injury before and after release of bilateral ureteral obstruction in rats. Life Sci 2019; 229:104-115. [PMID: 31100324 DOI: 10.1016/j.lfs.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
AIM Blockage of the urinary tract is often connected with renal function impediment, including reductions in glomerular filtration rate (GFR) and the power to control sodium as well as water elimination through urination. Melatonin, known to be the primary product of the pineal gland, prevents renal damage caused by ischemic reperfusion. However, the effects of melatonin on urinary obstruction, as well as release of obstruction induced kidney injury are still largely unknown. The aim of present study was to investigate the effect of melatonin on mediating protection against renal injury triggered from either bilateral ureteral obstruction (BUO) or BUO release (BUO-R). MAIN METHODS Adult male Sprague-Dawley rats (n = 60) were clustered into six treatment groups: sham treated-1; BUO-non-treated (24 h BUO only); BUO + melatonin; sham treated-2; BUO-48hR (24 h of BUO and then release for 2 days); and BUO-48hR + melatonin. Kidney tissues, blood and urine samples were obtained for further assessment. KEY FINDINGS It was found that melatonin treatment remarkably promoted the recovery of the handling capacity of urinary excretion of water as well as sodium in BUO and BUO-48hR models. Melatonin treatment partially inhibited inflammatory cytokine expression and the downregulation of aquaporin (AQPs, AQP-1, -2 and -3) expression in these two models. Moreover, the cytoarchitecture of BUO rats exposed to melatonin was well preserved. SIGNIFICANCE Melatonin treatment potently prevents BUO or BUO-R induced renal injury, which may be partially attributed to restoring the expression of AQPs and inhibition of inflammatory response, as well as preserving renal ultrastructural integrity.
Collapse
|
20
|
The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens Res 2019; 42:761-768. [PMID: 30610209 DOI: 10.1038/s41440-018-0186-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Melatonin is a hormone produced by the pineal gland, predominantly at night, and plays a pivotal role in regulating the circadian rhythm as well as a variety of biological functions, including anti-inflammation, anti-oxidation, inhibition of sympathetic nerve activity, and preservation of endothelial cell function. The intrarenal renin-angiotensin system (RAS) is one of the most important contributors in the pathophysiology of chronic kidney disease (CKD) and hypertension, independent of the circulating RAS, due to sodium reabsorption and inflammation and fibrosis in the kidney. However, the relationship between melatonin secretion and intrarenal RAS activation has remained unknown. It has been recently shown that impaired nighttime melatonin secretion is associated with nighttime urinary angiotensinogen excretion, a surrogate marker of intrarenal RAS activation and renal damage in patients with CKD. Moreover, it has also been indicated that melatonin administered exogenously exercises antioxidant effects that ameliorate intrarenal RAS activation and renal injury in chronic progressive CKD animal models. As a result, the new roles of melatonin in suppressing RAS in the kidney via amelioration of reactive oxygen species have been clarified. Therefore, we review the relationship between melatonin and intrarenal RAS activation and indicate the possibility of a new strategy to suppress CKD, which is a risk factor for cardiovascular and end-stage renal diseases.
Collapse
|
21
|
|
22
|
Prado NJ, Ferder L, Manucha W, Diez ER. Anti-Inflammatory Effects of Melatonin in Obesity and Hypertension. Curr Hypertens Rep 2018; 20:45. [PMID: 29744660 DOI: 10.1007/s11906-018-0842-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Here, we review the known relations between hypertension and obesity to inflammation and postulate the endogenous protective effect of melatonin and its potential as a therapeutic agent. We will describe the multiple effects of melatonin on blood pressure, adiposity, body weight, and focus on mitochondrial-related anti-inflammatory and antioxidant protective effects. RECENT FINDINGS Hypertension and obesity are usually associated with systemic and tissular inflammation. The progressive affection of target-organs involves multiple mediators of inflammation, most of them redundant, which make anti-inflammatory strategies ineffective. Melatonin reduces blood pressure, body weight, and inflammation. The mechanisms of action of this ancient molecule of protection involve multiple levels of action, from subcellular to intercellular. Mitochondria is a key inflammatory element in vascular and adipose tissue and a potential pharmacological target. Melatonin protects against mitochondrial dysfunction. Melatonin reduces blood pressure and adipose tissue dysfunction by multiple anti-inflammatory/antioxidant actions and provides potent protection against mitochondria-mediated injury in hypertension and obesity. This inexpensive and multitarget molecule has great therapeutic potential against both epidemic diseases.
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Pediatric Department Nephrology Division, Miller School of Medicine, University of Miami, Florida, USA
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina. .,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina.
| |
Collapse
|
23
|
Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3082438. [PMID: 29670679 PMCID: PMC5835250 DOI: 10.1155/2018/3082438] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/11/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022]
Abstract
This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria.
