1
|
The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 2023; 46:50-62. [PMID: 36241707 DOI: 10.1038/s41440-022-01064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.
Collapse
|
2
|
Camostat mesilate, a serine protease inhibitor, exerts aquaretic effects and decreases urinary exosomal AQP2 levels. J Pharmacol Sci 2022; 150:204-210. [DOI: 10.1016/j.jphs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
|
3
|
Cardiac fibrosis models using human induced pluripotent stem cell-derived cardiac tissues allow anti-fibrotic drug screening in vitro. Stem Cell Res 2021; 54:102420. [PMID: 34126557 DOI: 10.1016/j.scr.2021.102420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
Drug efficacy assessment without using animals is important for development of cardiac fibrosis treatment. In this study, potential anti-fibrotic drugs were screened in a model of diseased myocardium using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and non-CM in in vitro and in vivo heart failure models. Cardiomyogenic differentiation was induced in hiPSC to generate cardiac tissue, including both iPSC-CM and non-CM expressing fibroblast markers. Stimulation with TGF-β significantly increased cardiac fibrotic extracellular matrix (ECM) gene expression, and decreased cardiac contractile/relaxation velocity. Anti-fibrotic HGF significantly decreased fibrotic changes induced by TGF-β. A prostacyclin agonist, ONO-1301 (ONO), camostat mesilate (Cs), and pirfenidone (Pf) significantly decreased fibrotic ECM expression, and improved contraction/relaxation in the model stimulated with TGF-β. Consistent with the in vitro assay, the administration of ONO, Cs, or Pf for 8 weeks in J2N-k hamsters preserved the left ventricular ejection fraction and decreased cardiac fibrosis compared with the controls. The in vitro model simulating fibrotic cardiac tissue showed precise screening of anti-fibrotic drugs which indicated the expected therapeutic response in an in vivo heart failure model, suggesting that the in vitro model presented in this study is a useful tool for the screening of anti-fibrotic drugs.
Collapse
|
4
|
Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2019; 225:e13249. [PMID: 30597733 DOI: 10.1111/apha.13249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Sodium retention and extracellular volume expansion are typical features of patients with nephrotic syndrome. In recent years, from in vitro data, endoluminal activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases has been proposed as an underlying mechanism. Recently, this concept was supported in vivo in nephrotic mice that were protected from proteolytic ENaC activation and sodium retention by the use of aprotinin for the pharmacological inhibition of urinary serine protease activity. These and other findings from studies in both rodents and humans highlight the impact of active proteases in the urine, or proteasuria, on ENaC-mediated sodium retention and edema formation in nephrotic syndrome. Targeting proteasuria could become a therapeutic approach to treat patients with nephrotic syndrome. However, pathophysiologically relevant proteases remain to be identified. In this review, we introduce the concept of proteasuria to explain tubular sodium avidity and conclude that proteasuria can be considered as a key mechanism of sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
5
|
Quantitative peptidomics of endogenous peptides involved in TGF-β1-induced epithelial mesenchymal transition of renal epithelial cells. Cell Death Discov 2018. [PMID: 29531806 PMCID: PMC5841401 DOI: 10.1038/s41420-017-0001-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TGF-β1 is a key fibrotic factor mediating epithelial mesenchymal transition (EMT) of epithelial cells through various signaling pathways. However, roles of proteolytic cleavage and endogenous peptide dynamics in TGF-β1-induced EMT remain unknown. We therefore performed quantitative peptidomics of TGF-β1-induced EMT in renal tubular epithelial cells. The acquired mesenchymal characteristics were confirmed, including morphological change (from cobblestone-like to fibroblast-like), decreased epithelial marker (ZO-1), and increased mesenchymal marker (vimentin). Quantitative peptidomics using stable isotope labeling revealed significantly altered levels of 70 unique endogenous peptides (derived from internal and C-terminal parts of 39 unique precursor proteins) after EMT induction. Interestingly, the majority of these peptides were derived from non-short-lived proteins, and analysis of P1 position revealed predominance of hydrophobic residues, suggesting that these endogenous peptides were generated mainly from proteasome cleavage. This hypothesis was confirmed by treating the cells with MG132 (a proteasome inhibitor), which provided almost identical endogenous peptide pattern as of the TGF-β1-treated cells. Moreover, validation assay showed marked reduction of proteasome peptidase activity in both TGF-β1-treated and MG132-treated cells. This is the first peptidome dataset that provides several novel aspects of mechanisms for TGF-β1-induced EMT. Our data also suggest that TGF-β1 exerts inhibitory effect against proteasome activity during EMT induction.
