1
|
Chen L, Cheng S, Ying J, Zhang Q, Wang C, Wu H, Wang Y, Zhang H, Wang J, Ye J, Zhang L. Aristolochic acid I promotes renal tubulointerstitial fibrosis by up-regulating expression of indoleamine 2,3-dioxygenase-1 (IDO1). Toxicol Lett 2024:S0378-4274(24)02052-6. [PMID: 39547317 DOI: 10.1016/j.toxlet.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Aristolochic acid I (AAI) is strongly nephrotoxic and can cause "Aristolochic acid nephropathy (AAN)". Aristolochic acid nephropathy is characterized by extensive renal interstitial fibrosis. However, the exact mechanism by which it occurs has not been fully elucidated. lt has been reported that indoleamine 2,3-dioxygenase-1 (IDO1) promotes renal fibrosis in renal disorders, but it is unclear how IDO1 functions in AAI-induced kidney fibrosis. In this work, we systematically examined the role of IDO1 in AAI-induced renal tubulointerstitial fibrosis. The results showed that AAI induced upregulation of IDO1 expression in renal tubular epithelial cells and mouse kidney. Inhibition of IDO1 expression reduced the levels of fibrosis-associated markers α-SMA, COL-I and FN and ameliorated renal tubular epithelial cell fibrosis. It also improved renal function, reduced collagen deposition, and ameliorated interstitial fibrosis in mice. Moreover, we discovered that inhibition of IDO1 decreased the expression of the apoptotic protein BAX, raised the expression of BCL-2 protein, and reduced apoptosis. The above studies suggest that IDO1 is a target of action in renal tubulointerstitial fibrosis caused by AAI, and inhibition of IDO1 may be a viable approach for the therapy of AAI-induced renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Langqun Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Siyu Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jiahui Ying
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Qi Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chen Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Huimin Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hong Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jiahe Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jing Ye
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Hong H, Zhou S, Zheng J, Shi H, Chen Y, Li M. Metabolic Assessment in Non-Dialysis Patients with Chronic Kidney Disease. J Inflamm Res 2024; 17:5521-5531. [PMID: 39176038 PMCID: PMC11339343 DOI: 10.2147/jir.s461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose The aim of this study was to investigate the changes of different metabolites in the body fluids of non-dialysis patients with chronic kidney disease (CKD) using a metabolomics approach. The goal was to identify early biomarkers of CKD progression through metabolic pathway analysis. Patients and Methods Plasma samples from 47 patients with stages 1-4 CKD not requiring dialysis and 30 healthy controls were analyzed by liquid chromatography-mass spectrometry (LC-MS). Using multivariate data analysis, specifically a partially orthogonal least squares discriminant analysis model (OPLS-DA), we investigated metabolic differences between different stages of CKD. The sensitivity and specificity of the analysis were evaluated using the Area Under Curve (AUC) method. Furthermore, the metabolic pathways were analyzed using the Met PA database. Results Plasma samples from CKD patients and controls were successfully differentiated using an OPLS-DA model. Initially, twenty-five compounds were identified as potential plasma metabolic markers for distinguishing CKD patients from healthy controls. Among these, six compounds (ADMA, D-Ornithine, Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid) were found to be associated with CKD progression It has been found to be associated with the progression of CKD. Changes in metabolic pathways associated with CKD progression include arginine and ornithine metabolism, tryptophan metabolism, and the pentose phosphate pathway. Conclusion By analyzing the metabolic pathways of different metabolites, we have identified the significant impact of CKD progression. The main metabolic pathways involved are Arginine and Ornithine metabolism, Tryptophan metabolism, and Pentose phosphate pathway. ADMA, D-Ornithine, L-Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid could serve as potential early biomarkers for CKD progression. These findings have important implications for the early intervention and treatment of CKD, as well as for further research into the underlying mechanisms of its pathogenesis.
Collapse
Affiliation(s)
- Hao Hong
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Suya Zhou
- Laboratory Nephrology, Jinshan hospital of Fudan University, Shanghai, People’s Republic of China
| | - Junyao Zheng
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Haimin Shi
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Yue Chen
- Laboratory Nephrology, The First People’s Hospital of Kunshan, Soochow, Suzhou, People’s Republic of China
| | - Ming Li
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| |
Collapse
|
3
|
Mogos M, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Balint L, Ienciu S, Iancu L, Jianu DC, Ursoniu S, Petrica L. Biomarker Profiling with Targeted Metabolomic Analysis of Plasma and Urine Samples in Patients with Type 2 Diabetes Mellitus and Early Diabetic Kidney Disease. J Clin Med 2024; 13:4703. [PMID: 39200845 PMCID: PMC11355042 DOI: 10.3390/jcm13164703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Over the years, it was noticed that patients with diabetes have reached an alarming number worldwide. Diabetes presents many complications, including diabetic kidney disease (DKD), which can be considered the leading cause of end-stage renal disease. Current biomarkers such as serum creatinine and albuminuria have limitations for early detection of DKD. Methods: In our study, we used UHPLC-QTOF-ESI+-MS techniques to quantify previously analyzed metabolites. Based on one-way ANOVA and Fisher's LSD, untargeted analysis allowed the discrimination of six metabolites between subgroups P1 versus P2 and P3: tryptophan, kynurenic acid, taurine, l-acetylcarnitine, glycine, and tiglylglycine. Results: Our results showed several metabolites that exhibited significant differences among the patient groups and can be considered putative biomarkers in early DKD, including glycine and kynurenic acid in serum (p < 0.001) and tryptophan and tiglylglycine (p < 0.001) in urine. Conclusions: Although we identified metabolites as potential biomarkers in the present study, additional studies are needed to validate these results.
Collapse
Grants
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania, doctoral grant GD 2020 "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania,
- GD 2020 "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania,
- GD 2020 "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania,
Collapse
Affiliation(s)
- Maria Mogos
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Carmen Socaciu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
- Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta, Str. Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Adrian Vlad
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
- Department of Internal Medicine II—Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Oana Milas
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Octavian Marius Cretu
- Department of Surgery I—Division of Surgical Semiology I, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- Emergency Clinical Municipal Hospital Timisoara, 300079 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Mihaela Glavan
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Lavinia Balint
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Silvia Ienciu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Lavinia Iancu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
| | - Dragos Catalin Jianu
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
- Department of Neurosciences—Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and History of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (M.M.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (S.I.); (L.I.); (L.P.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania; (A.V.); (D.C.J.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (S.U.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase controls purinergic receptor-mediated ischemia-reperfusion injury in renal tubular epithelial cells. J Basic Clin Physiol Pharmacol 2023; 34:745-754. [PMID: 35918786 DOI: 10.1515/jbcpp-2022-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury (AKI). Experimental studies have shown that indoleamine 2,3-dioxygenase 1 (IDO) and the purinergic receptor P2X7 contribute to kidney I-R injury. We evaluated whether there is an interplay between IDO and P2X7 in the pathogenesis of I-R injury. METHODS Primary renal proximal tubular epithelial cells (RPTECs) were subjected to anoxia or reoxygenation with or without specific inhibitors. Cell imaging, colorimetric assays, and Western blotting were used. RESULTS Cell imaging revealed that inhibition of IDO, or all the purinergic receptors with an ATPase, or specific inhibition of P2X7 rescued the cells from anoxia or reoxygenation-induced cell death. This was confirmed with LDH release assay, which also detected the ferroptotic nature of cell death due to reoxygenation. On the contrary, activated cleaved caspase 3 increased during anoxia, showing that apoptosis prevails. All the aforementioned treatments prevented caspase increase. Both anoxia and reoxygenation increased extracellular ATP, IDO, and P2X7 expression. IDO remained unaffected by the above-mentioned treatments. On the contrary, treatment with apyrase or inhibition of P2X7decreased extracellular ATP and P2X7 expression, which are also decreased by inhibition of IDO. The first indicates a positive feedback loop regarding P2X7 activation, expression and function, while the latter implies that IDO controls P2X7 expression. CONCLUSIONS In RPRECs subjected to anoxia or reoxygenation, IDO is upregulated, increasing P2X7 and contributing to anoxia or reoxygenation-induced cell death. Clarifying the molecular mechanisms implicated in kidney I-R injury is of particular interest since it may lead to new therapeutic strategies against AKI.
Collapse
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
5
|
Curran CS, Kopp JB. The complexity of nicotinamide adenine dinucleotide (NAD), hypoxic, and aryl hydrocarbon receptor cell signaling in chronic kidney disease. J Transl Med 2023; 21:706. [PMID: 37814337 PMCID: PMC10563221 DOI: 10.1186/s12967-023-04584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Early-stage detection of chronic kidney diseases (CKD) is important to treatment that may slow and occasionally halt CKD progression. CKD of diverse etiologies share similar histologic patterns of glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Macro-vascular disease and micro-vascular disease promote tissue ischemia, contributing to injury. Tissue ischemia promotes hypoxia, and this in turn activates the hypoxia-inducible transcription factors (HIFs). HIF-1α and HIF-2α, share a dimer partner, HIF-1β, with the aryl hydrocarbon receptor (AHR) and are each activated in CKD and associated with kidney cellular nicotinamide adenine dinucleotide (NAD) depletion. The Preiss-Handler, salvage, and de novo pathways regulate NAD biosynthesis and gap-junctions regulate NAD cellular retention. In the Preiss-Handler pathway, niacin forms NAD. Niacin also exhibits crosstalk with HIF and AHR cell signals in the regulation of insulin sensitivity, which is a complication in CKD. Dysregulated enzyme activity in the NAD de novo pathway increases the levels of circulating tryptophan metabolites that activate AHR, resulting in poly-ADP ribose polymerase activation, thrombosis, endothelial dysfunction, and immunosuppression. Therapeutically, metabolites from the NAD salvage pathway increase NAD production and subsequent sirtuin deacetylase activity, resulting in reduced activation of retinoic acid-inducible gene I, p53, NF-κB and SMAD2 but increased activation of FOXO1, PGC-1α, and DNA methyltransferase-1. These post-translational responses may also be initiated through non-coding RNAs (ncRNAs), which are additionally altered in CKD. Nanoparticles traverse biological systems and can penetrate almost all tissues as disease biomarkers and drug delivery carriers. Targeted delivery of non-coding RNAs or NAD metabolites with nanoparticles may enable the development of more effective diagnostics and therapies to treat CKD.