Collapse
|
24
|
Ishigaki S, Ohashi N, Matsuyama T, Isobe S, Tsuji N, Iwakura T, Fujikura T, Tsuji T, Kato A, Miyajima H, Yasuda H. Melatonin ameliorates intrarenal renin-angiotensin system in a 5/6 nephrectomy rat model. Clin Exp Nephrol 2017; 22:539-549. [PMID: 29159527 DOI: 10.1007/s10157-017-1505-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. It has been reported that reactive oxygen species (ROS) are important components of intrarenal RAS activation. Melatonin is recognized as a powerful antioxidant, and we recently reported that impaired nighttime melatonin secretion correlates negatively with urinary angiotensinogen excretion, the surrogate marker of intrarenal RAS activity in patients with CKD. However, whether melatonin supplementation ameliorates the augmentation of intrarenal RAS in CKD has remained unknown. We aimed to clarify whether exogenous melatonin ameliorates intrarenal RAS activation via the reduction of ROS production. METHODS 5/6 Nephrectomized (Nx) rats were used as a chronic progressive CKD model and compared with sham-operated control rats. The Nx rats were divided into untreated Nx rats and melatonin-treated Nx rats. The levels of intrarenal RAS, ROS components, and renal injury were evaluated after 4 weeks of treatment. RESULTS Compared with the control rats, the untreated Nx rats exhibited significant increases in intrarenal angiotensinogen, angiotensin II (AngII) type 1 receptors, and AngII, accompanied by elevated blood pressure, higher oxidative stress (8-hydroxy-2'-deoxyguanosine), lower antioxidant (superoxide dismutase) activity, and increased markers of interstitial fibrosis (α-smooth muscle actin, Snail, and type I collagen) in the remnant kidneys. Treatment with melatonin significantly reversed these abnormalities. CONCLUSION Antioxidant treatment with melatonin was shown to ameliorate intrarenal RAS activation and renal injury in a 5/6 Nx rat model.
Collapse
Affiliation(s)
- Sayaka Ishigaki
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Naro Ohashi
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Takashi Matsuyama
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Shinsuke Isobe
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Naoko Tsuji
- Blood Purification Unit, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takamasa Iwakura
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tomoyuki Fujikura
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takayuki Tsuji
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hiroaki Miyajima
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hideo Yasuda
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
25
|
The Effects of Long-Term Chaetomellic Acid A Administration on Renal Function and Oxidative Stress in a Rat Model of Renal Mass Reduction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5125980. [PMID: 28326323 PMCID: PMC5343227 DOI: 10.1155/2017/5125980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Purpose. This study aimed to evaluate the effect of chronic treatment with chaetomellic acid A (CAA) on oxidative stress and renal function in a model of renal mass reduction. Methods. Male Wistar rats were subjected to 5/6 nephrectomy (RMR) or sham-operated (SO). One week after surgery, rats have been divided into four experimental groups: RMR: RMR rats without treatment (n = 14); RMR + CAA: RMR rats treated with CAA (n = 13); SO: SO rats without treatment (n = 13); and SO + CAA: SO rats treated with CAA (n = 13). CAA was intraperitoneally administered in a dose of 0.23 µg/Kg three times a week for six months. Results. RMR was accompanied by a significant reduction in catalase and glutathione reductase (GR) activity (p < 0.05) and a decrease in reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. CAA administration significantly increased catalase and GR activity (p < 0.05) and increased GSH/GSSG ratio, but no significant difference between the treated and nontreated groups was found in this ratio. No significant differences were found between the RMR groups in any of the parameters of renal function. However, CAA administration slightly improves some parameters of renal function. Conclusions. These data suggest that CAA could attenuate 5/6 RMR-induced oxidative stress.
Collapse
|
26
|
Li M, Zou H, Xu G. The prevention of statins against AKI and mortality following cardiac surgery: A meta-analysis. Int J Cardiol 2016; 222:260-266. [DOI: 10.1016/j.ijcard.2016.07.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
27
|
JI ZHENZHONG, XU YANCHENG. Melatonin protects podocytes from angiotensin II-induced injury in an in vitro diabetic nephropathy model. Mol Med Rep 2016; 14:920-6. [DOI: 10.3892/mmr.2016.5313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/06/2016] [Indexed: 11/06/2022] Open
|
28
|
Burkhalter H, De Geest S, Wirz-Justice A, Cajochen C. Melatonin rhythms in renal transplant recipients with sleep-wake disturbances. Chronobiol Int 2016; 33:810-20. [PMID: 27101434 DOI: 10.3109/07420528.2016.1169192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We assessed salivary melatonin levels in renal transplant (RTx) recipients who participated in a randomised, multicentre wait-list controlled trial on the effect of bright light therapy on their sleep and circadian rhythms. A large proportion of RTx recipients in our cohort had unexpectedly low melatonin values, which precluded calculation of the dim-light melatonin onset (DLMO) as a circadian marker. Thus, the aim of this post hoc analysis was to describe the melatonin profile of home-dwelling RTx recipients diagnosed with sleep-wake disturbances (SWDs). The participants were characterised by means of sleep questionnaires, validated psychometric instruments [Pittsburgh sleep quality Index (PSQI), Epworth sleepiness scale (ESS), Morningness-Eveningness Questionnaire (MEQ) and Depression, Anxiety and Stress Scale (DASS)] in addition to melatonin assay in saliva. Data were analysed with descriptive statistics and group comparisons made with appropriate post hoc tests. RTx recipients [n = 29 (aged 54.83 ± 13.73, transplanted 10.62 ± 6.84 years ago)] were retrospectively grouped into two groups: RTx recipients whose dim light melatonin onset (DLMO) could be calculated (n = 11) and those whose DLMO could not be calculated (n = 18). RTx recipients having a measurable DLMO had a number of differences from those without DLMO: they were younger [46.4 ± 14.9 compared to 60.0 ± 10.3 (p = .007)], had higher haemoglobin values [135.36 ± 12.01 versus 122.82 ± 11.56 (p = .01)], less anxiety [4 (0;8) versus 12 (6.5;14) (p = .021)] and a better overall sense of coherence [SOC Score: 71.09 ± 12.78 versus 56.28 ± 15.48 (p = 0.013)]. These results suggest that RTx recipients whose DLMO could be calculated have less health impairments, underlying the relevance of a stable circadian system.
