1
|
Abstract
Almost a hundred years have passed since obstruction of the renal artery has been recognized to raise blood pressure. By now chronic renovascular disease (RVD) due to renal artery stenosis is recognized as a major source of renovascular hypertension and renal disease. In some patients, RVD unaccompanied by noteworthy renal dysfunction or blood pressure elevation may be incidentally identified during peripheral angiography. Nevertheless, in others, RVD might present as a progressive disease associated with diffuse atherosclerosis, leading to loss of renal function, renovascular hypertension, hemodynamic compromise, and a magnified risk for cardiovascular morbidity and mortality. Atherosclerotic RVD leads to renal atrophy, inflammation, and hypoxia but represents a potentially treatable cause of chronic renal failure because until severe fibrosis sets in the ischemic kidney, it retains a robust potential for vascular and tubular regeneration. This remarkable recovery capacity of the kidney begs for early diagnosis and treatment. However, accumulating evidence from both animal studies and randomized clinical trials has convincingly established the inadequate efficacy of renal artery revascularization to fully restore renal function or blood pressure control and has illuminated the potential of therapies targeted to the ischemic renal parenchyma to instigate renal regeneration. Some of the injurious mechanisms identified as potential therapeutic targets included oxidative stress, microvascular disease, inflammation, mitochondrial injury, and cellular senescence. This review recapitulates the intrinsic mechanisms that orchestrate renal damage and recovery in RVD and can be harnessed to introduce remedial opportunities.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Alejandro R. Chade
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, MO
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Ebrahimi B, Gandhi D, Alsaeedi MH, Lerman LO. Patterns of cortical oxygenation may predict the response to stenting in subjects with renal artery stenosis: A radiomics-based model. J Cardiovasc Magn Reson 2024; 26:100993. [PMID: 38218433 PMCID: PMC11211233 DOI: 10.1016/j.jocmr.2024.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Percutaneous-transluminal renal angioplasty (PTRA) and stenting aim to halt the progression of kidney disease in patients with renal artery stenosis (RAS), but its outcome is often suboptimal. We hypothesized that a model incorporating markers of renal function and oxygenation extracted using radiomics analysis of blood oxygenation-level dependent (BOLD)-MRI images may predict renal response to PTRA in swine RAS. MATERIALS AND METHODS Twenty domestic pigs with RAS were scanned with CT and BOLD MRI before and 4 weeks after PTRA. Stenotic (STK) and contralateral (CLK) kidney volume, blood flow (RBF), and glomerular filtration rate (GFR) were determined, and BOLD-MRI R2 * maps were generated before and after administration of furosemide, a tubular reabsorption inhibitor. Radiomics features were extracted from pre-PTRA BOLD maps and Robust features were determined by Intraclass correlation coefficients (ICC). Prognostic models were developed to predict post-PTRA renal function based on the baseline functional and BOLD-radiomics features, using Lasso-regression for training, and testing with resampling. RESULTS Twenty-six radiomics features passed the robustness test. STK oxygenation distribution pattern did not respond to furosemide, whereas in the CLK radiomics features sensitive to oxygenation heterogeneity declined. Radiomics-based model predictions of post-PTRA GFR (r = 0.58, p = 0.007) and RBF (r = 0.68; p = 0.001) correlated with actual measurements with sensitivity and specificity of 92% and 67%, respectively. Models were unsuccessful in predicting post-PTRA systemic measures of renal function. CONCLUSIONS Several radiomics features are sensitive to cortical oxygenation patterns and permit estimation of post-PTRA renal function, thereby distinguishing subjects likely to respond to PTRA and stenting.
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Department of Radiation and Cellular Oncology, University of Chicago, IL, 60637, USA
| | - Deep Gandhi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Mina H Alsaeedi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13:914-933. [PMID: 34367484 PMCID: PMC8316868 DOI: 10.4252/wjsc.v13.i7.914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Research Department, Cytopeutics, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
4
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
5
|
Afarideh M, Jiang K, Ferguson CM, Woollard JR, Glockner JF, Lerman LO. Magnetization Transfer Imaging Predicts Porcine Kidney Recovery After Revascularization of Renal Artery Stenosis. Invest Radiol 2021; 56:86-93. [PMID: 33405430 PMCID: PMC7793546 DOI: 10.1097/rli.0000000000000711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
MATERIALS AND METHODS Stenotic kidney (STK) and contralateral kidney magnetization transfer ratios (MTRs; Mt/M0) were measured at 3.0-T magnetic resonance imaging, at offset frequencies of 600 and 1000 Hz, before and 1 month post-PTRA in 7 RVD pigs. Stenotic kidney MTR was correlated to renal perfusion, renal blood flow (RBF), and glomerular filtration rate (GFR), determined using multidetector computed tomography and with ex vivo renal fibrosis (trichrome staining). Untreated RVD (n = 6) and normal pigs (n = 7) served as controls. RESULTS Renovascular disease induced hypertension and renal dysfunction. Blood pressure and renal perfusion were unchanged post-PTRA, but GFR and RBF increased. Baseline cortical STK-MTR predicted post-PTRA renal perfusion and RBF, and MTR changes associated inversely with changes in perfusion and normalized GFR. Stenotic kidney MTR at 600 Hz showed closer association with renal parameters, but both frequencies predicted post-PTRA cortical fibrosis. CONCLUSIONS Renal STK-MTR, particularly at 600 Hz offset, is sensitive to hemodynamic changes after PTRA in swine RVD and capable of noninvasively predicting post-PTRA kidney perfusion, RBF, and fibrosis. Therefore, STK-MTR may be a valuable tool to predict renal hemodynamic and functional recovery, as well as residual kidney fibrosis after revascularization in RVD.