Collapse
Affiliation(s)
- Colleen S Curran
- National Heart Lung and Blood Institute, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
6
|
Hayes AJ, Zheng X, O'Kelly J, Neyton LPA, Bochkina NA, Uings I, Liddle J, Baillie JK, Just G, Binnie M, Homer NZM, Murray TBJ, Baily J, McGuire K, Skouras C, Garden OJ, Webster SP, Iredale JP, Howie SEM, Mole DJ. Kynurenine monooxygenase regulates inflammation during critical illness and recovery in experimental acute pancreatitis. Cell Rep 2023; 42:112763. [PMID: 37478012 DOI: 10.1016/j.celrep.2023.112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1β to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.
Collapse
Affiliation(s)
- Alastair J Hayes
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Xiaozhong Zheng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - James O'Kelly
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Lucile P A Neyton
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Natalia A Bochkina
- School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
| | - Iain Uings
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - John Liddle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | | | - George Just
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Margaret Binnie
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | | | - James Baily
- Charles River Laboratories, East Lothian, UK
| | - Kris McGuire
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - O James Garden
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Sarah E M Howie
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Damian J Mole
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Kim HR, Jin HS, Eom YB. Identification of Genetic Markers Linked to The Activity of Indoleamine 2,3-Dioxygenase and Kidney Function. Metabolites 2023; 13:metabo13040541. [PMID: 37110199 PMCID: PMC10144659 DOI: 10.3390/metabo13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme belonging to the kynurenine pathway. IDO activity has been suggested as a potential biomarker for early diagnosis of chronic kidney disease (CKD). The aim of this study was to perform coincident association analysis to gain genetic insights into the correlation between IDO activity and CKD. This study evaluated the association between IDO activity and CKD using the Korea Association REsource (KARE) cohort. Logistic and linear regression were used to analyze CKD and quantitative phenotypes such as IDO and estimated glomerular filtration rate (eGFR). Our results identified 10 single nucleotide polymorphisms (SNPs) that were coincidently associated with both IDO and CKD (p < 0.001). Among them, rs6550842, rs77624055, and rs35651150 were selected as potential candidates after excluding SNPs with insufficient evidence for having an association with IDO or CKD. Further expression quantitative trait loci (eQTL) analysis for variants at selected loci showed that rs6550842 and rs35651150 significantly affected the expression of NKIRAS1 and SH2D4A genes in human tissues, respectively. Additionally, we highlighted that the NKIRAS1 and BMP6 genes were correlated with IDO activity and CKD through signaling pathways associated with inflammation. Our data suggest that NKIRAS1, SH2D4A, and BMP6 were potential causative genes affecting IDO activity and CKD through integrated analysis. Identifying these genes could aid in early detection and treatment by predicting the risk of CKD associated with IDO activity.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Chungnam, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
9
|
Xie X, Yang X, Wu J, Tang S, Yang L, Fei X, Wang M. Exosome from indoleamine 2,3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res Ther 2022; 13:367. [PMID: 35902956 PMCID: PMC9331485 DOI: 10.1186/s13287-022-03075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) can repair itself completely. However, most moderate and severe patients undergoing IRI-AKI progress to chronic kidney disease due to incomplete repair. The present study is aimed to investigate the role of bone marrow mesenchymal stem cell-derived exosomes (MSC-Exo) with indoleamine 2,3-dioxygenase (IDO) overexpression on incomplete repair in mice after IRI. METHODS IRI mice was established by clamping the unilateral renal pedicles and challenged with MSC-Exo. Blood biochemical indexes and inflammation factors contents were measured by ELISA assay. Histopathological examinations were monitored by HE, Masson, Immunohistochemical and TUNEL staining. Immunofluorescence, flow cytometry and immunoblotting were used to detect the polarization of macrophages, respectively. RESULTS As compared to sham operation mice, IRI mice showed high contents of serum BUN and Scr, and more severe damaged kidney tissues on days 1 and 3, which all gradually declined over time, showing the lowest level on day 7 after injury. Once treated with MSCs-Exo that could directly transfer to kidney tubular cells, the restoration of kidney functions significantly accelerated by contrast to IRI mice, and the promotive effects were more obvious in IDO-overexpressed MSCs-Exo (MSCs-Exo-IDO)-treated IRI mice. Furthermore, MSCs-Exo-IDO administration also accelerated renal tubular cells proliferation, restrained tubular cells apoptosis, fibrosis and inflammation factor secretions during self-repair process compared to IRI mice, whose effects were higher than MSCs-Exo-NC-challenged IRI mice and IDO overexpressing plasmid-injected IRI mice. Mechanistically, MSCs-Exo-NC and MSCs-Exo-IDO exposure promoted the polarization from M1 macrophage to M2 macrophage, leading to more anti-inflammatory factors production, and subsequently altered the inflammatory microenvironment of renal tubular cells, which facilitated the self-repair process in mice after IRI. CONCLUSION MSCs-derived exosome accelerated renal self-repair in IRI mice by activating M2 macrophages polarization, which effects were amplified by IDO overexpression in MSCs. Potentially, genetically modified MSCs-Exo is an effective approach to improve renal self-repair in IRI-AKI mice.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiu Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Junxia Wu
- Department of Nephrology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shengjie Tang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - LiLi Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
10
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
11
|
Abstract
Kidney diseases have become one of the most common health care problems. Due to a growing number of advanced aged patients with concomitant disorders the prevalence of these diseases will increase over the coming decades. Despite available laboratory tests, accurate and rapid diagnosis of renal dysfunction has yet to be realized, and prognosis is uncertain. Moreover, data on diagnostic and prognostic markers in kidney diseases are lacking. The kynurenine (KYN) pathway is one of the routes of tryptophan (Trp) degradation, with biologically active substances presenting ambiguous properties. The KYN pathway is known to be highly dependent on immunological system activity. As the kidneys are one of the main organs involved in the formation, degradation and excretion of Trp end products, pathologies involving the kidneys result in KYN pathway activity disturbances. This review aims to summarize changes in the KYN pathway observed in the most common kidney disease, chronic kidney disease (CKD), with a special focus on diabetic kidney disease, acute kidney injury (AKI), glomerulonephritis and kidney graft function monitoring. Additionally, the importance of KYN pathway activity in kidney cancer pathogenesis is discussed, as are available pharmacological agents affecting KYN pathway activity in the kidney. Despite limited clinical data, the KYN pathway appears to be a promising target in the diagnosis and prognosis of kidney diseases. Modulation of KYN pathway activity by pharmacological agents should be considered in the treatment of kidney diseases.
Collapse
|
12
|
Wee HN, Liu JJ, Ching J, Kovalik JP, Lim SC. The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. Am J Nephrol 2021; 52:771-787. [PMID: 34753140 PMCID: PMC8743908 DOI: 10.1159/000519811] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington's disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. SUMMARY This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD+ production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. Key Messages: KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.
Collapse
Affiliation(s)
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| |
Collapse
|
13
|
Ebokaiwe AP, Obasi DO, Njoku RCC, Osawe S, Olusanya O, Kalu WO. Cyclophosphamide instigated hepatic-renal oxidative/inflammatory stress aggravates immunosuppressive indoleamine 2,3-dioxygenase in male rats: Abatement by quercetin. Toxicology 2021; 464:153027. [PMID: 34748891 DOI: 10.1016/j.tox.2021.153027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
The hepatic-renal toxicity associated with cyclophosphamide (CYP) treatment in both animals and humans have been reported. Quercetin, a dietary flavonoid, is known to elicit beneficial health effects. However, the influence of quercetin on the hepatic-renal toxicity associated with CYP-instigated indoleamine 2,3-dioxygenase is unavailable in the literature. The current study evaluated the effects of quercetin on the dysfunctional hepatic-renal status triggered by CYP exposure in rats. Experimental animals were exposed to CYP (100 mg/kg) or co-treated with quercetin (50 mg/kg) every other day for 7 days. Results revealed that quercetin treatment significantly assuaged CYP-mediated oxidative-inflammatory response, as well as augmenting serum levels of thyroid hormones. Additionally, quercetin attenuated CYP-induced reduction in antioxidant enzyme activities and enhanced hepatic-renal function markers, namely aspartate aminotransferase (AST), alanine aminotransferase (ALT), Alkaline phosphatase (ALP), and levels of urea and creatinine. Quercetin efficiently mitigated CYP-mediated increase in myeloperoxidase (MPO) activity, levels of nitric oxide and interleukin-6 (IL-6) in liver and kidney of rats. CYP-induced increase in the activities of immunosuppressive indoleamine 2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase (TDO) in the tissues was abated in quercetin co-treated rats. In conclusion, Quercetin ameliorated deficits in the hepatic-renal function in CYP-exposed rats by lowering the activities/expression of immunosuppressive IDO and TDO via diminution of oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria.
| | - Doris Olachi Obasi
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Rex Clovis C Njoku
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Sharon Osawe
- Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria
| | - Olasiende Olusanya
- Institute of Biophysics, University of Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beinjin, 100101, China; Department of Biochemistry, University of Benin, Benin City, Nigeria
| | - Winner O Kalu
- Department of Biochemistry, Rhema University, Aba, Nigeria
| |
Collapse
|
14
|
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I. The Role of Indoleamine 2,3-Dioxygenase in Renal Tubular Epithelial Cells Senescence under Anoxia or Reoxygenation. Biomolecules 2021; 11:1522. [PMID: 34680153 PMCID: PMC8533884 DOI: 10.3390/biom11101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion injury is the commonest form of acute kidney injury (AKI). Tubular epithelial cell senescence contributes to incomplete recovery from AKI and predisposes to subsequent chronic kidney disease. In cultures of primary proximal renal tubular epithelial cells (RPTECs) subjected to anoxia or reoxygenation, we evaluated the role of indoleamine 2,3-dioxygenase 1 (IDO) in cellular senescence. Proteins of interest were assessed with Western blotting or enzyme-linked immunosorbent assay or histochemically. Under anoxia or reoxygenation, IDO expression and activity were increased. Moreover, the two IDO-derived pathways, the general control nonderepressible 2 kinase (GCN2K) pathway and the aryl-hydrocarbon receptor (AhR) pathway, were also activated. A DNA damage response (DDR) took place and led to increased levels of the cell-cycle inhibitors p21 and p16, and senescence-associated β-galactosidase (SA-β-Gal) activity. Cell proliferation was inhibited, and more IL-6 was produced. The IDO inhibitor 1-DL-methyl-tryptophan ameliorated the DDR; decreased p21, p16, and SA-β-Gal activity; restored cell proliferation; and decreased IL-6 production. The AhR inhibitor CH223191 did not affect the above parameters. In conclusion, anoxia and the subsequent reoxygenation upregulate IDO. IDO depletes tryptophan and activates GCN2K. The latter enhances the anoxia- or reoxygenation-induced DDR, resulting in increased p21 and p16 expression and eventually leading to RPTEC senescence. Since cellular senescence affects AKI outcome, the role of IDO in cellular senescence and the possible therapeutic role of IDO inhibitors deserve further investigation.