Collapse
Affiliation(s)
- Hanna Burkhalter
- a Centre for Sleep Medicine , Hirslanden Group , Zürich , Switzerland.,b Institute of Nursing Science, University of Basel , Basel , Switzerland
| | - Sabina De Geest
- b Institute of Nursing Science, University of Basel , Basel , Switzerland.,c Academic Center for Nursing and Midwifery , KU Leuven , Belgium
| | - Anna Wirz-Justice
- d Centre for Chronobiology , Psychiatric Hospital of the University of Basel , Basel , Switzerland
| | - Christian Cajochen
- d Centre for Chronobiology , Psychiatric Hospital of the University of Basel , Basel , Switzerland
| |
Collapse
|
29
|
Karaman A, Diyarbakir B, Durur-Subasi I, Kose D, Özbek-Bilgin A, Topcu A, Gundogdu C, Durur-Karakaya A, Bayraktutan Z, Alper F. A novel approach to contrast-induced nephrotoxicity: the melatonergic agent agomelatine. Br J Radiol 2016; 89:20150716. [PMID: 26886874 DOI: 10.1259/bjr.20150716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To study the potential nephroprotective role of agomelatine in rat renal tissue in cases of contrast-induced nephrotoxicity (CIN). The drug's action on the antioxidant system and proinflammatory cytokines, superoxide dismutase (SOD) activity, levels of glutathione (GSH) and malondialdehyde (MDA) and the gene expression of interleukin-6 (IL-6), tumour necrosis factor (TNF)-α and nuclear factor kappa B (NF-κB) was measured. Tubular necrosis and hyaline and haemorrhagic casts were also histopathologically evaluated. METHODS The institutional ethics and local animal care committees approved the study. Eight groups of six rats were put on the following drug regimens: Group 1: healthy controls, Group 2: GLY (glycerol), Group 3: CM (contrast media--iohexol 10 ml kg(-1)), Group 4: GLY+CM, Group 5: CM+AGO20 (agomelatine 20 mg kg(-1)), Group 6: GLY+CM+AGO20, Group 7: CM+AGO40 (agomelatine 40 mg kg(-1)) and Group 8: GLY+CM+AGO40. The groups were evaluated by one-way analysis of variance and Duncan's multiple comparison test. RESULTS Agomelatine administration significantly improved the serum levels of blood urea nitrogen (BUN) and creatinine, SOD activity, GSH and MDA. The use of agomelatine had substantial downregulatory consequences on TNF-α, NF-κB and IL-6 messenger RNA levels. Mild-to-severe hyaline and haemorrhagic casts and tubular necrosis were observed in all groups, except in the healthy group. The histopathological scores were better in the agomelatine treatment groups. CONCLUSION Agomelatine has nephroprotective effects against CIN in rats. This effect can be attributed to its properties of reducing oxidative stress and inhibiting the secretion of proinflammatory cytokines (NF-κB, TNF-α and IL-6). ADVANCES IN KNOWLEDGE CIN is one of the most important adverse effects of radiological procedures. Renal failure, diabetes, malignancy, old age and non-steroidal anti-inflammatory drug use pose the risk of CIN in patients. Several clinical studies have investigated ways to avoid CIN. Theophylline/aminophylline, statins, ascorbic acid and iloprost have been suggested for this purpose. Agomelatine is one of the melatonin ligands and is used for affective disorders and has antioxidant features. In this study, we hypothesized that agomelatine could have nephroprotective, antioxidant and anti-inflammatory effects against CIN in rats.
Collapse
Affiliation(s)
- Adem Karaman
- 1 Department of Radiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Busra Diyarbakir
- 2 Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irmak Durur-Subasi
- 3 Department of Radiology, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Duygu Kose
- 2 Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Asli Özbek-Bilgin
- 2 Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Atilla Topcu
- 4 Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Cemal Gundogdu
- 5 Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | | | - Zafer Bayraktutan
- 7 Department of Biochemistry, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Fatih Alper
- 1 Department of Radiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
30
|
Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci 2015; 16:29592-630. [PMID: 26690422 PMCID: PMC4691126 DOI: 10.3390/ijms161226183] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Heavy metals, which have widespread environmental distribution and originate from natural and anthropogenic sources, are common environmental pollutants. In recent decades, their contamination has increased dramatically because of continuous discharge in sewage and untreated industrial effluents. Because they are non-degradable, they persist in the environment; accordingly, they have received a great deal of attention owing to their potential health and environmental risks. Although the toxic effects of metals depend on the forms and routes of exposure, interruptions of intracellular homeostasis include damage to lipids, proteins, enzymes and DNA via the production of free radicals. Following exposure to heavy metals, their metabolism and subsequent excretion from the body depends on the presence of antioxidants (glutathione, α-tocopherol, ascorbate, etc.) associated with the quenching of free radicals by suspending the activity of enzymes (catalase, peroxidase, and superoxide dismutase). Therefore, this review was written to provide a deep understanding of the mechanisms involved in eliciting their toxicity in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.