Collapse
Affiliation(s)
| | - Kai Jiang
- From the Division of Nephrology and Hypertension
| | | | | | | | | |
Collapse
|
6
|
Improved renal outcomes after revascularization of the stenotic renal artery in pigs by prior treatment with low-energy extracorporeal shockwave therapy. J Hypertens 2020; 37:2074-2082. [PMID: 31246892 DOI: 10.1097/hjh.0000000000002158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Revascularization does not restore renal function in most patients with atherosclerotic renal artery stenosis (RAS), likely because of inflammation and fibrosis within the stenotic kidney. Low-energy shockwave therapy (LE-SWT) stimulates angiogenesis in the stenotic kidney, but its ability to improve renal function and structure after revascularization remains unexplored. We tested the hypothesis that a LE-SWT regimen before percutaneous transluminal renal angioplasty (PTRA) would enable PTRA to restore renal function in hypercholesterolemic pigs with RAS (HC+RAS), and that this would be associated with attenuation of renal inflammation and fibrosis. METHODS AND RESULTS Twenty-six pigs were studied after 16 weeks of HC+RAS, HC+RAS treated with PTRA with or without a preceding LE-SWT regimen (bi-weekly for 3 weeks), and controls. Single-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and oxygenation were assessed in vivo using imaging 4 weeks after PTRA, and then inflammation and fibrosis ex vivo.Four weeks after successful PTRA, blood pressure fell similarly in both revascularized groups. Yet, stenotic-kidney GFR remained lower in HC+RAS and HC+RAS+PTRA (P < 0.01 vs. normal), but was improved in HC+RAS+PTRA+SW (P > 0.05 vs. normal). Furthermore, reduced inflammation, medullary fibrosis, and cortical hypoxia were only shown in swine stenotic kidneys pretreated with LE-SWT before PTRA 4 weeks later. CONCLUSION LE-SWT delivery before revascularization permitted PTRA to improve function and decrease cortical and medullary damage in the stenotic swine kidney. This study, therefore, supports the use of an adjunct SW pretreatment to enhance the success of PTRA in blunting loss of kidney function in experimental HC+RAS.
Collapse
|
7
|
Simeoni M, Borrelli S, Garofalo C, Fuiano G, Esposito C, Comi A, Provenzano M. Atherosclerotic-nephropathy: an updated narrative review. J Nephrol 2020; 34:125-136. [PMID: 32270411 DOI: 10.1007/s40620-020-00733-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The increased prevalence of chronic kidney disease (CKD) in elderly patients recognizes, as main cause, the long-term exposure to atherosclerosis and hypertension. Chronic ischemic damage due to critical renal arterial stenosis induces oxidative stress and intra-renal inflammation, resulting in fibrosis and microvascular remodelling, that is the histological picture of atherosclerotic renal vascular disease (ARVD). The concomitant presence of a long history of hypertension may generate intimal thickening and luminal narrowing of renal arteries and arterioles, glomerulosclerosis, interstitial fibrosis and tubular atrophy, more typically expression of hypertensive nephropathy. These complex mechanisms contribute to the development of CKD and the progression to End Stage Kidney Disease. In elderly CKD patients, the distinction among these nephropathies may be problematic; therefore, ischemic and hypertensive nephropathies can be joined in a unique clinical syndrome defined as atherosclerotic nephropathy. The availability of novel diagnostic procedures, such as intra-vascular ultrasound and BOLD-MRI, in addition to traditional imaging, have opened new scenarios, because these tools allow to identify ischemic lesions responsive to renal revascularization. Indeed, although trials have deflated the role of renal revascularization on the renal outcomes, it should be still used to avoid dialysis initiation and/or to reduce blood pressure in selected elderly patients at high risk. Nonetheless, lifestyle modifications (smoking cessation, increased physical activity), statins and antiplatelet use, as well as cautious use of renin-angiotensin system inhibitors, remain the main therapeutic approach aimed at slowing the renal damage progression. Mesenchymal stem cells and Micro-RNA are promising target of anti-fibrotic therapy, which might provide potential benefit in ARVD patients, though safety and efficacy profile in humans is unknown too.
