1
|
Tenebro CP, Marcial NBJM, Salcepuedes JJ, Torrecampo JC, Hernandez RD, Francisco JAP, Infante KMG, Belardo VJ, Paderes MC, Alvero RGY, Saludes JP, Dalisay DS. Visualization of renal rotenone accumulation after oral administration and in situ detection of kidney injury biomarkers via MALDI mass spectrometry imaging. Front Mol Biosci 2024; 11:1366278. [PMID: 39011141 PMCID: PMC11246995 DOI: 10.3389/fmolb.2024.1366278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
The examination of drug accumulation within complex biological systems offers valuable insights into the molecular aspects of drug metabolism and toxicity. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an innovative methodology that enables the spatial visualization and quantification of biomolecules as well as drug and its metabolites in complex biological system. Hence, this method provides valuable insights into the metabolic profile and any molecular changes that may occur as a result of drug treatment. The renal system is particularly vulnerable to adverse effects of drug-induced harm and toxicity. In this study, MALDI MSI was utilized to examine the spatial distribution of drug and renal metabolites within kidney tissues subsequent to a single oral dosage of the anticancer compound rotenone. The integration of ion mobility spectrometry with MALDI MSI enhanced the data acquisition and analysis, resulting to improved mass resolution. Subsequently, the MS/MS fragment ions of rotenone reference drug were detected and characterized using MALDI HDMS/MS imaging. Notably, drug accumulation was observed in the cortical region of the representative kidney tissue sections treated with rotenone. The histological examination of treated kidney tissues did not reveal any observable changes. Differential ion intensity of renal endogenous metabolites was observed between untreated and rotenone-treated tissues. In the context of treated kidney tissues, the ion intensity level of sphingomyelin (D18:1/16:0), a sphingolipid indicator of glomerular cell injury and renal damage, was found to be elevated significantly compared to untreated kidney tissues. Conversely, the ion intensities of choline, glycero-3-phosphocholine (GPC), inosine, and a lysophosphatidylcholine LysoPC(18:0) exhibited a significant decrease. The results of this study demonstrate the potential of MALDI MSI as a novel technique for investigating the in situ spatial distribution of drugs and renal endogenous molecules while preserving the anatomical integrity of the kidney tissue. This technique can be used to study drug-induced metabolism and toxicity in a dynamic manner.
Collapse
Affiliation(s)
- Chuckcris P Tenebro
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Neaven Bon Joy M Marcial
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Janine J Salcepuedes
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Josie C Torrecampo
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Rajelle D Hernandez
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | | | - Monissa C Paderes
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | - Jonel P Saludes
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
- Department of Biology, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
2
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
3
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
4
|
Debeljak Ž, Vinković Vrček I, Drinković N, Micek V, Galić E, Gorup D, Ćurlin M, Mandić D, Bandjak A, Pem B, Kalčec N, Ilić K, Pavičić I, Mimica S, Günday-Türeli N, Türeli E. Imaging mass spectrometry differentiates the effects of doxorubicin formulations on non-targeted tissues. Analyst 2022; 147:3201-3208. [DOI: 10.1039/d2an00355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging mass spectrometry indicated a wide range of chemical disturbances in a model of non-targeted organs of rats treated with different formulations of doxorubicin and enabled the differentiation of drug formulation-specific effects.
Collapse
Affiliation(s)
- Željko Debeljak
- University Hospital Osijek, Osijek, Croatia
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | | | | | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Emerik Galić
- JJ Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences, Osijek, Croatia
| | - Dunja Gorup
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | | | - Dario Mandić
- University Hospital Osijek, Osijek, Croatia
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | | | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Suzana Mimica
- University Hospital Osijek, Osijek, Croatia
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | | | | |
Collapse
|
5
|
Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, Alexandrov T, Eberlin LS, Sharma K. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics 2020; 16:11. [PMID: 31925564 PMCID: PMC7301343 DOI: 10.1007/s11306-020-1637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. OBJECTIVES In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. METHODS DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). RESULTS Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z's in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. CONCLUSION Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.
Collapse
Affiliation(s)
- Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
6
|
Rae Buchberger A, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 2018; 90:240-265. [PMID: 29155564 PMCID: PMC5959842 DOI: 10.1021/acs.analchem.7b04733] [Citation(s) in RCA: 598] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amanda Rae Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Liepinsh E, Makarova E, Sevostjanovs E, Hartmane D, Cirule H, Zharkova-Malkova O, Grinberga S, Dambrova M. Carnitine and γ-Butyrobetaine Stimulate Elimination of Meldonium due to Competition for OCTN2-mediated Transport. Basic Clin Pharmacol Toxicol 2017; 120:450-456. [PMID: 27983775 DOI: 10.1111/bcpt.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023]
Abstract
Meldonium (3-(2,2,2-trimethylhydrazinium)propionate) is the most potent clinically used inhibitor of organic cation transporter 2 (OCTN2). Inhibition of OCTN2 leads to a decrease in carnitine and acylcarnitine contents in tissues and energy metabolism optimization-related cardioprotective effects. The recent inclusion of meldonium in the World Anti-Doping Agency List of Prohibited Substances and Methods has raised questions about the pharmacokinetics of meldonium and its unusually long elimination time. Therefore, in this study, the rate of meldonium washout after the end of the treatment was tested with and without administration of carnitine, γ-butyrobetaine (GBB) and furosemide to evaluate the importance of competition for OCTN2 transport in mice. Here, we show that carnitine and GBB administration during the washout period effectively stimulated the elimination of meldonium. GBB induced a more pronounced effect on meldonium elimination than carnitine due to the higher affinity of GBB for OCTN2. The diuretic effect of furosemide did not significantly affect the elimination of meldonium, carnitine and GBB. In conclusion, the competition of meldonium, carnitine and GBB for OCTN2-mediated transport determines the pharmacokinetic properties of meldonium. Thus, due to their affinity for OCTN2, GBB and carnitine but not furosemide stimulated meldonium elimination. During long-term treatment, OCTN2-mediated transport ensures a high muscle content of meldonium, while tissue clearance depends on relatively slow diffusion, thus resulting in the unusually long complete elimination period of meldonium.
Collapse
Affiliation(s)
| | | | | | - Dace Hartmane
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|