Collapse
|
15
|
Tryptophan: From Diet to Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189904. [PMID: 34576067 PMCID: PMC8472285 DOI: 10.3390/ijms22189904] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the major causes of mortality worldwide. Inflammation is the underlying common mechanism involved in CVD. It has been recently related to amino acid metabolism, which acts as a critical regulator of innate and adaptive immune responses. Among different metabolites that have emerged as important regulators of immune and inflammatory responses, tryptophan (Trp) metabolites have been shown to play a pivotal role in CVD. Here, we provide an overview of the fundamental aspects of Trp metabolism and the interplay between the dysregulation of the main actors involved in Trp metabolism such as indoleamine 2, 3-dioxygenase 1 (IDO) and CVD, including atherosclerosis and myocardial infarction. IDO has a prominent and complex role. Its activity, impacting on several biological pathways, complicates our understanding of its function, particularly in CVD, where it is still under debate. The discrepancy of the observed IDO effects could be potentially explained by its specific cell and tissue contribution, encouraging further investigations regarding the role of this enzyme. Thus, improving our understanding of the function of Trp as well as its derived metabolites will help to move one step closer towards tailored therapies aiming to treat CVD.
Collapse
|
16
|
Local Inhibition of Indoleamine 2,3-Dioxygenase Mitigates Renal Fibrosis. Biomedicines 2021; 9:biomedicines9080856. [PMID: 34440060 PMCID: PMC8389588 DOI: 10.3390/biomedicines9080856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and renal fibrosis is an integral part of the pathophysiological mechanism underlying disease progression. In CKD patients, the majority of metabolic pathways are in disarray and perturbations in enzyme activity most likely contribute to the wide variety of comorbidities observed in these patients. To illustrate, catabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) gives rise to numerous biologically active metabolites implicated in CKD progression. Here, we evaluated the effect of antagonizing IDO on renal fibrogenesis. To this end, we antagonized IDO using 1-methyl-D-tryptophan (1-MT) and BMS-98620 in TGF-β-treated murine precision-cut kidney slices (mPCKS) and in mice subjected to unilateral ureteral obstruction (UUO). The fibrotic response was evaluated on both the gene and protein level using qPCR and western blotting. Our results demonstrated that treatment with 1-MT or BMS-985205 markedly reduced TGF-β-mediated fibrosis in mPCKS, as seen by a decreased expression of collagen type 1, fibronectin, and α-smooth muscle actin. Moreover, IDO protein expression clearly increased following UUO, however, treatment of UUO mice with either 1-MT or BMS-986205 did not significantly affect the gene and protein expression of the tested fibrosis markers. However, both inhibitors significantly reduced the renal deposition of collagen in UUO mice as shown by Sirius red and trichrome staining. In conclusion, this study demonstrates that IDO antagonism effectively mitigates fibrogenesis in mPCKS and reduces renal collagen accumulation in UUO mice. These findings warrant further research into the clinical application of IDO inhibitors for the treatment of renal fibrosis.
Collapse
|
17
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Liakopoulos V, Stefanidis I. Role of indoleamine 2,3-dioxygenase in ischemia-reperfusion injury of renal tubular epithelial cells. Mol Med Rep 2021; 23:472. [PMID: 33899121 PMCID: PMC8097759 DOI: 10.3892/mmr.2021.12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
The present study evaluated indoleamine 2,3-dioxygenase 1 (IDO) kinetics and how it affects cell survival during the two distinct phases of ischemia-reperfusion (I-R) injury. Primary renal proximal tubular epithelial cells (RPTECs) were cultured under anoxia or reoxygenation with or without the IDO inhibitor 1-DL-methyltryptophan, the aryl-hydrocarbon receptor (AhR) inhibitor CH223191 or the ferroptosis inhibitor α-tocopherol. Using cell imaging, colorimetric assays, PCR and western blotting, it was demonstrated that IDO was upregulated and induced apoptosis during anoxia. The related molecular pathway entails tryptophan degradation, general control non-derepressible-2 kinase (GCN2K) activation, increased level of phosphorylated eukaryotic translation initiation factor 2α, activating transcription factor (ATF)4, ATF3, C/EBP homologous protein, phosphorylated p53, p53, Bax, death receptor-5 and eventually activated cleaved caspase-3. Reoxygenation also upregulated IDO, which, in this case, induced ferroptosis. The related molecular pathway encompasses kynurenine production, AhR activation, cytochrome p450 enzymes increase, reactive oxygen species generation and eventually ferroptosis. In conclusion, in RPTECs, both anoxia and reoxygenation upregulated IDO, which in turn induced GCN2K-mediated apoptosis and AhR-mediated ferroptosis. Since both phases of I-R injury share IDO upregulation as a common point, its inhibition may prove a useful therapeutic strategy for preventing or attenuating I-R injury.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
18
|
Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22041921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
|
19
|
Čepcová D, Kema IP, Sandovici M, Deelman LE, Šišková K, Klimas J, Vavrinec P, Vavrincová-Yaghi D. The protective effect of 1-methyltryptophan isomers in renal ischemia-reperfusion injury is not exclusively dependent on indolamine 2,3-dioxygenase inhibition. Biomed Pharmacother 2021; 135:111180. [PMID: 33433354 DOI: 10.1016/j.biopha.2020.111180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Indolamine 2,3-dioxygenase (IDO), an enzyme that catalyses the metabolism of tryptophan, may play a detrimental role in ischemia-reperfusion injury (IRI). IDO can be inhibited by 1-methyl-tryptophan, which exists in a D (D-MT) or L (L-MT) isomer. These forms show different pharmacological effects besides IDO inhibition. Therefore, we sought to investigate whether these isomers can play a protective role in renal IRI, either IDO-dependent or independent. EXPERIMENTAL APPROACH We studied the effect of both isomers in a rat renal IRI model with a focus on IDO-dependent and independent effects. KEY RESULTS Both MT isomers reduced creatinine and BUN levels, with D-MT having a faster onset of action but shorter duration and L-MT a slower onset but longer duration (24 h and 48 h vs 48 h and 96 h reperfusion time). Interestingly, this effect was not exclusively dependent on IDO inhibition, but rather from decreased TLR4 signalling, mimicking changes in renal function. Additionally, L-MT increased the overall survival of rats. Moreover, both MT isomers interfered with TGF-β signalling and epithelial-mesenchymal transition. In order to study the effect of isomers in all mechanisms involved in IRI, a series of in vitro experiments was performed. The isomers affected signalling pathways in NK cells and tubular epithelial cells, as well as in dendritic cells and T cells. CONCLUSION AND IMPLICATIONS This study shows that both MT isomers have a renoprotective effect after ischemia-reperfusion injury, mostly independent of IDO inhibition, involving mutually different mechanisms. We bring novel findings in the pharmacological properties and mechanism of action of MT isomers, which could become a novel therapeutic target of renal IRI.
Collapse
Affiliation(s)
- Diana Čepcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Leo E Deelman
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Katarína Šišková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Ján Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Diana Vavrincová-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Melhem NJ, Chajadine M, Gomez I, Howangyin KY, Bouvet M, Knosp C, Sun Y, Rouanet M, Laurans L, Cazorla O, Lemitre M, Vilar J, Mallat Z, Tedgui A, Ait-Oufella H, Hulot JS, Callebert J, Launay JM, Fauconnier J, Silvestre JS, Taleb S. Endothelial Cell Indoleamine 2, 3-Dioxygenase 1 Alters Cardiac Function After Myocardial Infarction Through Kynurenine. Circulation 2020; 143:566-580. [PMID: 33272024 DOI: 10.1161/circulationaha.120.050301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS These data suggest that IDO could constitute a new therapeutic target during acute MI.