Collapse
Affiliation(s)
| | - Silvio Borrelli
- Nephrology and Dialysis Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Garofalo
- Nephrology and Dialysis Unit, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giorgio Fuiano
- Nephrology Units at University "Magna Graecia", Catanzaro, Italy
| | | | - Alessandro Comi
- Nephrology Units at University "Magna Graecia", Catanzaro, Italy
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Renovascular disease (RVD) remains an important cause of hypertension and renal dysfunction. Given the failure of renal revascularization to provide consistent clinical benefit in the Cardiovascular Outcomes for Renal Artery Lesions trial among others, further research has underscored the need for mechanistically targeted interventions to improve renal outcomes in patients in RVD. This review discusses novel therapeutic approaches for RVD in the post-Cardiovascular Outcomes for Renal Artery Lesions era. RECENT FINDINGS Emerging evidence indicates that renal inflammation, microvascular remodeling, and mitochondrial damage accelerate progression of renal injury and are important determinants of the response to revascularization. Experimental studies have identified interventions capable of ameliorating renal inflammation (e.g., cytokine inhibitors, mesenchymal stem cells), microvascular remodeling (proangiogenic interventions), and mitochondrial injury (mito-protective drugs), alone or combined with renal revascularization, to preserve the structure and function of the poststenotic kidney. Recent prospective pilot studies in patients with atherosclerotic RVD demonstrate the safety and feasibility of some of such interventions to protect the kidney. SUMMARY Experimental studies and pilot clinical trials suggest that therapies targeting renal inflammation, microvascular remodeling, and mitochondrial damage have the potential to preserve the structure and function of the stenotic kidney. Further studies in larger cohorts are needed to confirm their renoprotective effects and clinical role in human RVD.
Collapse
|
9
|
Duan Y, Xiang F, Li Q, Li K, Grajo JR, Samir AE. Predictive Value of Duplex Ultrasound for Significant In-Stent Restenosis after Percutaneous Transluminal Renal Artery Stent Placement: A Propensity Score Matching Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:913-920. [PMID: 30655110 PMCID: PMC7580866 DOI: 10.1016/j.ultrasmedbio.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/03/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
To evaluate the value of pre-stenting and early post-stenting (<1 mo) duplex ultrasound parameters in predicting significant in-stent restenosis (ISR), we matched significant ISR patients 1:1 with controls without ISR in pre-stenting and early post-stenting (<1 mo) periods, respectively, using propensity score matching. Duplex ultrasound parameters, such as renal length difference between non-lesion side and lesion side within patient, trans-lesion peak systolic velocity and renal aortic ratio, were compared between cases and controls, and the area under the receiver operating characteristic curve (AUROC) was charted to predict ISR. After propensity score matching, 28 cases were matched in the pre-stenting period and 16 cases in the early post-stenting time period. Pre-stenting renal length difference, early post-stenting peak systolic velocity and renal aortic ratio showed significant differences in case-control comparisons. Early post-stenting peak systolic velocity (AUROC: 0.826, cutoff: 141 cm/s) and renal aortic ratio (AUROC: 0.770, cutoff: 1.75) performed well in predicting significant ISR and may serve as non-invasive markers in ISR surveillance.