Collapse
|
6
|
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 2017; 820:65-76. [PMID: 29229532 DOI: 10.1016/j.ejphar.2017.12.016] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is a major public health issue. At the histological level, renal fibrosis is the final common pathway of progressive kidney disease irrespective of the initial injury. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Some of the inflammatory signaling molecules involved in CKD include: monocyte chemoattractant protein-1 (MCP-1), bradykinin B1 receptor (B1R), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNFα), transforming growth factor β (TGF-β), and platelet-derived growth factor (PDGF). Multiple antifibrotic factors, such as interleukin-10 (IL-10), interferon-γ (IFN-γ), bone morphogenetic protein-7 (BMP-7), hepatocyte growth factor (HGF) are also downregulated in CKD. Therefore, restoration of the proper balance between pro- and antifibrotic signaling pathways could serve as a guiding principle for the design of new antifibrotic strategies that simultaneously target many pathways. The purpose of this review is to summarize the existing body of knowledge regarding activation of cytokine pathways and infiltration of inflammatory cells as a starting point for developing novel antifibrotic therapies to prevent progression of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
7
|
Furuya F, Ishii T, Tamura S, Takahashi K, Kobayashi H, Ichijo M, Takizawa S, Kaneshige M, Suzuki-Inoue K, Kitamura K. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci Rep 2017; 7:43960. [PMID: 28272516 PMCID: PMC5341020 DOI: 10.1038/srep43960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Toshihisa Ishii
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shogo Tamura
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kazuya Takahashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hidetoshi Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masashi Ichijo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Soichi Takizawa
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masahiro Kaneshige
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Katsue Suzuki-Inoue
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| |
Collapse
|
8
|
Kakizoe Y, Miyasato Y, Onoue T, Nakagawa T, Hayata M, Uchimura K, Morinaga J, Mizumoto T, Adachi M, Miyoshi T, Sakai Y, Tomita K, Mukoyama M, Kitamura K. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity. J Pharmacol Sci 2016; 132:145-153. [DOI: 10.1016/j.jphs.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
|
9
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
10
|
Khan S, Ahirwar K, Jena G. Anti-fibrotic effects of valproic acid: role of HDAC inhibition and associated mechanisms. Epigenomics 2016; 8:1087-101. [PMID: 27411759 DOI: 10.2217/epi-2016-0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue injuries and pathological insults produce oxidative stress, genetic and epigenetic alterations, which lead to an imbalance between pro- and anti-fibrotic molecules, and subsequent accumulation of extracellular matrix, thereby fibrosis. Various molecular pathways play a critical role in fibroblasts activation, which promotes the extracellular matrix production and accumulation. Recent reports highlighted that histone deacetylases (HDACs) are upregulated in various fibrotic disorders and play a central role in fibrosis, while HDAC inhibitors exert antifibrotic effects. Valproic acid is a first-line anti-epileptic drug and a proven HDAC inhibitor. This review provides the current research and novel insights on antifibrotic effects of valproic acid in various fibrotic conditions with an emphasis on the possible strategies for treatment of fibrosis.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kailash Ahirwar
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
11
|
Kitamura K. [The Cutting-edge of Medicine; Molecular basis of salt-sensitivity and renal injury]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2016; 105:300-306. [PMID: 27228728 DOI: 10.2169/naika.105.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
12
|
Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model. J Pharmacol Sci 2016; 130:110-6. [DOI: 10.1016/j.jphs.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 11/23/2022] Open
|
13
|
Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease. Kidney Int 2016; 89:327-41. [DOI: 10.1016/j.kint.2015.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
|
14
|
Nimishakavi S, Raymond WW, Gruenert DC, Caughey GH. Divergent Inhibitor Susceptibility among Airway Lumen-Accessible Tryptic Proteases. PLoS One 2015; 10:e0141169. [PMID: 26485396 PMCID: PMC4612780 DOI: 10.1371/journal.pone.0141169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT), and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolyl)methane (BABIM), aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat’s leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.