Collapse
|
31
|
Oxidative and Nitrosative Stress in Stable Renal Transplant Recipients with Respect to the Immunosuppression Protocol - Differences or Similarities? J Med Biochem 2015; 34:295-303. [PMID: 28356840 PMCID: PMC4922351 DOI: 10.2478/jomb-2014-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the study was to evaluate parameters of oxidative and nitrosative stress as well as antioxidative parameters in a group of renal transplant recipients with stable graft function and no clinical signs of cardiovascular disease. We also aimed to determine the correlations among these parameters and to evaluate potential differences in all the biomarkers with regard to the immunosuppression protocol. Methods We enrolled 57 renal transplant recipients and 31 controls who were age and sex matched with the renal transplant recipients. All of the patients included in this study had post-renal transplant surgery at least 12 months earlier and were on standard immunosuppressive therapy. In this study, we determined thiobarbituric acid-reactive substances in plasma and red blood cells and advanced oxidation protein products, nitrosative stress parameters (asymmetric and symmetric dimethylarginine – ADMA and SDMA), and antioxidative parameters (total SH groups and catalase activity). Results The results of our study demonstrated that the levels of oxidative and nitrosative stress were significantly increased compared to the healthy population (p<0.01 except for plasma catalase activity p<0.05). Correlation analysis showed significant positive correlations between: ADMA and SDMA (p<0.01); ADMA and nitrates (p<0.05); SDMA and nitrates (p<0.05); between OS parameters in the experimental group; AOPP and SH groups (p<0.05) and TBARS in plasma and SH groups (p<0.01), SDMA and AOPP (p< 0.05); SDMA and TBARS in plasma (p<0.05); SDMA and SH groups (p<0.01); nitrates and SH groups (p<0.05). Conclusion There was no significant difference in oxidative and nitrosative stress parameters with respect to the immunosuppressive protocol.
Collapse
|
32
|
Rincón J, Correia D, Arcaya JL, Finol E, Fernández A, Pérez M, Yaguas K, Talavera E, Chávez M, Summer R, Romero F. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension. Life Sci 2015; 124:81-90. [PMID: 25623850 DOI: 10.1016/j.lfs.2015.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
AIMS Activation of the renin-angiotensin system (RAS), renal oxidative stress and inflammation are constantly present in experimental hypertension. Nitric oxide (NO) inhibition with N(w)-nitro-L-arginine methyl ester (L-NAME) has previously been reported to produce hypertension, increased expression of Angiotensin II (Ang II) and renal dysfunction. The use of Losartan, an Ang II type 1 receptor (AT1R) antagonist has proven to be effective reducing hypertension and renal damage; however, the mechanism by which AT1R blockade reduced kidney injury and normalizes blood pressure in this experimental model is still complete unknown. The current study was designed to test the hypothesis that AT1R activation promotes renal NAD(P)H oxidase up-regulation, oxidative stress and cytokine production during L-NAME induced-hypertension. MAIN METHODS Male Sprague-Dawley rats were distributed in three groups: L-NAME, receiving 70 mg/100ml of L-NAME, L-NAME+Los, receiving 70 mg/100ml of L-NAME and 40 mg/kg/day of Losartan; and Controls, receiving water instead of L-NAME or L-NAME and Losartan. KEY FINDINGS After two weeks, L-NAME induced high blood pressure, renal overexpression of AT1R, NAD(P)H oxidase sub-units gp91, p22 and p47, increased levels of oxidative stress, interleukin-6 (IL-6) and interleukin-17 (IL-17). Also, we found increased renal accumulation of lymphocytes and macrophages. Losartan treatment abolished the renal expression of gp91, p22, p47, oxidative stress and reduced NF-κB activation and IL-6 expression. SIGNIFICANCE These findings indicate that NO induced-hypertension is associated with up-regulation of NADPH oxidase, oxidative stress production and overexpression of key inflammatory mediators. These events are associated with up-regulation of AT1R, as evidenced by their reversal with AT1R blocker treatment.
Collapse
Affiliation(s)
- J Rincón
- Centro de Medicina y Cirugía Experimental, Universidad del Zulia, Venezuela
| | - D Correia
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Venezuela
| | - J L Arcaya
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Venezuela
| | - E Finol
- Philosophisch-Naturwissenschaftliche Fakultät, Universität Basel, Yong Loo Lin School of Medicine, National University of, Singapore
| | - A Fernández
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Venezuela
| | - M Pérez
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Venezuela
| | - K Yaguas
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Venezuela
| | - E Talavera
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Venezuela
| | - M Chávez
- Escuela de Medicina, Universidad del Zulia, Venezuela
| | - R Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - F Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
33
|
Margaritelis NV, Veskoukis AS, Paschalis V, Vrabas IS, Dipla K, Zafeiridis A, Kyparos A, Nikolaidis MG. Blood reflects tissue oxidative stress: a systematic review. Biomarkers 2015; 20:97-108. [PMID: 25582635 DOI: 10.3109/1354750x.2014.1002807] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether the levels of oxidative stress biomarkers measured in blood reflect the tissue redox status. Data from studies that measured redox biomarkers in blood, heart, liver, kidney and skeletal muscle were analyzed. In seven out of nine investigated redox biomarkers (malondialdehyde, reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, vitamin C and E) there was generally good qualitative and quantitative agreement between the blood and tissues. In contrast, oxidized glutathione and the reduced to oxidized glutathione ratio showed poor agreement between the blood and tissues. This study suggests that most redox biomarkers measured in blood adequately reflect tissue redox status.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Serres , Greece
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hayakawa S, Ohashi K, Shibata R, Kataoka Y, Miyabe M, Enomoto T, Joki Y, Shimizu Y, Kambara T, Uemura Y, Yuasa D, Ogawa H, Matsuo K, Hiramatsu-Ito M, van den Hoff MJB, Walsh K, Murohara T, Ouchi N. Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model. J Am Soc Nephrol 2014; 26:636-46. [PMID: 25071081 DOI: 10.1681/asn.2014020210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heart disease contributes to the progression of CKD. Heart tissue produces a number of secreted proteins, also known as cardiokines, which participate in intercellular and intertissue communication. We recently reported that follistatin-like 1 (Fstl1) functions as a cardiokine with cardioprotective properties. Here, we investigated the role of cardiac Fstl1 in renal injury after subtotal nephrectomy. Cardiac-specific Fstl1-deficient (cFstl1-KO) mice and wild-type mice were subjected to subtotal (5/6) nephrectomy. cFstl1-KO mice showed exacerbation of urinary albumin excretion, glomerular hypertrophy, and tubulointerstitial fibrosis after subtotal renal ablation compared with wild-type mice. cFstl1-KO mice also exhibited increased mRNA levels of proinflammatory cytokines, including TNF-α and IL-6, NADPH oxidase components, and fibrotic mediators, in the remnant kidney. Conversely, systemic administration of adenoviral vectors expressing Fstl1 (Ad-Fstl1) to wild-type mice with subtotal nephrectomy led to amelioration of albuminuria, glomerular hypertrophy, and tubulointerstitial fibrosis, accompanied by reduced expression of proinflammatory mediators, NADPH oxidase components, and fibrotic markers in the remnant kidney. In cultured human mesangial cells, treatment with recombinant FSTL1 attenuated TNF-α-stimulated expression of proinflammatory cytokines. Treatment of mesangial cells with FSTL1 augmented the phosphorylation of AMP-activated protein kinase (AMPK), and inhibition of AMPK activation abrogated the anti-inflammatory effects of FSTL1. These data suggest that Fstl1 functions in cardiorenal communication and that the lack of Fstl1 production by myocytes promotes glomerular and tubulointerstitial damage in the kidney.