Collapse
Affiliation(s)
- Yu Duan
- Department of Medical Ultrasonics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Feixiang Xiang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Joseph R Grajo
- Division of Abdominal Imaging, Department of Radiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Zhang X, Kim SR, Ferguson CM, Ebrahimi B, Hedayat AF, Lerman A, Lerman LO. The Metabolic Syndrome Does Not Affect Development of Collateral Circulation in the Poststenotic Swine Kidney. Am J Hypertens 2018; 31:1307-1316. [PMID: 30107490 DOI: 10.1093/ajh/hpy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The collateral circulation is important in maintenance of blood supply to the ischemic kidney distal to renal artery stenosis (RAS). Obesity metabolic syndrome (MetS) preserves renal blood flow (RBF) in the stenotic kidney, but whether this is related to an increase of collateral vessel growth is unknown. We hypothesized that MetS increased collateral circulation around the renal artery. METHODS Twenty-one domestic pigs were randomly divided into unilateral RAS fed an atherogenic (high-fat/high-fructose, MetS-RAS) or standard diet, or controls (n = 7 each). RBF, glomerular filtration rate (GFR), and the peristenotic collateral circulation were assessed after 10 weeks using multidetector computed tomography (CT) and the intrarenal microcirculation by micro-CT. Vascular endothelial growth factor (VEGF) expression was studied in the renal artery wall, kidney, and perirenal fat. Renal fibrosis and stiffness were examined by trichrome and magnetic resonance elastography. RESULTS Compared with controls, RBF and GFR were decreased in RAS, but not in MetS-RAS. MetS-RAS formed peristenotic collaterals to the same extent as RAS pigs but induced greater intrarenal microvascular loss, fibrosis, stiffness, and inflammation. MetS-RAS also attenuated VEGF expression in the renal tissue compared with RAS, despite increased expression in the perirenal fat. CONCLUSIONS MetS does not interfere with collateral vessel formation in the stenotic kidney, possibly because decreased renal arterial VEGF expression offsets its upregulation in perirenal fat, arguing against a major contribution of the collateral circulation to preserve renal function in MetS-RAS. Furthermore, preserved renal function does not protect the poststenotic kidney from parenchymal injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher M Ferguson
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Behzad Ebrahimi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmad F Hedayat
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res 2018; 43:701-718. [PMID: 29763891 DOI: 10.1159/000489745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs.
Collapse
Affiliation(s)
- Abdullah Ozkok
- University of Health Sciences, Umraniye Training and Research Hospital, Department of Nephrology, Istanbul, Turkey,
| | - Alaattin Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
12
|
Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 2017; 92:114-124. [PMID: 28242034 DOI: 10.1016/j.kint.2016.12.023] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.
Collapse
Affiliation(s)
- Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amrutesh S Puranik
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly A McGurren
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
13
|
Saad A, Herrmann SM, Textor SC. Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease? Physiology (Bethesda) 2016; 30:175-82. [PMID: 25933818 DOI: 10.1152/physiol.00065.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Occlusive renovascular disease caused by atherosclerotic renal artery stenosis (ARAS) elicits complex biological responses that eventually lead to loss of kidney function. Recent studies indicate a complex interplay of oxidative stress, endothelial dysfunction, and activation of fibrogenic and inflammatory cytokines as a result of atherosclerosis, hypoxia, and renal hypoperfusion in this disorder. Human studies emphasize the limits of the kidney adaptation to reduced blood flow, eventually leading to renal hypoxia with activation of inflammatory and fibrogenic pathways. Several randomized prospective clinical trials show that stent revascularization alone in patients with atherosclerotic renal artery stenosis provides little additional benefit to medical therapy once these processes have developed and solidified. Experimental data now support developing adjunctive cell-based measures to support angiogenesis and anti-inflammatory renal repair mechanisms. These data encourage the study of endothelial progenitor cells and/or mesenchymal stem/stromal cells for the repair of damaged kidney tissue.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
15
|
Ohnishi H, Mizuno S, Mizuno-Horikawa Y, Kato T. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury. J Vet Med Sci 2015; 77:313-9. [PMID: 25833353 PMCID: PMC4383777 DOI: 10.1292/jvms.14-0562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating
progression to chronic kidney disease through vascular endothelial injury or dysfunction.
Thus, it is critical to elucidate the molecular mechanism of endothelial protection and
regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute
to tissue reconstitution in several types of organs post-injury, but little is known
whether and how BMCs contribute to renal endothelial reconstitution, especially in an
early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that
incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells)
becomes evident within four days after renal ischemia and reperfusion, associated with an
increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in
CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of
infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth
muscle cell-like cells. These results suggest that reconstitution of renal endothelium
post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident
endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for
selecting a cellular lineage (s), required for renal vascular protection, repair and
homeostasis, even in an earlier phase of AKI.
Collapse
Affiliation(s)
- Hiroyuki Ohnishi
- Department of Biochemistry, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita 565–0871; 2. Kinjo Gakuin University College of Pharmacy, 2-1723 Oomori, Moriyama-ku, Nagoya 463-8521, Japan
| | | | | | | |
Collapse
|
16
|
Kwon SH, Lerman LO. Atherosclerotic renal artery stenosis: current status. Adv Chronic Kidney Dis 2015; 22:224-31. [PMID: 25908472 DOI: 10.1053/j.ackd.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Atherosclerotic renal artery stenosis (ARAS) remains a major cause of secondary hypertension and kidney failure. Randomized prospective trials show that medical treatment should constitute the main therapeutic approach in ARAS. Regardless of intensive treatment and adequate blood pressure control, however, renal and extrarenal complications are not uncommon. Yet, the precise mechanisms, accurate detection, and optimal treatment in ARAS remain elusive. Strategies oriented to early detection and targeting these pathogenic pathways might prevent development of clinical end points. Here, we review the results of recent clinical trials, current understanding of the pathogenic mechanisms, novel imaging techniques to assess kidney damage in ARAS, and treatment options.