Collapse
Affiliation(s)
- Nada Joe Melhem
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Mouna Chajadine
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ingrid Gomez
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Kiave-Yune Howangyin
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Marion Bouvet
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Camille Knosp
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Yanyi Sun
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Marie Rouanet
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ludivine Laurans
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Olivier Cazorla
- PHYSIOLOGIE ET MÉDECINE EXPÉRIMENTALE DU COEUR ET DES MUSCLES (PHYMEDEXP), Institut national de la santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, France (O.C., J.F.)
| | - Mathilde Lemitre
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - José Vilar
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ziad Mallat
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.).,Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom (Z.M.)
| | - Alain Tedgui
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Hafid Ait-Oufella
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Jean-Sébastien Hulot
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Jacques Callebert
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, and Institut National de la Santé et de la Recherche Médicale UMR942, Hôpital Lariboisière, France (J.C., J.-M.L.)
| | - Jean-Marie Launay
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, and Institut National de la Santé et de la Recherche Médicale UMR942, Hôpital Lariboisière, France (J.C., J.-M.L.)
| | - Jeremy Fauconnier
- PHYSIOLOGIE ET MÉDECINE EXPÉRIMENTALE DU COEUR ET DES MUSCLES (PHYMEDEXP), Institut national de la santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, France (O.C., J.F.)
| | - Jean-Sébastien Silvestre
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Soraya Taleb
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| |
Collapse
|
21
|
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I. Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor. Mol Med Rep 2020; 23:41. [PMID: 33179104 PMCID: PMC7684866 DOI: 10.3892/mmr.2020.11679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
During the reperfusion phase of ischemia-reperfusion injury, reactive oxygen species (ROS) production aggravates the course of many diseases, including acute kidney injury. Among the various enzymes implicated in ROS production are the enzymes of the cytochromes P450 superfamily (CYPs). Since arylhydrocarbon receptor (AhR) controls the expression of certain CYPs, the involvement of this pathway was evaluated in reperfusion injury. Because AhR may interact with the nuclear factor erythroid 2-related factor 2 (Nrf2) and the hypoxia-inducible factor-1α (HIF-1α), whether such an interaction takes place and affects reperfusion injury was also assessed. Proximal renal proximal tubular epithelial cells were subjected to anoxia and subsequent reoxygenation. At the onset of reoxygenation, the AhR inhibitor CH223191, the HIF-1α activator roxadustat, or the ferroptosis inhibitor α-tocopherol were used. The activity of AhR, Nrf2, HIF-1α, and their transcriptional targets were assessed with western blotting. ROS production, lipid peroxidation and cell death were measured with colorimetric assays or cell imaging. Reoxygenation induced ROS production, lipid peroxidation and cell ferroptosis, whereas CH223191 prevented all. Roxadustat did not affect the above parameters. Reoxygenation activated AhR and increased CYP1A1, while CH223191 prevented both. Reoxygenation with or without CH223191 did not alter Nrf2 or HIF-1α activity. Thus, AhR is activated during reoxygenation and induces ROS production, lipid peroxidation and ferroptotic cell death. These detrimental effects may be mediated by AhR-induced CYP overexpression, while the Nrf2 or the HIF-1α pathways remain unaffected. Accordingly, the AhR pathway may represent a promising therapeutic target for the prevention of reperfusion injury.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
22
|
Cheng Y, Li Y, Benkowitz P, Lamina C, Köttgen A, Sekula P. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci Rep 2020; 10:12675. [PMID: 32728058 PMCID: PMC7391729 DOI: 10.1038/s41598-020-69559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Blood metabolites of the tryptophan pathway were found to be associated with kidney function and disease in observational studies. In order to evaluate causal relationship and direction, we designed a study using a bidirectional Mendelian randomization approach. The analyses were based on published summary statistics with study sizes ranging from 1,960 to 133,413. After correction for multiple testing, results provided no evidence of an effect of metabolites of the tryptophan pathway on estimated glomerular filtration rate (eGFR). Conversely, lower eGFR was related to higher levels of four metabolites: C-glycosyltryptophan (effect estimate = − 0.16, 95% confidence interval [CI] (− 0.22; − 0.1); p = 9.2e−08), kynurenine (effect estimate = − 0.18, 95% CI (− 0.25; − 0.11); p = 1.1e−06), 3-indoxyl sulfate (effect estimate = − 0.25, 95% CI (− 0.4; − 0.11); p = 6.3e−04) and indole-3-lactate (effect estimate = − 0.26, 95% CI (− 0.38; − 0.13); p = 5.4e−05). Our study supports that lower eGFR causes higher blood metabolite levels of the tryptophan pathway including kynurenine, C-glycosyltryptophan, 3-indoxyl sulfate, and indole-3-lactate. These findings aid the notion that metabolites of the tryptophan pathway are a consequence rather than a cause of reduced eGFR. Further research is needed to specifically examine relationships with respect to chronic kidney disease (CKD) progression among patients with existing CKD.
Collapse
Affiliation(s)
- Yurong Cheng
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Paula Benkowitz
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Köttgen
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Peggy Sekula
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.
| |
Collapse
|
23
|
Ketelhuth DFJ. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc Res 2020; 115:1408-1415. [PMID: 30847484 DOI: 10.1093/cvr/cvz067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Coronary heart disease and stroke, the two most common cardiovascular diseases worldwide, are triggered by complications of atherosclerosis. Atherosclerotic plaques are initiated by a maladaptive immune response triggered by accumulation of lipids in the artery wall. Hence, disease is influenced by several non-modifiable and modifiable risk factors, including dyslipidaemia, hypertension, smoking, and diabetes. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway of tryptophan (Trp) degradation, is modulated by inflammation and regarded as a key molecule driving immunotolerance and immunosuppressive mechanisms. A large body of evidence indicates that IDO-mediated Trp metabolism is involved directly or indirectly in atherogenesis. This review summarizes evidence from basic and clinical research showing that IDO is a major regulatory enzyme involved in the maintenance of immunohomeostasis in the vascular wall, as well as current knowledge about promising targets for the development of new anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, Univ. of Southern Denmark, J. B. Winsløws Vej 21(3), Odense C, Denmark
| |
Collapse
|
24
|
Davison LM, Liu JC, Huang L, Carroll TM, Mellor AL, Jørgensen TN. Limited Effect of Indolamine 2,3-Dioxygenase Expression and Enzymatic Activity on Lupus-Like Disease in B6.Nba2 Mice. Front Immunol 2019; 10:2017. [PMID: 31555267 PMCID: PMC6727869 DOI: 10.3389/fimmu.2019.02017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
B6.Nba2 mice spontaneously develop a lupus-like disease characterized by elevated levels of serum anti-nuclear autoantibody (ANA) immune complexes and constitutive type I interferon (IFNα) production. During disease progression, both plasmacytoid dendritic cells (pDCs) and antibody secreting plasma cells accumulate in spleens of B6.Nba2 mice. Indoleamine 2,3-dioxygenase (IDO) has been suggested to play a role in several autoimmune diseases including in the MRL/lpr model of mouse lupus-like disease; however, it remains unknown if IDO is involved in disease development and/or progression in other spontaneous models. We show here that IDO1 protein and total IDO enzymatic activity are significantly elevated in lupus-prone B6.Nba2 mice relative to B6 controls. IDO1 expression was restricted to PCs and SignR1+ macrophages in both strains, while significantly increased in B6.Nba2-derived SiglecH+ (SigH+) pDCs. Despite this unique expression pattern, neither pharmacologic inhibition of total IDO nor IDO1 gene ablation altered serum autoantibody levels, splenic immune cell activation pattern, or renal inflammation in B6.Nba2 mice. Interestingly, IDO pharmacologic inhibition, but not IDO1 deficiency, resulted in diminished complement factor C'3 fixation to kidney glomeruli, suggesting a possible therapeutic benefit of IDO inhibition in SLE patients with renal involvement.
Collapse
Affiliation(s)
- Laura M Davison
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jessica C Liu
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Lei Huang
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Thomas M Carroll
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Andrew L Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Trine N Jørgensen
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
25
|
Kordalewska M, Macioszek S, Wawrzyniak R, Sikorska-Wiśniewska M, Śledziński T, Chmielewski M, Mika A, Markuszewski MJ. Multiplatform metabolomics provides insight into the molecular basis of chronic kidney disease. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:49-57. [DOI: 10.1016/j.jchromb.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
|
26
|
Clària J, Moreau R, Fenaille F, Amorós A, Junot C, Gronbaek H, Coenraad MJ, Pruvost A, Ghettas A, Chu-Van E, López-Vicario C, Oettl K, Caraceni P, Alessandria C, Trebicka J, Pavesi M, Deulofeu C, Albillos A, Gustot T, Welzel TM, Fernández J, Stauber RE, Saliba F, Butin N, Colsch B, Moreno C, Durand F, Nevens F, Bañares R, Benten D, Ginès P, Gerbes A, Jalan R, Angeli P, Bernardi M, Arroyo V. Orchestration of Tryptophan-Kynurenine Pathway, Acute Decompensation, and Acute-on-Chronic Liver Failure in Cirrhosis. Hepatology 2019; 69:1686-1701. [PMID: 30521097 DOI: 10.1002/hep.30363] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Systemic inflammation (SI) is involved in the pathogenesis of acute decompensation (AD) and acute-on-chronic liver failure (ACLF) in cirrhosis. In other diseases, SI activates tryptophan (Trp) degradation through the kynurenine pathway (KP), giving rise to metabolites that contribute to multiorgan/system damage and immunosuppression. In the current study, we aimed to characterize the KP in patients with cirrhosis, in whom this pathway is poorly known. The serum levels of Trp, key KP metabolites (kynurenine and kynurenic and quinolinic acids), and cytokines (SI markers) were measured at enrollment in 40 healthy subjects, 39 patients with compensated cirrhosis, 342 with AD (no ACLF) and 180 with ACLF, and repeated in 258 patients during the 28-day follow-up. Urine KP metabolites were measured in 50 patients with ACLF. Serum KP activity was normal in compensated cirrhosis, increased in AD and further increased in ACLF, in parallel with SI; it was remarkably higher in ACLF with kidney failure than in ACLF without kidney failure in the absence of differences in urine KP activity and fractional excretion of KP metabolites. The short-term course of AD and ACLF (worsening, improvement, stable) correlated closely with follow-up changes in serum KP activity. Among patients with AD at enrollment, those with the highest baseline KP activity developed ACLF during follow-up. Among patients who had ACLF at enrollment, those with immune suppression and the highest KP activity, both at baseline, developed nosocomial infections during follow-up. Finally, higher baseline KP activity independently predicted mortality in patients with AD and ACLF. Conclusion: Features of KP activation appear in patients with AD, culminate in patients with ACLF, and may be involved in the pathogenesis of ACLF, clinical course, and mortality.