Collapse
Affiliation(s)
| | - Koji Ohashi
- Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maurice J B van den Hoff
- Department of Anatomy, Embryology & Physiology, Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands; and
| | - Kenneth Walsh
- Molecular Cardiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Noriyuki Ouchi
- Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| |
Collapse
|
35
|
Effect of a combined treatment with erythropoietin and melatonin on renal ischemia reperfusion injury in male rats. Clin Exp Nephrol 2014; 18:855-64. [DOI: 10.1007/s10157-014-0937-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/16/2014] [Indexed: 11/25/2022]
|
36
|
Ahmadiasl N, Banaei S, Alihemmati A, Baradaran B, Azimian E. The anti-inflammatory effect of erythropoietin and melatonin on renal ischemia reperfusion injury in male rats. Adv Pharm Bull 2013; 4:49-54. [PMID: 24409409 DOI: 10.5681/apb.2014.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure (ARF). The purpose of this study was to investigate the anti-inflammatory effect of erythropoietin (EPO) and melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. METHODS Male Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10mg/kg, i.p) and EPO (5000U/kg, i.p) were administered prior to ischemia. After 24 h reperfusion, blood samples were collected for the determination of total antioxidant capacity (TAC), malondialdehyde (MDA) and serum creatinine levels. Also, renal samples were taken for Immunohistochemical evaluation of Bcl2 and TNF-α (tumor necrosis factor-α) expression. RESULTS Ischemia reperfusion increased creatinine, TAC, MDA levels and TNF-α expression, also, IR decreased Bcl2 expression. Treatment with EPO or MEL decreased creatinine, MDA levels, and increased TAC level. Also, MEL up-regulated Bcl2 expression and down-regulated TNF-α expression compared with EPO. CONCLUSION Treatment with EPO and MEL had a curative effect on renal IR injury. These results may indicate that MEL protects against inflammation and apoptosis better than EPO in renal IR injury.
Collapse
Affiliation(s)
- Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shokofeh Banaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Azimian
- Department of Linguistics and Foreign Languages, Payame Noor University, Tehran, Iran
| |
Collapse
|
37
|
Aminzadeh MA, Reisman SA, Vaziri ND, Khazaeli M, Yuan J, Meyer CJ. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica 2013; 44:570-8. [PMID: 24195589 PMCID: PMC4046874 DOI: 10.3109/00498254.2013.852705] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic oxidative stress and inflammation are major mediators of chronic kidney disease (CKD) and result in impaired activation of the cytoprotective transcription factor Nrf2. Given the role of oxidative stress and inflammation in CKD pathogenesis, strategies aimed at restoring Nrf2 activity may attenuate CKD progression. The present study investigated whether the synthetic triterpenoid RTA dh404 (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-9,11-dihydro-trifluoroethyl amide or CDDO-dhTFEA) would afford renal protection in a 5/6 nephrectomized rat model of CKD. RTA dh404 (2 mg/kg/day) was orally administered once daily for 12 weeks after 5/6 nephrectomy surgery. The remnant kidneys from the vehicle-treated CKD rats showed activation of nuclear factor kappaB (NF-κB), upregulation of NAD(P)H oxidase, glomerulosclerosis, interstitial fibrosis and inflammation, as well as marked reductions in Nrf2 and its target gene products (i.e. catalase, heme oxygenase-1, thioredoxin 1, thioredoxin reductase 1 and peroxiredoxin 1). The functional and structural deficits in the kidney were associated with increased (∼30%) mean arterial pressure (MAP). Treatment with RTA dh404 restored MAP, increased Nrf2 and expression of its target genes, attenuated activation of NF-κB and transforming growth factor-β pathways, and reduced glomerulosclerosis, interstitial fibrosis and inflammation in the CKD rats. Thus, chronic treatment with RTA dh404 was effective in restoring Nrf2 activity and slowing CKD progression in rats following 5/6 nephrectomy.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, Schools of Medicine and Biological Science, University of California-Irvine , Orange, CA , USA , and
| | | | | | | | | | | |
Collapse
|
38
|