Collapse
|
17
|
Lerman LO, Textor SC. Gained in translation: protective paradigms for the poststenotic kidney. Hypertension 2015; 65:976-82. [PMID: 25712725 DOI: 10.1161/hypertensionaha.114.04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Lilach O Lerman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| | - Stephen C Textor
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Model Mech 2015; 8:281-93. [PMID: 25633980 PMCID: PMC4348565 DOI: 10.1242/dmm.017699] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapy is a promising strategy for treating chronic kidney disease (CKD) and is currently the focus of preclinical studies. We performed a systematic review and meta-analysis to evaluate the efficacy of cell-based therapy in preclinical (animal) studies of CKD, and determined factors affecting cell-based therapy efficacy in order to guide future clinical trials. In total, 71 articles met the inclusion criteria. Standardised mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcome parameters including plasma urea, plasma creatinine, urinary protein, blood pressure, glomerular filtration rate, glomerulosclerosis and interstitial fibrosis. Sub-analysis for each outcome measure was performed for model-related factors (species, gender, model and timing of therapy) and cell-related factors (cell type, condition and origin, administration route and regime of therapy). Overall, meta-analysis showed that cell-based therapy reduced the development and progression of CKD. This was most prominent for urinary protein (SMD, 1.34; 95% CI, 1.00–1.68) and urea (1.09; 0.66–1.51), both P<0.001. Changes in plasma urea were associated with changes in both glomerulosclerosis and interstitial fibrosis. Sub-analysis showed that cell type (bone-marrow-derived progenitors and mesenchymal stromal cells being most effective) and administration route (intravenous or renal artery injection) were significant predictors of therapeutic efficacy. The timing of therapy in relation to clinical manifestation of disease, and cell origin and dose, were not associated with efficacy. Our meta-analysis confirms that cell-based therapies improve impaired renal function and morphology in preclinical models of CKD. Our analyses can be used to optimise experimental interventions and thus support both improved preclinical research and development of cell-based therapeutic interventions in a clinical setting.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
19
|
Eirin A, Zhu XY, Ebrahimi B, Krier JD, Riester SM, van Wijnen AJ, Lerman A, Lerman LO. Intrarenal Delivery of Mesenchymal Stem Cells and Endothelial Progenitor Cells Attenuates Hypertensive Cardiomyopathy in Experimental Renovascular Hypertension. Cell Transplant 2014; 24:2041-53. [PMID: 25420012 DOI: 10.3727/096368914x685582] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Renovascular hypertension (RVH) leads to left ventricular (LV) hypertrophy and diastolic dysfunction, associated with increased cardiovascular mortality. Intrarenal delivery of endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) improves kidney function in porcine RVH, and the potent anti-inflammatory properties of MSCs may serve to blunt inflammatory mediators in the cardiorenal axis. However, their relative efficacy in attenuating cardiac injury and dysfunction remains unknown. This study tested the hypothesis that the cardioprotective effect of EPCs and MSCs delivered into the stenotic kidney in experimental RVH are comparable. Pigs (n = 7 per group) were studied after 10 weeks of RVH or control untreated or treated with a single intrarenal infusion of autologous EPCs or MSCs 4 weeks earlier. Cardiac and renal function (fast CT) and stenotic kidney release of inflammatory mediators (ELISA) were assessed in vivo, and myocardial inflammation, remodeling, and fibrosis ex vivo. After 10 weeks of RVH, blood pressure was not altered in cell-treated groups, yet stenotic kidney glomerular filtration rate (GFR), blunted in RVH, improved in RVH + EPC, and normalized in RVH + MSCs. Stenotic kidney release of monocyte chemoattractant protein (MCP)-1 and its myocardial expression were elevated in RVH + EPC, but normalized only in RVH + MSC pigs. RVH-induced LV hypertrophy was normalized in both EPC- and MSC-treated pigs, while diastolic function (E/A ratio) was restored to normal levels exclusively in RVH + MSCs. RVH-induced myocardial fibrosis and collagen deposition decreased in RVH + EPCs but further decreased in RVH + MSC-treated pigs. Intrarenal delivery of EPCs or MSCs attenuates RVH-induced myocardial injury, yet MSCs restore diastolic function more effectively than EPCs, possibly by greater improvement in renal function or reduction of MCP-1 release from the stenotic kidney. These observations suggest a therapeutic potential for EPCs and MSCs in preserving the myocardium in chronic experimental RVH.