Collapse
Affiliation(s)
- Joan Clària
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain.,Hospital Clínic, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain.,Inserm, Centre de Recherche sur l'Inflammation, Université Paris Diderot-Paris, Département Hospitalo-Universitaire UNITY; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France
| | - François Fenaille
- CEA, INRA, Université Paris Saclay, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-Sur-Yvette, France
| | - Alex Amorós
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain
| | - Christophe Junot
- CEA, INRA, Université Paris Saclay, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-Sur-Yvette, France
| | - Henning Gronbaek
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alain Pruvost
- CEA, INRA Université Paris Saclay, Service de Pharmacologie et Immunoanalyse, Plateforme SMArt-MS, Gif-sur-Yvette, France
| | - Aurélie Ghettas
- CEA, INRA Université Paris Saclay, Service de Pharmacologie et Immunoanalyse, Plateforme SMArt-MS, Gif-sur-Yvette, France
| | - Emeline Chu-Van
- CEA, INRA, Université Paris Saclay, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-Sur-Yvette, France
| | | | - Karl Oettl
- Medical University of Graz, Graz, Austria
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, San Giovanni Battista Hospital, Torino, Italy
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain.,Department of Internal Medicine I, University of Bonn, Bonn, Germany.,J.W. Goethe University Hospital, Frankfurt, Germany
| | - Marco Pavesi
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain
| | - Carme Deulofeu
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain
| | | | - Thierry Gustot
- CUB Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Javier Fernández
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain.,Hospital Clínic, IDIBAPS and CIBERehd, Barcelona, Spain
| | | | - Faouzi Saliba
- Hôpital Paul Brousse, Université Paris-Sud, Villejuif, France
| | - Noémie Butin
- CEA, INRA, Université Paris Saclay, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-Sur-Yvette, France
| | - Benoit Colsch
- CEA, INRA, Université Paris Saclay, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-Sur-Yvette, France
| | - Christophe Moreno
- CUB Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - François Durand
- Inserm, Centre de Recherche sur l'Inflammation, Université Paris Diderot-Paris, Département Hospitalo-Universitaire UNITY; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France
| | | | - Rafael Bañares
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Pere Ginès
- Hospital Clínic, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Alexander Gerbes
- Department of Medicine II, University Hospital LMU Munich, Liver Center Munich, Munich, Germany
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver Disease Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Paolo Angeli
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain.,Unit of Internal Medicine and Hepatology, Department of Medicine, DIMED, University of Padova, Padoa, Italy
| | - Mauro Bernardi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure Consortium and Grifols Chair, Barcelona, Spain
| | | |
Collapse
|
27
|
Garvin AM, Jackson MA, Korzick DH. Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. Am J Physiol Heart Circ Physiol 2018; 315:H1434-H1442. [PMID: 29957016 DOI: 10.1152/ajpheart.00595.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both advancing age and estrogen loss exacerbate acute myocardial infarction in the female heart. However, the mechanistic underpinnings of age-related differences in cell death after ischemia-reperfusion (I/R) injury in female subjects and reductions in cardioprotective reserve capacity remain largely unexplored. The aim of the present study was to determine the efficacy of programmed necrosis inhibition on infarct size reduction and preservation of left ventricular (LV) function after I/R injury with female aging. Fischer 344 rats were ovariectomized (OVX) at 15 mo and studied at 24 mo (MO OVX) versus adult rats with intact ovaries (6 mo). After in vivo coronary artery ligation (55-min ischemia and 2- or 6-h reperfusion), necrostatin-1 (Nec-1; 3.5 or 5.7 mg/kg) delivered upon reperfusion significantly reduced infarct size by 37% and improved LV function in the MO OVX group ( P < 0.01). Although age-associated elevations in cyclophilin D and mitochondrial acetylation ( P < 0.001) were unaffected by Nec-1, profound reductions in IL-1, IL-6, and TNF-α ( P < 0.05) as well as cardiac immune cell infiltration were observed in MO OVX but not adult rats. We conclude that chronic inflammation and postmenopausal estrogen deficiency conspire to exacerbate acute infarction through a mechanism involving exaggerated mitochondria-mediated programmed necrosis through receptor-interacting protein 1 signaling. Modulatory effects of programmed necrosis inhibition on proinflammatory cytokine production after I/R reveal a potentially important mechanistic target to restore and preserve cardiac function in the OVX aged female heart. NEW & NOTEWORTHY Myocardial infarct size reduction by inhibition of programmed necrosis in aged female subjects suggests a dominant cell death pathway. Alterations in mitochondrial protein levels and acetylation underscore a mitochondria-dependent mechanism, whereas the profound cytokine reduction in aged subjects alone points to a divergent role for immune modulation of programmed necrosis and viable therapeutic target.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania
| | - Morgan A Jackson
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania
| | - Donna H Korzick
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania.,Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
28
|
Matheus LHG, Simão GM, Amaral TA, Brito RBO, Malta CS, Matos YST, Santana AC, Rodrigues GGC, Albejante MC, Bach EE, Dalboni MA, Camacho CP, Dellê H. Indoleamine 2, 3-dioxygenase (IDO) increases during renal fibrogenesis and its inhibition potentiates TGF-β 1-induced epithelial to mesenchymal transition. BMC Nephrol 2017; 18:287. [PMID: 28877670 PMCID: PMC5585959 DOI: 10.1186/s12882-017-0702-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
Background Indoleamine 2, 3-dioxygenase (IDO) is an immunomodulatory molecule that has been implicated in several biological processes. Although IDO has been linked with some renal diseases, its role in renal fibrosis is still unclear. Because IDO may be modulated by TGF-β1, a potent fibrogenic molecule, we hypothesized that IDO could be involved in renal fibrosis, especially acting in the TGF-β1-induced tubular epithelial-mesenchymal transition (EMT). We analyzed the IDO expression and activity in a model of renal fibrogenesis, and the effect of the IDO inhibitor 1-methyl-tryptophan (MT) on TGF-β1-induced EMT using tubular cell culture. Methods Male Wistar rats where submited to 7 days of UUO. Non-obstructed kidneys (CL) and kidneys from SHAM rats were used as controls. Masson’s Tricrome and macrophages counting were used to chatacterize the tissue fibrosis. The EMT was analysed though immunohistochemistry and qRT-PCR. Immunohistochemestry in tissue has used to show IDO expression. MDCK cells were incubated with TGF- β1 to analyse IDO expression. Additionally, effects of TGF- β1 and the inhibition of IDO over the EMT process was acessed by immunoessays and scrath wound essay. Results IDO was markedly expressed in cortical and medular tubules of the UUO kidneys. Similarly to the immunolocalizaton of TGF- β1, accompanied by loss of e-cadherin expression and an increase of mesenchymal markers. Results in vitro with MDCK cells, showed that IDO was increased after stimulus with TGF-β1, and treatment with MT potentiated its expression. MDCK stimulated with TGF-β1 had higher migratory activity (scratch-wound assay), which was exacerbated by MT treatment. Conclusions IDO is constitutively expressed in tubular cells and increases during renal fibrogenesis. Although IDO is induced by TGF-β1 in tubular cells, its chemical inhibitor acts as a profibrotic agent.
Collapse
Affiliation(s)
- Luiz Henrique Gomes Matheus
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Gislene Mendes Simão
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Taíssa Altieri Amaral
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Rodrigo Barbosa Oliveira Brito
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Camila Soares Malta
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Yves Silva Teles Matos
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Alexandre Chagas Santana
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Gabriela Gomes Cardoso Rodrigues
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Maria Clara Albejante
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Erna Elisabeth Bach
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Cleber Pinto Camacho
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil
| | - Humberto Dellê
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 2º subsolo, São Paulo, 01504-001, São Paulo, Brazil.
| |
Collapse
|
29
|
Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. Am J Respir Crit Care Med 2017; 194:415-28. [PMID: 27285640 DOI: 10.1164/rccm.201510-2106ci] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell death is intertwined with life in development, homeostasis, pathology, and aging. Until recently, apoptosis was the best known form of programmed cell death, whereas necrosis was for a long time considered accidental owing to physicochemical injury. However, identification of crucial signaling and execution molecules, which are highly regulated, revealed that necrosis encompasses several cell death modalities that can be therapeutically targeted. The best understood form of regulated necrosis is necroptosis, which is transduced by the kinase activities of receptor interacting protein kinase-1 and receptor interacting protein kinase-3, eventually leading to the activation of mixed lineage kinase domain-like and plasma membrane permeabilization. We are only beginning to appreciate the role of necroptosis in different pathological conditions, including critical illnesses. In this review, we discuss the molecular mechanisms of necroptosis and analyze the effect of inhibiting necroptosis in experimental models of critical illnesses. In view of the identification of an increasing number of cell death modalities, we also briefly discuss the simultaneous targeting of multiple cell death modalities because, depending on the cell type and cellular conditions, various types of cell death may contribute to the pathology.
Collapse
Affiliation(s)
- Gabriel Moreno-Gonzalez
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,3 Intensive Care Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Peter Vandenabeele
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,4 Methusalem Program, Ghent University, Ghent, Belgium; and
| | - Dmitri V Krysko
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and
| |
Collapse
|
30
|
Debnath S, Velagapudi C, Redus L, Thameem F, Kasinath B, Hura CE, Lorenzo C, Abboud HE, O'Connor JC. Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int J Tryptophan Res 2017; 10:1178646917694600. [PMID: 28469469 PMCID: PMC5398653 DOI: 10.1177/1178646917694600] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Objective: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms. We investigated the relationships of TRP metabolism with inflammatory markers in patients with T2D and CKD. Methods: Data were collected from a well-characterized cohort of type 2 diabetic individuals with all stages of CKD, including patients on hemodialysis. Key TRP metabolites (kynurenine [KYN], kynurenic acid [KYNA], and quinolinic acid [QA]), proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and C-reactive protein were measured in plasma. The KYN/TRP ratio was utilized as a surrogate marker for indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity. Results: There was a significant inverse association between circulating TRP level and stages of CKD (P < 0.0001). Downstream bioactive TRP metabolites KYN, KYNA, and QA were positively and robustly correlated with the severity of kidney disease (P < 0.0001). In multiple linear regression, neither TNF-α nor IL-6 was independently related to KYN/TRP ratio after adjusting for estimated glomerular filtration rate (eGFR). Only TNF-α was independently related to KYN after taking into account the effect of eGFR. Conclusions: Chronic kidney disease secondary to T2D may be associated with accumulation of toxic TRP metabolites due to both inflammation and impaired kidney function. Future longitudinal studies to determine whether the accumulation of KYN directly contributes to CKD progression and associated symptoms in patients with T2D are warranted.