Jin K, Vaziri ND. Salt-sensitive hypertension in mitochondrial superoxide dismutase deficiency is associated with intra-renal oxidative stress and inflammation. Clin Exp Nephrol 2013; 18:445-52. [PMID: 23933891 DOI: 10.1007/s10157-013-0851-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Renal interstitial inflammation and oxidative stress are invariably present and play a key role in the pathogenesis of hypertension in experimental animals. Mitochondria are the major source of reactive oxygen species (ROS). ROS generated in the mitochondria are normally contained by the mitochondrial antioxidant system including manganese superoxide dismutase (MnSOD). We have previously shown that a high salt diet causes hypertension in MnSOD-deficient (MnSOD(+/-)) mice but not in wild-type mice. The present study was undertaken to determine the effect of a high salt diet on oxidative and inflammatory pathways in the kidneys of MnSOD(+/-) mice compared to the wild-type mice. METHODS Wild-type (MnSOD(+/+)) and MnSOD(+/-) mice were randomized to receive a regular or a high salt diet for 4 months. Tail arterial pressure was measured and timed urine collection was obtained. The animals were then euthanized and the kidneys were harvested and processed for histological examination and Western blot analyses. RESULTS In confirmation of our earlier study, a high salt diet resulted in a significant rise in arterial pressure and urinary albumin excretion in MnSOD(+/-) mice. This was accompanied by upregulation of NAD(P)H oxidase subunits, activation of nuclear factor kappa B, and elevation of PAI-1, iNOS, oxidized LDL receptor, and CD36 in the kidneys of the MnSOD(+/-) mice fed the high salt diet. In contrast, consumption of a high salt diet did not significantly alter blood pressure, urine protein excretion, or the measured oxidative and inflammatory mediators in the wild-type mice. CONCLUSION Salt-induced hypertension in MnSOD(+/-) mice is associated with activation of intra-renal inflammatory and ROS generating pathways.
Collapse
Affiliation(s)
- Kyubok Jin
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA, USA,
| | | |
Collapse
|
39
|
Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci 2013; 14:10979-97. [PMID: 23708099 PMCID: PMC3709713 DOI: 10.3390/ijms140610979] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
Pineal gland melatonin is the darkness hormone, while extra-pineal melatonin produced by the gonads, gut, retina, and immune competent cells acts as a paracrine or autocrine mediator. The well-known immunomodulatory effect of melatonin is observed either as an endocrine, a paracrine or an autocrine response. In mammals, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) blocks noradrenaline-induced melatonin synthesis in pinealocytes, which induces melatonin synthesis in macrophages. In addition, melatonin reduces NF-κB activation in pinealocytes and immune competent cells. Therefore, pathogen- or danger-associated molecular patterns transiently switch the synthesis of melatonin from pinealocytes to immune competent cells, and as the response progresses melatonin inhibition of NF-κB activity leads these cells to a more quiescent state. The opposite effect of NF-κB in pinealocytes and immune competent cells is due to different NF-κB dimers recruited in each phase of the defense response. This coordinated shift of the source of melatonin driven by NF-κB is called the immune-pineal axis. Finally, we discuss how this concept might be relevant to a better understanding of pathological conditions with impaired melatonin rhythms and hope it opens new horizons for the research of side effects of melatonin-based therapies.
Collapse
|
40
|
Park JH, Seo KS, Tadi S, Ahn BH, Lee JU, Heo JY, Han J, Song MS, Kim SH, Yim YH, Choi HS, Shong M, Kweon G. An indole derivative protects against acetaminophen-induced liver injury by directly binding to N-acetyl-p-benzoquinone imine in mice. Antioxid Redox Signal 2013; 18:1713-22. [PMID: 23121402 PMCID: PMC3619205 DOI: 10.1089/ars.2012.4677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS Acetaminophen (APAP)-induced liver injury is mainly due to the excessive formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the formation of a reactive intermediate, N-acetyl-p-benzoquinone imine (NAPQI), in both humans and rodents. Here, we show that the indole-derived synthetic compound has a protective effect against APAP-induced liver injury in C57Bl/6 mice model. RESULTS NecroX-7 decreased tert-butylhydroperoxide (t-BHP)- and APAP-induced cell death and ROS/RNS formation in HepG2 human hepatocarcinoma and primary mouse hepatocytes. In mice, NecroX-7 decreased APAP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and 3-nitrotyrosine (3-NT) formation, and also protected mice from APAP-induced liver injury and lethality by binding directly to NAPQI. The binding of NecroX-7 to NAPQI did not require any of cofactors or proteins. NecroX-7 could only scavenge NAPQI when hepatocellular GSH levels were very low. INNOVATION NecroX-7 is an indole-derived potent antioxidant molecule, which can be bound to some types of radicals and especially NAPQI. It is well known that the NAPQI is a major intermediate of APAP, which causes necrosis of hepatocytes in rodents and humans. Thus, blocking NAPQI formation or eliminating NAPQI are novel strategies for the treatment or prevention of APAP-induced liver injury instead of GSH replenishment. CONCLUSION Our data suggest that the indole-derivative, NecroX-7, directly binds to NAPQI when hepatic GSH levels are very low and the NAPQI-NecroX-7 complex is secreted to the blood from the liver. NecroX-7 shows more preventive and similar therapeutic effects against APAP-induced liver injury when compared to the effect of N-acetylcysteine in C57Bl/6 mice.