Collapse
Affiliation(s)
- Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Eirin A, Williams BJ, Ebrahimi B, Zhang X, Crane JA, Lerman A, Textor SC, Lerman LO. Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension. J Hypertens 2014; 32:154-65. [PMID: 24048008 DOI: 10.1097/hjh.0b013e3283658a53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Renovascular hypertension (RVHT) increases cardiovascular morbidity and mortality. Renal revascularization with percutaneous transluminal renal angioplasty and stenting (PTRS) may reverse RVHT but may not fully regress cardiac remodeling and damage, possibly due to persistent myocardial insults. Bendavia is a mitochondrial targeted peptide that reduces ischemic cardiomyopathy by improving mitochondrial function. However, its potential for attenuating residual myocardial damage after reversal of RVHT has not been explored. We hypothesized that treatment with Bendavia as an adjunct to PTRS would improve cardiac function and oxygenation, and decrease myocardial injury in swine RVHT. METHODS AND RESULTS After 6 weeks of RVHT (unilateral renal artery stenosis) or control, pigs underwent PTRS (or sham), with adjunct continuous infusion of Bendavia (0.05 mg/kg intravenously, 30 min before to 3.5 h after PTRS) or vehicle (n = 7 each). Four weeks later, systolic and diastolic function were assessed by multidetector computed tomography, myocardial oxygenation by blood oxygen level-dependent MRI, and myocardial morphology, apoptosis, mitochondrial biogenesis, and fibrosis evaluated ex vivo. PTRS restored blood pressure in both groups, yet E/A ratio remained decreased. Myocardial oxygenation and mitochondrial biogenesis improved, and myocardial inflammation, oxidative stress, and fibrosis normalized in association with improvement in diastolic function in RVHT + PTRS + Bendavia animals. CONCLUSION Adjunct Bendavia during PTRS in swine RVHT improved diastolic function and oxygenation and reversed myocardial tissue damage. This approach may allow a novel strategy for preservation of cardiac function and structure in RVHT.
Collapse
Affiliation(s)
- Alfonso Eirin
- aDivision of Nephrology and Hypertension, Department of Internal Medicine bDivision of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li B, Bai W, Sun P, Zhou B, Hu B, Ying J. The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J Interferon Cytokine Res 2014; 35:23-31. [PMID: 24955809 DOI: 10.1089/jir.2014.0004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endothelial progenitor cells (EPCs) may contribute to vascular repair and angiogenesis. Chemokine (C-X-C motif) ligand 12 (CXCL12/SDF-1) is known to play an important role in the mobilization and recruitment of progenitor cells. Therefore, we assessed the function of CXCL12 as a stimulating molecule of angiogenesis in EPCs and the underlying mechanism after intracerebral hemorrhage (ICH). Isolated EPCs from male Sprague-Dawley rats, stimulate with various doses of CXCL12. Then, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the proliferation of EPCs, and cell migration and adhesion were analyzed by transwell chamber assay. Furthermore, mRNA levels of endothelial markers von Willebrand Factor (vWF), Tie-2, and vascular endothelial cadherin (VE-cadherin) were explored by real-time polymerase chain reaction. Capillary tube and vessel formation in vitro and in vivo were detected after pretreatment with the C-X-C chemokine receptor type 4 (CXCR4) inhibitor AMD3100. Following stimulation with various doses of CXCL12, an obvious dose-dependent increase in the proliferation, migration, and adhesion of EPCs was confirmed. Furthermore, the mRNA levels of endothelial markers vWF, Tie-2, and VE-cadherin were also demonstrated in CXCL12-treated EPCs, indicating that CXCL12 could regulate EPC differentiation to endothelial cells. Importantly, these increases depended on the activation of CXCR4 signaling, as pretreatment with CXCR4 inhibitor AMD3100 dramatically dampened the CXCL12-induced effects. Additionally, blocking CXCR4 signaling dampened CXCL12-induced angiogenic activity both in vitro and in vivo. Following construction of a rodent ICH model, scaffolds delivering CXCL12 together with EPCs resulted in an evident increase in blood vessel formation; however, this increase in blood vessels was attenuated with delivery of AMD3100. CXCL12 stimulates EPCs to induce angiogenesis though the CXCR4 pathway after ICH. Consequently, our findings provide a potential target for angiogenesis in ICH.