Collapse
Affiliation(s)
- Subrata Debnath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chakradhar Velagapudi
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Laney Redus
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Farook Thameem
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Balakuntalam Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia E Hura
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carlos Lorenzo
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason C O'Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
31
|
Zhang Y, Ruan Y, Zhang P, Wang L. Increased indoleamine 2,3-dioxygenase activity in type 2 diabetic nephropathy. J Diabetes Complications 2017; 31:223-227. [PMID: 27646613 DOI: 10.1016/j.jdiacomp.2016.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
AIM The study aimed to test the hypothesis that indoleamine 2,3-dioxygenase (IDO) plays a pathogenic role in type 2 diabetic nephropathy (DN). METHODS One hundred individuals were recruited in our study from January 2012 to December 2013, including group A (control group, 24 healthy adults), group B (20 patients with latent glomerulonephritis), group C (32 type 2 DN patients, estimated glomerular filtration rate (eGFR) >30ml/min per 1.73m2), group D (24 maintenance hemodialysis, MHD patients). Clinical parameters such as gender, age, urine samples, serum creatinine, eGFR, L-tryptophan, L-kynurenine and 24h urinary protein were collected and analyzed. Group C was further divided on C1 (eGFR >60ml/min per 1.73m2) and C2 (eGFR 31-60ml/min per 1.73m2). RESULTS Age was not related to IDO activity (r=0.27, P=0.057), while eGFR was significantly related to IDO activity (r=-0.54, P=0.002). IDO activity was significantly higher in the group C1 than group A (P=0.003), group B (P=0.008), and lower than in group D (P=0.003). CONCLUSIONS IDO activity increased with severity of chronic kidney disease and negatively correlated with eGFR. Moreover, IDO activity was significantly increased in type 2 DN when eGFR was >60ml/min per 1.73m2, which suggested that IDO may closely correlate with the pathogenesis of type 2 DN.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, First Ring Road, Chengdu, Sichuan 610072, China
| | - Yizhe Ruan
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, First Ring Road, Chengdu, Sichuan 610072, China
| | - Ping Zhang
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, First Ring Road, Chengdu, Sichuan 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, First Ring Road, Chengdu, Sichuan 610072, China.
| |
Collapse
|
32
|
Kalim S, Rhee EP. An overview of renal metabolomics. Kidney Int 2017; 91:61-69. [PMID: 27692817 PMCID: PMC5380230 DOI: 10.1016/j.kint.2016.08.021] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023]
Abstract
The high-throughput, high-resolution phenotyping enabled by metabolomics has been applied increasingly to a variety of questions in nephrology research. This article provides an overview of current metabolomics methodologies and nomenclature, citing specific considerations in sample preparation, metabolite measurement, and data analysis that investigators should understand when examining the literature or designing a study. Furthermore, we review several notable findings that have emerged in the literature that both highlight some of the limitations of current profiling approaches, as well as outline specific strengths unique to metabolomics. More specifically, we review data on the following: (i) tryptophan metabolites and chronic kidney disease onset, illustrating the interpretation of metabolite data in the context of established biochemical pathways; (ii) trimethylamine-N-oxide and cardiovascular disease in chronic kidney disease, illustrating the integration of exogenous and endogenous inputs to the blood metabolome; and (iii) renal mitochondrial function in diabetic kidney disease and acute kidney injury, illustrating the potential for rapid translation of metabolite data for diagnostic or therapeutic aims. Finally, we review future directions, including the need to better characterize interperson and intraperson variation in the metabolome, pool existing data sets to identify the most robust signals, and capitalize on the discovery potential of emerging nontargeted methods.
Collapse
Affiliation(s)
- Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. Kynurenine, by activating aryl hydrocarbon receptor, decreases erythropoietin and increases hepcidin production in HepG2 cells: A new mechanism for anemia of inflammation. Exp Hematol 2015; 44:60-7.e1. [PMID: 26325330 DOI: 10.1016/j.exphem.2015.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/15/2015] [Accepted: 08/23/2015] [Indexed: 11/17/2022]
Abstract
It is known that inadequate erythropoietin (EPO) production contributes to the pathogenesis of anemia of inflammation, although the exact molecular mechanism is unknown. Aryl hydrocarbon receptor (AhR) may compete with hypoxia-inducible factor 2α (HIF-2α), the master regulator of EPO production, for binding with HIF-1β. The effect of kynurenine, an endogenous AhR activator that increases in inflammation, on EPO and hepcidin production was evaluated. HepG2 cells were treated with the hypoxia mimetic CoCl2, kynurenine, the AhR inhibitor CH223191, and combinations of these. EPO and hepcidin production was measured with enzyme-linked immunosorbent assay. HIF-2α and CYP1A1 levels, a transcriptional target of AhR, were assessed by Western blotting. CoCl2 increased EPO production and decreased hepcidin and CYP1A1. Kynurenine exerted the opposite effects. Wherever CH223191 was added, the inhibitor overcorrected kynurenine-induced alterations in both the presence and the absence of CoCl2. Also, treatment with CH223191 alone increased EPO and decreased hepcidin, indicating that there is a degree of constitutive AhR activation, possibly by other endogenous AhR activators. In conclusion, kynurenine, by competing with HIF-2α, may contribute to anemia of inflammation by decreasing EPO and increasing hepcidin production. The fact that inactivation of AhR alone induces EPO makes this transcription factor a potential therapeutic target in situations that require increased EPO.
Collapse
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| | | | - Ioannis Stefanidis
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| |
Collapse
|
34
|
The Mechanisms of Human Renal Epithelial Cell Modulation of Autologous Dendritic Cell Phenotype and Function. PLoS One 2015; 10:e0134688. [PMID: 26230727 PMCID: PMC4521940 DOI: 10.1371/journal.pone.0134688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
Proximal tubule epithelial cells (PTEC) of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC) as the model system. We demonstrate that PTEC express three inhibitory molecules: (i) cell surface PD-L1 that induces MoDC expression of PD-L1; (ii) intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii) soluble HLA-G (sHLA-G) that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.
Collapse
|
35
|
Sampangi S, Wang X, Beagley KW, Klein T, Afrin S, Healy H, Wilkinson R, Kassianos AJ. Human proximal tubule epithelial cells modulate autologous B-cell function. Nephrol Dial Transplant 2015; 30:1674-83. [DOI: 10.1093/ndt/gfv242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
|
36
|
Wan X, Hou LJ, Zhang LY, Huang WJ, Liu L, Zhang Q, Hu B, Chen W, Chen X, Cao CC. IKKα is involved in kidney recovery and regeneration of acute ischemia/reperfusion injury in mice through IL10-producing regulatory T cells. Dis Model Mech 2015; 8:733-42. [PMID: 26035380 PMCID: PMC4486855 DOI: 10.1242/dmm.018200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/17/2015] [Indexed: 12/30/2022] Open
Abstract
The recovery phase after kidney ischemia/reperfusion (IR) injury is often associated with the suppression of inflammation and the proliferation of tubular epithelial cells (TECs). The duration of this phase is often determined by the suppression of inflammation and the proliferation of TECs. Several lines of evidence suggest that IκB kinase α (IKKα) not only promotes the production of anti-inflammatory factors and/or prevents the production of inflammatory factors, but also induces the accompanying cell differentiation and regeneration, and suppresses inflammation. We therefore hypothesized that IKKα could participate in the kidney repair after IR injury and have used a mouse model of acute kidney injury (AKI) to test this. We found that IKKα mediated the repair of the kidney via infiltrated regulatory T (Treg) cells, which can produce anti-inflammatory cytokine IL10, and that IKKα also increased the proliferation of the surviving TECs and suppressed of inflammation. In addition, the expression of indoleamine 2,3-dioxygenase (IDO) in TECs is consistent with the infiltration of IL10-producing Treg cells. We conclude that IKKα is involved in kidney recovery and regeneration through the Treg cells that can produce IL10, which might be a potential therapeutic target that can be used to promote kidney repair after IR injury.
Collapse
Affiliation(s)
- Xin Wan
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li-Jun Hou
- Division of Neurosurgery, Department of Surgery and Shanghai Neurosurgical Institute, The Second Military Medical University, Changzheng Hospital, Shanghai 200003, China
| | - Li-Yuan Zhang
- Division of Nephrology, Department of Medicine, Affiliated Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang 222002, China
| | - Wen-Juan Huang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lin Liu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qian Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bo Hu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wen Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chang-Chun Cao
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
37
|
Affiliation(s)
- Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts; Metabolite Profiling, Broad Institute, Cambridge, Massachusetts; and
| | - Harold I Feldman
- Renal Electrolyte and Hypertension Division, Departments of Medicine and Biostatistics and Epidemiology, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Zhang L, Jiang F, Chen Y, Luo J, Liu S, Zhang B, Ye Z, Wang W, Liang X, Shi W. Necrostatin-1 attenuates ischemia injury induced cell death in rat tubular cell line NRK-52E through decreased Drp1 expression. Int J Mol Sci 2013; 14:24742-54. [PMID: 24351845 PMCID: PMC3876139 DOI: 10.3390/ijms141224742] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022] Open
Abstract
Necrostatin-1 (Nec-1) inhibits necroptosis and is usually regarded as having no effect on other cell deaths. Here, this study explored whether the addition of Nec-1 has an effect on cell death induced by simulated ischemia injury in rat tubular cell line NRK-52E. In addition, we also investigated the mechanism of Nec-1 attenuates cell death in this renal ischemia model. The NRK-52E cells were incubated with TNF-α + antimycinA (TA) for 24 h with or without Nec-1. Cell death was observed under fluorescent microscope and quantified by flow cytometry. Cell viabilities were detected by MTT assay. The protein expression of dynamin-related protein 1 (Drp1) was detected by Western blotting and immunofluorescence assay. Increased cell death in simulated ischemia injury of NRK-52E cells were markedly attenuated in the Nec-1 pretreated ischemia injury group. Meanwhile, cell viability was significantly improved after using Nec-1. In addition, we also observed that the protein expression of Drp1, a mediator of mitochondrial fission, was significantly increased in simulated ischemia injury group. Increased Drp1 expression in the ischemia injury group can be abolished by Nec-1 or Drp1-knock down, accompanied with decreased cell death and improved cell viabilities. These results suggest that Nec-1 may inhibit cell death induced by simulated ischemia injury in the rat tubular cell line NRK-52E through decreased Drp1 expression.