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant 2013; 28:2038-45. [PMID: 23512109 DOI: 10.1093/ndt/gft022] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tubulo-interstitial nephropathy (TIN) is a common cause of chronic kidney disease (CKD). Consumption of an adenine-containing diet causes the accumulation of 2,8-dihydroxyadenine in the renal tubules triggering intense chronic TIN and progressive CKD in rats. CKD in this model is associated with, and largely driven by, oxidative stress and inflammation. Oxidative stress and inflammation in rats with spontaneous focal segmental glomerulosclerosis and rats with CKD induced by 5/6 nephrectomy are associated with an impaired activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) which is the master regulator of genes encoding many antioxidant and detoxifying enzymes. The effect of TIN on the Nrf2 pathway and its key target genes is unknown and was investigated here. METHODS Sprague-Dawley rats were randomized to control and adenine-treated (rat chow-containing 0.7% adenine for 2 weeks) groups and followed up for 4 weeks. RESULTS The adenine-treated animals exhibited marked azotemia, impaired urinary concentrating capacity, intense tubular and glomerular damage, interstitial inflammation and fibrosis. This was associated with an increased expression of NAD(P)H oxidase, cyclooxygenase-2 and 12-lipoxygenase, and activation of NF-κB, the master regulator of pro-inflammatory cytokines and chemokines. Oxidative stress and inflammation in the kidneys of adenine-treated animals was accompanied by an impaired activation of Nrf2 and down-regulation of its target gene products including, catalase, heme oxygenase-1 and glutamate-cysteine ligase. CONCLUSIONS Chronic TIN is associated with impaired Nrf2 activity which contributes to the pathogenesis of oxidative stress and inflammation and amplifies their damaging effects on the kidney.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
42
|
Hayata M, Kakizoe Y, Uchimura K, Morinaga J, Yamazoe R, Mizumoto T, Onoue T, Ueda M, Shiraishi N, Adachi M, Miyoshi T, Sakai Y, Tomita K, Kitamura K. Effect of a serine protease inhibitor on the progression of chronic renal failure. Am J Physiol Renal Physiol 2012; 303:F1126-35. [DOI: 10.1152/ajprenal.00706.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The number of the chronic renal failure (CRF) patients is increasing explosively. Hypertension, proteinuria, inflammation, fibrosis, and oxidative stress are intertwined in a complicated manner that leads to the progression of CRF. However, the therapeutic strategies to delay its progression are limited. Since serine proteases are involved in many processes that contribute to these risk factors, we investigated the effects of a synthetic serine protease inhibitor, camostat mesilate (CM), on the progression of CRF in 5/6 nephrectomized (Nx) rats. Eighteen male Sprague-Dawley rats were divided into three groups: a sham-operated group ( n = 6), a vehicle-treated Nx group ( n = 6), and a CM-treated Nx group ( n = 6). Following the 9-wk study period, both proteinuria and serum creatinine levels were substantially increased in the vehicle-treated Nx group, and treatment with CM significantly reduced proteinuria and serum creatinine levels. The levels of podocyte-associated proteins in glomeruli, such as nephrin and synaptopodin, were markedly decreased by 5/6 nephrectomy, and this was significantly ameliorated by CM. CM also suppressed the levels of inflammatory and fibrotic marker mRNAs including transforming growth factor-β1, TNF-α, collagen types I, III, and IV, and reduced glomerulosclerosis, glomerular hypertrophy, and interstitial fibrosis in histological studies. Furthermore, CM decreased the expression of NADPH oxidase component mRNAs, as well as reactive oxygen species generation and advanced oxidative protein product levels. Our present results strongly suggest the possibility that CM could be a useful therapeutic agent against the progression of CRF.
Collapse
Affiliation(s)
- Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Kohei Uchimura
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Jun Morinaga
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Rika Yamazoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Tomoaki Onoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Miki Ueda
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Naoki Shiraishi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Taku Miyoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Yoshiki Sakai
- Research Headquarters, Ono Pharmaceutical Company, Limited, Osaka, Japan
| | - Kimio Tomita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| | - Kenichiro Kitamura
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and
| |
Collapse
|
43
|
Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:269039. [PMID: 22919438 PMCID: PMC3424005 DOI: 10.1155/2012/269039] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 12/17/2022]
Abstract
Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8–10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes.