Collapse
Affiliation(s)
- Boyuan Li
- Department of Neurosurgery, No.323 Hospital of PLA, Xi'an, China
| | | | | | | | | | | |
Collapse
|
22
|
Eirin A, Ebrahimi B, Zhang X, Zhu XY, Woollard JR, He Q, Textor SC, Lerman A, Lerman LO. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res 2014; 103:461-72. [PMID: 24947415 DOI: 10.1093/cvr/cvu157] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS The mechanisms responsible for renal injury in atherosclerotic renovascular disease (ARVD) are incompletely understood, and few therapeutic options are available to reverse it. We hypothesized that chronic renal damage involves mitochondrial injury, and that mitochondrial protection would reduce renal fibrosis and dysfunction in ARVD pigs. METHODS AND RESULTS Domestic pigs were studied after 10 weeks of ARVD or sham, treated for the last 4 weeks with daily subcutaneous injections (5 days/week) of vehicle or Bendavia (0.1 mg/kg), a tetrapeptide that preserves cardiolipin content in the mitochondrial inner membrane. Single-kidney haemodynamics and function were studied using fast-computer tomography, oxygenation using blood oxygen level-dependent magnetic resonance imaging, microvascular architecture, oxidative stress, and fibrosis ex vivo. Cardiolipin content was assessed using mass spectrometry and staining. Renal endothelial function was studied in vivo and ex vivo. In addition, swine renal artery endothelial cells incubated with tert-butyl hydroperoxide were also treated with Bendavia. Stenotic-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) decreased in ARVD + Vehicle compared with normal (318.8 ± 61.0 vs. 553.8 ± 82.8 mL/min and 48.0 ± 4.0 vs. 84.0 ± 3.8 mL/min, respectively) associated with loss of cardiolipin, intra-renal microvascular rarefaction, and hypoxia. Bendavia restored cardiolipin content in ARVD and improved vascular density, oxygenation, RBF (535.1 ± 24.9 mL/min), and GFR (86.6 ± 11.2 mL/min). Oxidative stress and fibrosis were ameliorated, and renovascular endothelial function normalized both in vivo and in vitro. CONCLUSION Preservation of mitochondrial cardiolipin attenuated swine stenotic-kidney microvascular loss and injury, and improved renal oxygenation, haemodynamics, and function. These observations implicate mitochondrial damage in renal deterioration in chronic experimental ARVD, and position the mitochondria as a central therapeutic target.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Behzad Ebrahimi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Quan He
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Liu S, Soong Y, Seshan SV, Szeto HH. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 2014; 306:F970-80. [PMID: 24553434 DOI: 10.1152/ajprenal.00697.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microvascular rarefaction, or loss of microvascular density, is increasingly implicated in the progression from acute ischemic kidney injury to chronic kidney disease. Microvascular dropout results in chronic tissue hypoxia, interstitial inflammation, and fibrosis. There is currently no therapeutic intervention for microvascular rarefaction. We hypothesize that capillary dropout begins with ischemic damage to endothelial mitochondria due to cardiolipin peroxidation, resulting in loss of cristae and the failure to regenerate ATP upon reperfusion. SS-31 is a cell-permeable peptide that targets the inner mitochondrial membrane and binds selectively to cardiolipin. It was recently shown to inhibit cardiolipin peroxidation by cytochrome c peroxidase activity, and it has been shown to protect mitochondrial cristae in proximal tubular cells during ischemia, and accelerated ATP recovery upon reperfusion. We found mitochondrial swelling and loss of cristae membranes in endothelial and medullary tubular epithelial cells after 45-min ischemia in the rat. The loss of cristae membranes limited the ability of these cells to regenerate ATP upon reperfusion and led to loss of vascular integrity and to tubular cell swelling. SS-31 prevented mitochondria swelling and protected cristae membranes in both endothelial and epithelial cells. By minimizing endothelial and epithelial cell injury, SS-31 prevented "no-reflow" after ischemia and significantly reduced the loss of peritubular capillaries and cortical arterioles, interstitial inflammation, and fibrosis at 4 wk after ischemia. These results suggest that mitochondria protection represents an upstream target for pharmacological intervention in microvascular rarefaction and fibrosis.
Collapse
Affiliation(s)
- Shaoyi Liu
- Dept. of Pharmacology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10021.
| | | | | | | |
Collapse
|
24
|
Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 2014; 10:226-37. [DOI: 10.1038/nrneph.2014.14] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Ebrahimi B, Textor SC, Lerman LO. Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol 2013; 9:395-405. [PMID: 24370767 DOI: 10.2215/cjn.02900313] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Because of its noninvasive nature and provision of quantitative measures of a wide variety of physiologic parameters, functional magnetic resonance imaging (MRI) shows great potential for research and clinical applications. Over the past decade, application of functional MRI extended beyond detection of cerebral activity, and techniques for abdominal functional MRI evolved. Assessment of renal perfusion, glomerular filtration, interstitial diffusion, and parenchymal oxygenation turned this modality into an essential research and potentially diagnostic tool. Variations in many renal physiologic markers can be detected using functional MRI before morphologic changes become evident in anatomic magnetic resonance images. Moreover, the framework of functional MRI opened a window of opportunity to develop novel pathophysiologic markers. This article reviews applications of some well validated functional MRI techniques, including perfusion, diffusion-weighted imaging, and blood oxygen level-dependent MRI, as well as some emerging new techniques such as magnetic resonance elastography, which might evolve into clinically useful tools.