Collapse
Affiliation(s)
- Shilpa Nimishakavi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Wilfred W. Raymond
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Dieter C. Gruenert
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - George H. Caughey
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jia L, Ma X, Gui B, Ge H, Wang L, Ou Y, Tian L, Chen Z, Duan Z, Han J, Fu R. Sorafenib ameliorates renal fibrosis through inhibition of TGF-β-induced epithelial-mesenchymal transition. PLoS One 2015; 10:e0117757. [PMID: 25679376 PMCID: PMC4332653 DOI: 10.1371/journal.pone.0117757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
Objective This study was to investigate whether sorafenib can inhibit the progression of renal fibrosis and to study the possible mechanisms of this effect. Methods Eight-week-old rats were subjected to unilateral ureteral obstruction (UUO) and were intragastrically administered sorafenib, while control and sham groups were administered vehicle for 14 or 21 days. NRK-52E cells were treated with TGF-β1 and sorafenib for 24 or 48 hours. HE and Masson staining were used to visualize fibrosis of the renal tissue in each group. The expression of α-SMA and E-cadherin in kidney tissue and NRK-52E cells were performed using immunohistochemistry and immunofluorescence. The apoptosis rate of NRK-52E cells was determined by flow cytometry analysis. The protein levels of Smad3 and p-Smad3 in kidney tissue and NRK-52E cells were detected by western blot analysis. Results HE staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration in the sorafenib-treated-UUO groups were significantly decreased compared with the vehicle-treated-UUO group (p<0.05). Masson staining showed that the area of fibrosis was significantly decreased in the sorafenib-treated-UUO groups compared with vehicle-treated-UUO group (p<0.01). The size of the kidney did not significantly increase; the cortex of the kidney was thicker and had a richer blood supply in the middle-dose sorafenib group compared with the vehicle-treated-UUO group (p<0.05). Compared with the vehicle-treated-UUO and TGF-β-stimulated NRK-52E groups, the expression of a-SMA and E-cadherin decreased and increased, respectively, in the UUO kidneys and NRK-52E cells of the sorafenib-treated groups (p<0.05). The apoptotic rate of NRK-52E cells treated with sorafenib decreased for 24 hours in a dose-dependent manner (p<0.05). Compared with the vehicle-treated UUO and TGF-β-stimulated NRK-52E groups, the ratio of p-Smad3 to Smad3 decreased in the sorafenib-treated groups (p<0.05). Conclusion Our results suggest that sorafenib may useful for the treatment of renal fibrosis through the suppression of TGF-β/Smad3-induced EMT signaling.
Collapse
Affiliation(s)
- Lining Jia
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaotao Ma
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Baosong Gui
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heng Ge
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Li Wang
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Ou
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lifang Tian
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhao Chen
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhaoyang Duan
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Han
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephropathy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
16
|
Chung H, Ramachandran R, Hollenberg MD, Muruve DA. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. J Biol Chem 2013; 288:37319-31. [PMID: 24253040 DOI: 10.1074/jbc.m113.492793] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.
Collapse
|
17
|
Antifibrotic effects of a synthetic serine protease inhibitor. Nat Rev Nephrol 2013. [DOI: 10.1038/nrneph.2013.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|