Collapse
|
44
|
Niranjan R, Nath C, Shukla R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 2012; 46:1167-77. [PMID: 22656125 DOI: 10.3109/10715762.2012.697626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melatonin has been known to affect a variety of astrocytes functions in many neurological disorders but its mechanism of action on neuroinflammatory cascade and alpha-7 nicotinic acetylcholine receptor (α7-nAChR) expression are still not properly understood. Present study demonstrated that treatment of C6 cells with melatonin for 24 hours significantly decreased lipopolysaccharide (LPS) induced nitrative and oxidative stress, expressions of cyclooxigenase-2 (COX-2), inducible nitric-oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Melatonin also modulated LPS-induced mRNA expressions of α7-nAChR and inflammatory cytokine genes. Furthermore, melatonin reversed LPS-induced changes in C/EBP homologous protein 10 (CHOP), microsomal prostaglandin E synthase-1(mPGES-1) and phosphorylated p38 mitogen activated protein kinase (P-p38). Treatment with pyrrolidine dithiocarbamate (PDTC) inhibited α7-nAChR mRNA expression in LPS-induced C6 cells. Our findings explored anti-neuroinflammatory action of melatonin, which may suggests its beneficial roles in the neuroinflammation associated disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
45
|
Overexpression of HGF transgene attenuates renal inflammatory mediators, Na(+)-ATPase activity and hypertension in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1590-9. [PMID: 22713485 DOI: 10.1016/j.bbadis.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022]
Abstract
Renal inflammation and oxidative stress are constantly present in experimental hypertension. Since the spontaneously hypertensive rat (SHR) has reduced levels of hepatocyte growth factor (HGF), which suppresses the activation of the proinflammatory nuclear transcription factor kappa B (NF-κB), we speculated that HGF deficiency could play a key role in the pathogenesis of hypertension in the SHR. To test this hypothesis we increased HGF in the SHR by HGF gene delivery. We found that kidneys of 15-week-old SHR had an important reduction in HGF mRNA and protein expression. Adult SHRs were randomly assigned to receive weekly hydrodynamic injection (1mg/kg) of a naked plasmid containing human HGF (hHGF) gene associated with a cytomegalovirus promoter (pCMV-HGF) or empty vector (pcDNA3.1) during 6weeks. WKY rats treated with pcDNA3.1 and pCMV-HGF served as controls. The kidneys in the hypertensive SHR untreated and treated with the empty vector had increased NF-κB activation, elevated mRNA and protein expression of RANTES, MCP-1 and IL-6 and increased oxidative stress. Activity of Na(+)-ATPase was increased while activity of Na(+), K(+)-ATPase was normal. hHGF gene therapy normalized renal NF-κB activity, proinflammatory cytokines, antioxidant status (GSH, SOD and CAT), Na(+)-ATPase activity, reduced renal injury and ameliorated hypertension. Our results suggest that reduction in HGF production plays a major role in the pathogenesis of hypertension in the SHR and increasing HGF is a potential therapeutic target in the treatment of hypertension.
Collapse
|
46
|
Yu X, Liu H, Zou J, Zhu J, Xu X, Ding X. Oxidative Stress in 5/6 Nephrectomized Rat Model: Effect of Alpha-Lipoic Acid. Ren Fail 2012; 34:907-14. [DOI: 10.3109/0886022x.2012.691012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 2012; 351:152-66. [PMID: 22245784 PMCID: PMC3288509 DOI: 10.1016/j.mce.2012.01.004] [Citation(s) in RCA: 481] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 12/15/2022]
Abstract
Many of melatonin's actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, UT Health Science Center, San Antonio, TX 78229-3900, United States
| | - Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Rennolds S. Ostrom
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Division of Dermatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Corresponding author at: Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, Suite 5000, Memphis, TN 38163, United States. Tel.: +1 901 448 3741. (A.T. Slominski)
| |
Collapse
|
48
|
Abstract
The pineal gland is a tiny endocrine gland whose physiologic role has been the focus of much research and much more speculation over the past century. This mini-review discusses recent findings which correlate melatonin and renal physiology, and postulates the presence of a "reno-pineal axis." Drawing lessons from comparative endocrinology, while quoting human data, it advocates the need to study the "reno-pineal axis" in greater detail.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and B.R.I.D.E, Karnal, Haryana, India
| | - Swati Agrawal
- Department of Gynaecology, Medical College, Gwalior, India
| | - Manisha Sahay
- Department of Nephrology, Osmania Medical College, Hyderabad, India
| |
Collapse
|
49
|
Mori Y, Hirano T. Ezetimibe alone or in combination with pitavastatin prevents kidney dysfunction in 5/6 nephrectomized rats fed high-cholesterol. Metabolism 2012; 61:379-88. [PMID: 21868047 DOI: 10.1016/j.metabol.2011.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/13/2023]
Abstract
We attempted to elucidate the relationship between cholesterol absorption and kidney damage by investigating the renoprotective effect of ezetimibe, a cholesterol absorption inhibitor, in 5/6 nephrectomized rats (Nx). The Nx or sham-operated rats (Sham) were fed 1% high-cholesterol diet (HC) containing ezetimibe (10 mg/[kg d]), pitavastatin (3 mg/[kg d]), or both for 8 weeks. Pathological changes, endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA), and oxidative stress were assessed in the kidney. The Sham fed HC exhibited hypercholesterolemia and glomerulosclerosis with macrophage infiltration in the kidney, and ezetimibe attenuated these changes. The Nx exhibited hypercholesterolemia, increased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), glomerulosclerosis with macrophage infiltration and interstitial fibrosis, and downregulation of eNOS mRNA. The HC increased cholesterol further and worsened the kidney damage with increased 8-OHdG. Ezetimibe attenuated the hypercholesterolemia, kidney dysfunction, and pathological changes. The beneficial effects of ezetimibe were significantly associated with reduced 8-OHdG (P < .01). Pitavastatin did not reduce cholesterol or 8-OHdG, but it did significantly suppress the kidney damage with upregulated eNOS mRNA by 2.5-fold (P < .02). The combination of ezetimibe and pitavastatin synergistically ameliorated the kidney damage. The kidney dysfunction and pathological changes were significantly associated with cholesterol, markers of cholesterol absorption (campesterol and cholestanol), and 8-OHdG (P < .001-.05). Multiple regression analysis revealed that the markers of cholesterol absorption were independently associated with the kidney damage. Ezetimibe confers renoprotective effects by inhibiting cholesterol absorption, which in turn reduces oxidative stress; and pitavastatin additively ameliorates kidney damage by increasing NO production via mechanisms independent of cholesterol reduction.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
50
|
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and B.R.I.D.E, Karnal, Haryana, India
| | - Tushar Bandgar
- Department of Endocrinology, K.E.M. Hospital, Mumbai, India
| | - Manisha Sahay
- Department of Nephrology, Osmania Medical College, Hyderabad, India
| |
Collapse
|