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
26
|
Eirin A, Lerman LO. Darkness at the end of the tunnel: poststenotic kidney injury. Physiology (Bethesda) 2013; 28:245-53. [PMID: 23817799 DOI: 10.1152/physiol.00010.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal artery stenosis remains an important contributor to renal failure in the elderly population, but uncertainty continues to surround the mechanisms underlying progressive renal dysfunction. Here, we present the current understanding of the pathogenic mechanisms responsible for renal injury in these patients, with emphasis on those involved in disease progression.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
27
|
Kelly KJ, Zhang J, Han L, Wang M, Zhang S, Dominguez JH. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy. Am J Physiol Renal Physiol 2013; 305:F1804-12. [PMID: 24133118 DOI: 10.1152/ajprenal.00097.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.
Collapse
Affiliation(s)
- Katherine J Kelly
- Veterans Affairs Medical Center, N111, 1481 W. 10th St., Indianapolis, IN 46202.
| | | | | | | | | | | |
Collapse
|
28
|
Saad A, Herrmann SMS, Crane J, Glockner JF, McKusick MA, Misra S, Eirin A, Ebrahimi B, Lerman LO, Textor SC. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate. Circ Cardiovasc Interv 2013; 6:428-35. [PMID: 23899868 DOI: 10.1161/circinterventions.113.000219] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. METHODS AND RESULTS Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (P<0.002) with increased cortical perfusion and blood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. CONCLUSIONS These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly explains the limited clinical benefit of renal stenting. These results identify potential therapeutic targets for recovery of kidney function in renovascular disease.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, and Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ebrahimi B, Eirin A, Li Z, Zhu XY, Zhang X, Lerman A, Textor SC, Lerman LO. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLoS One 2013; 8:e67474. [PMID: 23844014 PMCID: PMC3701050 DOI: 10.1371/journal.pone.0067474] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/17/2013] [Indexed: 12/16/2022] Open
Abstract
Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutaneous transluminal renal angioplasty (PTRA) can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis) and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10×106 cells intra-renal). Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD) MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1), and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3±0.9, −0.1±0.4, −1.6±0.9 and −3.6±1.0 s−1 in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05), which correlated with a decrease in medullary tubular injury score (R2 = 0.33, p = 0.02). Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of cell-based strategies for renal protection in ARAS.
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zilun Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang X, Eirin A, Li ZL, Crane JA, Krier JD, Ebrahimi B, Pawar AS, Zhu XY, Tang H, Jordan KL, Lerman A, Textor SC, Lerman LO. Angiotensin receptor blockade has protective effects on the poststenotic porcine kidney. Kidney Int 2013; 84:767-75. [PMID: 23615504 PMCID: PMC3732527 DOI: 10.1038/ki.2013.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/14/2013] [Accepted: 02/14/2013] [Indexed: 12/19/2022]
Abstract
Angiotensin converting enzyme inhibitors (ACEI)/ angiotensin-II receptor blockers (ARBs) may induce an acute decrease of glomerular filtration rate (GFR) in the stenotic kidney in renal artery stenosis, but most patients tolerate these drugs well. We hypothesized that ACEI/ARBs stabilize stenotic kidney function during prolonged treatment by conferring protective effects. We tested this in control domestic pigs and pigs with renal artery stenosis untreated or treated with valsartan, or triple therapy (7 pigs in each group) for 4 weeks starting 6 weeks after stenosis induction. Renal function, oxygenation, tubular function, and microcirculation were assessed by multi-detector computed tomography (CT), blood-oxygen-level-dependent magnetic-resonance imaging, and micro-CT. Valsartan and triple therapy decreased blood pressure similarly, however, valsartan did not change the GFR of the stenotic kidney compared to renal artery stenosis and was similar to triple therapy. Both valsartan and triple therapy stimulated microvascular density, and improved tubular function. Valsartan also caused a greater increase of angiogenic factors and a decrease in oxidative stress, which were related to higher cortical perfusion and tubular response than triple therapy. Thus, valsartan did not decrease stenotic kidney GFR, but improved cortical perfusion and microcirculation. These beneficial effects may partly offset the hemodynamic GFR reduction in renal artery stenosis and preserve kidney function.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kidney. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Eirin A, Ebrahimi B, Lerman LO. Cell-Based Therapies as an Adjunct to Revascularization in Experimental Atherosclerotic Reno Vascular Disease. JOURNAL OF CLINICAL & EXPERIMENTAL CARDIOLOGY 2012; 3. [PMID: 24319626 DOI: 10.4172/2155-9880.1000e108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alfonso Eirin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|