Collapse
Affiliation(s)
- Li Zhang
- Southern Medical University, Guangzhou 510080, China; E-Mail:
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Fen Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanhua University, Hengyang 421001, China; E-Mail:
| | - Yuanhan Chen
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Jialun Luo
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Shuangxin Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Bin Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Zhiming Ye
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Wenjian Wang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
- Authors to whom correspondence should be addressed; E-Mails: (X.L.); (W.S.); Tel./Fax: +86-20-8382-7812 (ext. 62027) (X.L. & W.S.)
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China; E-Mails: (Y.C.); (J.L.); (S.L.); (B.Z.); (Z.Y.); (W.W.)
- Authors to whom correspondence should be addressed; E-Mails: (X.L.); (W.S.); Tel./Fax: +86-20-8382-7812 (ext. 62027) (X.L. & W.S.)
| |
Collapse
|
39
|
Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar AM. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant 2013; 13:2805-18. [PMID: 24103001 DOI: 10.1111/ajt.12447] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/12/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
Kidney transplant injury occurs with ischemia and alloimmunity. Members of the receptor interacting protein kinase family (RIPK1,3) are key regulators of "necroptosis," a newly recognized, regulated form of necrosis. Necroptosis and apoptosis death appear to be counterbalanced as caspase-8 inhibition can divert death from apoptosis to necrosis. Inhibition of necroptosis in donor organs to limit injury has not been studied in transplant models. In this study, necroptosis was triggered in caspase inhibited tubular epithelial cells (TEC) exposed to tumor necrosis factor alpha in vitro, while RIPK1 inhibition with necrostatin-1 or use of RIPK3(-/-) TEC, prevented necroptosis. In vivo, short hairpin RNA silencing of caspase-8 in donor B6 mouse kidneys increased necroptosis, enhanced high-mobility group box 1 release, reduced renal function and accelerated rejection when transplanted into BALB/c recipients. Using ethidium homodimer perfusion to assess necrosis in vivo, necrosis was abrogated in RIPK3(-/-) kidneys postischemia. Following transplantation, recipients receiving RIPK3(-/-) kidneys had longer survival (p = 0.002) and improved renal function (p = 0.03) when compared to controls. In summary, we show for the first time that RIPK3-mediated necroptosis in donor kidneys can promote inflammatory injury, and has a major impact on renal ischemia-reperfusion injury and transplant survival. We suggest inhibition of necroptosis in donor organs may similarly provide a major clinical benefit.
Collapse
Affiliation(s)
- A Lau
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada; Department of Pathology, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rhee EP, Clish CB, Ghorbani A, Larson MG, Elmariah S, McCabe E, Yang Q, Cheng S, Pierce K, Deik A, Souza AL, Farrell L, Domos C, Yeh RW, Palacios I, Rosenfield K, Vasan RS, Florez JC, Wang TJ, Fox CS, Gerszten RE. A combined epidemiologic and metabolomic approach improves CKD prediction. J Am Soc Nephrol 2013; 24:1330-8. [PMID: 23687356 PMCID: PMC3736702 DOI: 10.1681/asn.2012101006] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/27/2013] [Indexed: 11/03/2022] Open
Abstract
Metabolomic approaches have begun to catalog the metabolic disturbances that accompany CKD, but whether metabolite alterations can predict future CKD is unknown. We performed liquid chromatography/mass spectrometry-based metabolite profiling on plasma from 1434 participants in the Framingham Heart Study (FHS) who did not have CKD at baseline. During the following 8 years, 123 individuals developed CKD, defined by an estimated GFR of <60 ml/min per 1.73 m(2). Numerous metabolites were associated with incident CKD, including 16 that achieved the Bonferroni-adjusted significance threshold of P≤0.00023. To explore how the human kidney modulates these metabolites, we profiled arterial and renal venous plasma from nine individuals. Nine metabolites that predicted CKD in the FHS cohort decreased more than creatinine across the renal circulation, suggesting that they may reflect non-GFR-dependent functions, such as renal metabolism and secretion. Urine isotope dilution studies identified citrulline and choline as markers of renal metabolism and kynurenic acid as a marker of renal secretion. In turn, these analytes remained associated with incident CKD in the FHS cohort, even after adjustment for eGFR, age, sex, diabetes, hypertension, and proteinuria at baseline. Addition of a multimarker metabolite panel to clinical variables significantly increased the c-statistic (0.77-0.83, P<0.0001); net reclassification improvement was 0.78 (95% confidence interval, 0.60 to 0.95; P<0.0001). Thus, the addition of metabolite profiling to clinical data may significantly improve the ability to predict whether an individual will develop CKD by identifying predictors of renal risk that are independent of estimated GFR.
Collapse
Affiliation(s)
- Eugene P. Rhee
- Nephrology Division
- Broad Institute, Cambridge, Massachusetts
| | | | - Anahita Ghorbani
- Cardiology Division
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
| | - Martin G. Larson
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | | | - Elizabeth McCabe
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Susan Cheng
- Cardiology Division
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Cardiovascular Division and
| | | | - Amy Deik
- Broad Institute, Cambridge, Massachusetts
| | | | | | | | | | | | | | - Ramachandran S. Vasan
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Preventive Medicine and Epidemiology and Cardiology Sections, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jose C. Florez
- Diabetes Unit
- Center for Human Genetic Research, and
- Broad Institute, Cambridge, Massachusetts
| | - Thomas J. Wang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, and Vanderbilt Heart and Vascular Institute, Nashville, Tennessee; and
| | - Caroline S. Fox
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Endocrinology Division, Brigham & Women’s Hospital, Boston, Massachusetts
- Division of Intra-mural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Robert E. Gerszten
- Cardiology Division
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
41
|
Bao YS, Ji Y, Zhao SL, Ma LL, Xie RJ, Na SP. Serum levels and activity of indoleamine2,3-dioxygenase and tryptophanyl-tRNA synthetase and their association with disease severity in patients with chronic kidney disease. Biomarkers 2013; 18:379-85. [PMID: 23651343 DOI: 10.3109/1354750x.2013.790074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aims to test the serum levels and activity of indoleamine2,3-dioxygenase(IDO) and tryptophanyl-tRNA synthetase (TTS) in patients with chronic kidney disease (CKD) and to evaluate their association with disease severity. METHOD Serum concentrations of IDO and TTS in 61 patients with CKD and 16 healthy volunteers were tested by ELISA. Tryptophan and kynurenine concentrations were measured by high-performance liquid chromatography (HPLC). RESULTS Patients with CKD showed higher serum levels of IDO and TTS in comparison to healthy controls (p = 0.001). Patients with CKD showed lower serum levels of tryptophan and higher serum levels of kynurenine in comparison to healthy controls (p < 0.001). The kyn/Trp ratio significantly correlated with the disease severity in CKD patients (r = 0.721; p < 0.001). CONCLUSIONS IDO and TTS may play critical roles in the immune pathogenesis of CKD. The activity of IDO correlated with the disease severity of CKD.
Collapse
Affiliation(s)
- Yu-Shi Bao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
42
|
Johnson TS, Munn DH. Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance. Immunol Invest 2012; 41:765-97. [DOI: 10.3109/08820139.2012.689405] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Fougeray S, Mami I, Bertho G, Beaune P, Thervet E, Pallet N. Tryptophan depletion and the kinase GCN2 mediate IFN-γ-induced autophagy. THE JOURNAL OF IMMUNOLOGY 2012; 189:2954-64. [PMID: 22896630 DOI: 10.4049/jimmunol.1201214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IFN-γ is a master regulator of the immune responses that occur in the transplanted kidney, acting both on the immune system and on the graft itself. The cellular responses to IFN-γ are complex, and emerging evidence suggests that IFN-γ may regulate autophagic functions. Conversely, autophagy modulates innate and adaptive immune functions in various contexts. In this study, we identify a novel mechanism by which IFN-γ activates autophagy in human kidney epithelial cells and provide new insights into how autophagy regulates immune functions in response to IFN-γ. Our results indicate that IFN-γ promotes tryptophan depletion, activates the eIF2α kinase general control nonderepressible-2 (GCN2), and leads to an increase in the autophagic flux. Further, tryptophan supplementation and RNA interference directed against GCN2 inhibited IFN-γ-induced autophagy. This process is of functional relevance because autophagy regulates the secretion of inflammatory cytokines and growth factors by human kidney epithelial cells in response to IFN-γ. These findings assign to IFN-γ a novel function in the regulation of autophagy, which, in turn, modulates IFN-γ-induced secretion of inflammatory cytokines.
Collapse
|
44
|
Pre-administration of L-tryptophan improved ADR-induced early renal failure in mice. Life Sci 2012; 91:100-6. [DOI: 10.1016/j.lfs.2012.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022]
|
45
|
Cerejo M, Andrade G, Roca C, Sousa J, Rodrigues C, Pinheiro R, Chatterjee S, Vieira H, Calado P. A Powerful Yeast-Based Screening Assay for the Identification of Inhibitors of Indoleamine 2,3-Dioxygenase. ACTA ACUST UNITED AC 2012; 17:1362-71. [DOI: 10.1177/1087057112452595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) underlies the course of several human pathological conditions and, to date, no efficacious therapeutic IDO inhibitors are available. We proposed to develop a robust screening system based on the use of yeast cells to identify new lead compounds for the pharmacological inhibition of IDO—the BLOCKADE platform. Yeast combines the advantages of a relevant surrogate model for eukaryotic cell processes with the amenity to miniaturization and automation. We brought added value to the system by increasing the stringency of our assay, as the BLOCKADE strain was not deleted for any efflux pump, thus creating additional challenges for test compounds to be identified as hits. Screening of a library of 50 080 small molecules led to the identification of 101 potential IDO inhibitors, a low hit rate of 0.2%, reflecting the stringent assay conditions imposed. Most important, secondary pharmacology assays in mammalian cells confirmed activity for 76% of the hits, whereas hepatotoxicity testing indicated that 87% of them displayed a safe profile. The high predictivity rates obtained using the BLOCKADE platform clearly validate our system as a powerful tool for drug discovery.
Collapse
Affiliation(s)
- Marta Cerejo
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- MIT-PT BioE PhD Program, Faculty of Sciences and Technology, New University of Lisbon, Monte da Caparica, Portugal
| | - Gonçalo Andrade
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Christophe Roca
- REQUIMTE, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| | - José Sousa
- INTERFACE—Equipamento e Técnica, Lda, Portugal
| | - Cátia Rodrigues
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Ricardo Pinheiro
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Sukalyan Chatterjee
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Helena Vieira
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Portugal
| | - Patrícia Calado
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| |
Collapse
|
46
|
Vavrincova-Yaghi D, Deelman LE, Goor H, Seelen M, Kema IP, Smit-van Oosten A, Zeeuw D, Henning RH, Sandovici M. Gene therapy with adenovirus-delivered indoleamine 2,3-dioxygenase improves renal function and morphology following allogeneic kidney transplantation in rat. J Gene Med 2011; 13:373-81. [PMID: 21710661 DOI: 10.1002/jgm.1584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the tryptophan catabolism, has recently emerged as an important immunosuppressive enzyme involved in the regulation of both physiologic (maternal tolerance), as well as pathologic (neoplasia, autoimmune diseases, asthma) processes. Accumulating evidence points to a role for IDO in suppressing T-cell responses, thereby promoting tolerance. In the present study, we investigate the effects of adenovirus-mediated gene therapy with IDO on the acute rejection of the transplanted kidneys. METHODS The experiments were performed in a rat Fisher to Lewis acute renal rejection model. RGD modified adenovirus carrying IDO gene (RGD-AdTIDO, n = 9) or RGD modified adenovirus carrying green fluorescent protein gene (RGD-AdTL, n = 8) were injected into the renal artery of the donor kidney before transplantation. A group receiving saline (n = 8) served as control. Rats were sacrificed after 7 days. RESULTS Successful gene delivery was confirmed with real-time polymerase chain reaction and immunohistochemistry. RGD-AdTIDO significantly decreased elevated plasma creatinine (93.7 ± 18.9 µmol/l) compared to the RGD-AdTL (248.2 ± 43.6 µmol/l) and saline (228.3 ± 46.4 µmol/l) treated rats. Moreover, RGD-AdTIDO therapy diminished the infiltration of CD8+ T cells and macrophages into the graft and reduced renal interstitial pre-fibrosis. Also, it limited the up-regulation of kidney injury molecule-1, interleukin (IL)-2, IL-17 and transforming growth factor-β mRNA expression, and increased foxp3 mRNA expression compared to controls. CONCLUSIONS RGD-AdTIDO therapy improves renal function and morphology in a clinically relevant model of acute rejection.
Collapse
Affiliation(s)
- Diana Vavrincova-Yaghi
- Department of Clinical Pharmacology, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hu L, Yang C, Zhao T, Xu M, Tang Q, Yang B, Rong R, Zhu T. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 2011; 176:260-6. [PMID: 21816412 DOI: 10.1016/j.jss.2011.06.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tubulointerstitial inflammation is the characteristics of renal ischemia reperfusion injury (IRI) that is inevitable in kidney transplantation. Erythropoietin (EPO) has recently been shown to have protective effects on renal IRI by anti-apoptosis and anti-oxidation. Here, the effect and mechanism of EPO on renal IRI were further investigated, with a focus on tubulointerstitial inflammation. MATERIALS AND METHODS Male Sprague-Dawley rats were administrated with saline or EPO prior to IRI induced by bilateral renal pedicle clamping. Twenty-four hours following reperfusion, the effects of EPO on renal IRI were assessed by renal function and structure, tubulointerstitial myeloperoxidase (MPO) positive neutrophils, and proinflammatory mediator gene expression. The translocation and activity of NF-κB in renal tissues were also evaluated. RESULTS Compared with control groups, the EPO treated group exhibited lower serum urea and creatinine levels, limited tubular necrosis with a lower score of renal histological lesion. MPO positive cells in the tubulointerstitial area were greatly increased by IRI, but significantly reduced by the treatment of EPO. The gene expression of proinflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) and chemokine (MCP-1) was also significantly decreased by EPO. In addition, less activation and nuclear-translocation of NF-κB was observed in the kidney treated by EPO as well. CONCLUSION EPO improved renal function and structure in IRI rats via reducing neutrophils in the tubulointerstitium, the production of proinflammatory cytokines and chemokine, as well as the activation and nuclear-translocation of NF-κB. EPO may have potential clinical applications as an anti-inflammation agent clinically for a wide range of injury.
Collapse
Affiliation(s)
- Linkun Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Outinen TK, Mäkelä SM, Ala-Houhala IO, Huhtala HSA, Hurme M, Libraty DH, Oja SS, Pörsti IH, Syrjänen JT, Vaheri A, Mustonen JT. High activity of indoleamine 2,3-dioxygenase is associated with renal insufficiency in Puumala hantavirus induced nephropathia epidemica. J Med Virol 2011; 83:731-7. [PMID: 21328391 DOI: 10.1002/jmv.22018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nephropathia epidemica (NE) is a hemorrhagic fever with renal syndrome caused by Puumala hantavirus. The severity of NE varies greatly. The aim of the present study was to evaluate whether serum indoleamine 2,3-dioxygenase (IDO) activity is associated with the severity of NE. A prospectively collected cohort of 102 consecutive patients with acute serologically confirmed NE was examined. Serum kynurenine, tryptophan, creatinine, CRP, and blood cell count were measured for up to 5 consecutive days after admission. The kynurenine to tryptophan (kyn/trp) ratio reflecting IDO activity was calculated. A maximum kyn/trp ratio >202 µmol/mmol had a sensitivity of 85% and a specificity of 75% for detecting maximum serum creatinine values >250 µmol/L by receiver operating characteristic (ROC) analysis. A maximum kyn/trp ratio >202 µmol/mmol (high IDO level) was also associated with other parameters reflecting the severity of the disease and renal impairment. Patients with high IDO levels had higher maximum serum creatinine (379 vs. 102 µmol/L, P<0.001), plasma C-reactive protein (104.1 vs. 72.1 mg/L, P=0.029), and blood leukocyte values (11.9 vs. 9.0 × 10(9) /L, P<0.001) compared to patients with kyn/trp ratio ≤ 202 µmol/mmol. They also had lower minimum urinary output (1,100 vs. 1,900 ml/day, P<0.001) and longer hospital stays (8 vs. 5 days, P<0.001). In conclusion, high serum IDO activity was associated with increased disease severity and renal impairment in NE.
Collapse
Affiliation(s)
- Tuula K Outinen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johnson BA, Baban B, Mellor AL. Targeting the immunoregulatory indoleamine 2,3 dioxygenase pathway in immunotherapy. Immunotherapy 2011; 1:645-61. [PMID: 20161103 DOI: 10.2217/imt.09.21] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural immune tolerance is a formidable barrier to successful immunotherapy to treat established cancers and chronic infections. Conversely, creating robust immune tolerance via immunotherapy is the major goal in treating autoimmune and allergic diseases, and enhancing survival of transplanted organs and tissues. In this review, we focus on a natural mechanism that creates local T-cell tolerance in many clinically relevant settings of chronic inflammation involving expression of the cytosolic enzyme indoleamine 2,3-dioxygenase (IDO) by specialized subsets of dendritic cells. IDO-expressing dendritic cells suppress antigen-specific T-cell responses directly, and induce bystander suppression by activating regulatory T cells. Thus, manipulating IDO is a promising strategy to treat a range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Burles A Johnson
- Immunotherapy Center & Department of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
50
|
Ito H, Hoshi M, Ohtaki H, Taguchi A, Ando K, Ishikawa T, Osawa Y, Hara A, Moriwaki H, Saito K, Seishima M. Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model. THE JOURNAL OF IMMUNOLOGY 2010; 185:4554-60. [PMID: 20844202 DOI: 10.4049/jimmunol.0904173] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IDO converts tryptophan to l-kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, we examined the effect of IDO in α-galactosylceramide (α-GalCer)-induced hepatitis. The increase in IDO expression in the liver of wild-type (WT) mice administered α-GalCer was confirmed by real-time PCR, Western blotting, and IDO immunohistochemical analysis. The serum alanine aminotransferase levels in IDO-knockout (KO) mice after α-GalCer injection significantly increased compared with those in WT mice. 1-Methyl-D-tryptophan also exacerbated liver injury in this murine hepatitis model. In α-GalCer-induced hepatitis models, TNF-α is critical in the development of liver injury. The mRNA expression and protein level of TNF-α in the liver from IDO-KO mice were more enhanced compared with those in WT mice. The phenotypes of intrahepatic lymphocytes from WT mice and IDO-KO mice treated with α-GalCer were analyzed by flow cytometry, and the numbers of CD49b(+) and CD11b(+) cells were found to have increased in IDO-KO mice. Moreover, as a result of the increase in the number of NK cells and macrophages in the liver of IDO-KO mice injected with α-GalCer, TNF-α secretion in these mice was greater than that in WT mice. Deficiency of IDO exacerbated liver injury in α-GalCer-induced hepatitis. IDO induced by proinflammatory cytokines may decrease the number of TNF-α-producing immune cells in the liver. Thus, IDO may suppress overactive immune response in the α-GalCer-induced hepatitis model.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|