1
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Huang Z, Nie H, Liu G, Li P, Peng YH, Xiao J, Gu W, Li TS. Losartan alleviates renal fibrosis by inhibiting the biomechanical stress-induced epithelial-mesenchymal transition of renal epithelial cells. Arch Biochem Biophys 2023; 748:109770. [PMID: 37783367 DOI: 10.1016/j.abb.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Angiotensin receptor blockers (ARBs) have been reported to be beneficial of renal fibrosis, but the molecular and cellular mechanisms are still unclear. In this study, we investigated the effectiveness and relevant mechanism of ARBs in alleviating renal fibrosis, especially by focusing on biomechanical stress-induced epithelial to mesenchymal transition (EMT) of renal epithelial cells. Unilateral ureteral obstruction (UUO) renal fibrosis model was established in mice by ligating the left ureter, and then randomly received losartan at a low dose (1 mg/kg) or a regular dose (3 mg/kg) for 2 weeks. Compared to the control, histological analysis showed that losartan treatment at either a low dose or a regular dose effectively attenuated renal fibrosis in the UUO model. To further understand the mechanism, we ex vivo loaded primary human renal epithelial cells to 50 mmHg hydrostatic pressure. Western blot and immunostaining analyses indicated that the loading to 50 mmHg hydrostatic pressure for 24 h significantly upregulated vimentin, β-catenin and α-SMA, but downregulated E-cadherin in renal epithelial cells, suggesting the EMT. The addition of 10 or 100 nM losartan in medium effectively attenuated the EMT of renal epithelial cells induced by 50 mmHg hydrostatic pressure loading. Our in vivo and ex vivo experimental data suggest that losartan treatment, even at a low dose can effectively alleviate renal fibrosis in mouse UUO model, at least partly by inhibiting the biomechanical stress-induced EMT of renal epithelial cells. A low dose of ARBs may repurpose for renal fibrosis treatment.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Han Nie
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Geng Liu
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Peilin Li
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yong-Hua Peng
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
3
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
4
|
Gong X, Sun S, Yang Y, Huang X, Gao X, Jin A, Xu H, Wang X, Liu Y, Liu J, Dai Q, Jiang L. Osteoblastic STAT3 Is Crucial for Orthodontic Force Driving Alveolar Bone Remodeling and Tooth Movement. J Bone Miner Res 2023; 38:214-227. [PMID: 36370067 DOI: 10.1002/jbmr.4744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Mechanical force is essential to shape the internal architecture and external form of the skeleton by regulating the bone remodeling process. However, the underlying mechanism of how the bone responds to mechanical force remains elusive. Here, we generated both orthodontic tooth movement (OTM) model in vivo and a cyclic stretch-loading model in vitro to investigate biomechanical regulation of the alveolar bone. In this study, signal transducer and activator of transcription 3 (STAT3) was screened as one of the mechanosensitive proteins by protein array analysis of cyclic stretch-loaded bone mesenchymal stem cells (BMSCs) and was also proven to be activated in osteoblasts in response to the mechanical force during OTM. With an inducible osteoblast linage-specific Stat3 knockout model, we found that Stat3 deletion decelerated the OTM rate and reduced orthodontic force-induced bone remodeling, as indicated by both decreased bone resorption and formation. Both genetic deletion and pharmacological inhibition of STAT3 in BMSCs directly inhibited mechanical force-induced osteoblast differentiation and impaired osteoclast formation via osteoblast-osteoclast cross-talk under mechanical force loading. According to RNA-seq analysis of Stat3-deleted BMSCs under mechanical force, matrix metalloproteinase 3 (Mmp3) was screened and predicted to be a downstream target of STAT3. The luciferase and ChIP assays identified that Stat3 could bind to the Mmp3 promotor and upregulate its transcription activity. Furthermore, STAT3-inhibitor decelerated tooth movement through inhibition of the bone resorption activity, as well as MMP3 expression. In summary, our study identified the mechanosensitive characteristics of STAT3 in osteoblasts and highlighted its critical role in force-induced bone remodeling during orthodontic tooth movement via osteoblast-osteoclast cross-talk. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xinyi Gong
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xijun Wang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qinggang Dai
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Zhang YZ, Fan ML, Zhang WZ, Liu W, Li HP, Ren S, Jiang S, Song MJ, Wang Z, Li W. Schisandrin ameliorates diabetic nephropathy via regulating of PI3K/Akt/NF-κB-mediated inflammation and TGF-β1-induced fibrosis in HFD/STZ-induced C57BL/6J mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Sanketi BD, Zuela-Sopilniak N, Bundschuh E, Gopal S, Hu S, Long J, Lammerding J, Hopyan S, Kurpios NA. Pitx2 patterns an accelerator-brake mechanical feedback through latent TGFβ to rotate the gut. Science 2022; 377:eabl3921. [PMID: 36137018 PMCID: PMC10089252 DOI: 10.1126/science.abl3921] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The vertebrate intestine forms by asymmetric gut rotation and elongation, and errors cause lethal obstructions in human infants. Rotation begins with tissue deformation of the dorsal mesentery, which is dependent on left-sided expression of the Paired-like transcription factor Pitx2. The conserved morphogen Nodal induces asymmetric Pitx2 to govern embryonic laterality, but organ-level regulation of Pitx2 during gut asymmetry remains unknown. We found Nodal to be dispensable for Pitx2 expression during mesentery deformation. Intestinal rotation instead required a mechanosensitive latent transforming growth factor-β (TGFβ), tuning a second wave of Pitx2 that induced reciprocal tissue stiffness in the left mesentery as mechanical feedback with the right side. This signaling regulator, an accelerator (right) and brake (left), combines biochemical and biomechanical inputs to break gut morphological symmetry and direct intestinal rotation.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Noam Zuela-Sopilniak
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Elizabeth Bundschuh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sharada Gopal
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joseph Long
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology and Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N, Li J, Jiang B, Cheng J, Li C, Wang W. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight 2022; 7:152330. [PMID: 35230979 PMCID: PMC9057604 DOI: 10.1172/jci.insight.152330] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney fibrosis is the final common pathway of progressive kidney diseases, the underlying mechanisms of which is not fully understood. The purpose of the current study is to investigate a role of Piezo1, a mechanosensitive nonselective cation channel, in kidney fibrosis. In human fibrotic kidneys, Piezo1 protein expression was markedly upregulated. The abundance of Piezo1 protein in kidneys of mice with UUO or with folic-acid treatment was significantly increased. Inhibition of Piezo1 with GsMTx4 markedly ameliorated UUO or folic acid-induced kidney fibrosis. Mechanical stretch, compression or stiffness induced Piezo1 activation and pro-fibrotic responses in human HK2 cells and primary cultured mouse proximal tubular cells (mPTCs), which were greatly prevented by inhibition or silence of Piezo1. TGFβ-1 induced increased Piezo1 expression and pro-fibrotic phenotypic alterations in HK2 cells and mPTCs, which was again markedly prevented by inhibition of Piezo1. Activation of Piezo1 by Yoda1, a Piezo1 agonist, caused calcium influx and profibrotic responses in HK2 cells and induced calpain2 activation, followed by talin1 cleavage and upregulation of integrinβ1. Also, Yoda1 promoted the link between ECM and integrinβ1. In conclusion, Piezo1 is involved in the progression of kidney fibrosis and pro-fibrotic alterations in renal proximal tubular cells, likely through activating calcium-calpain2-integrinβ1 pathway.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhai Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospital, Guangzhou, China
| | - Nan Zhou
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Jiang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Rogers JD, Richardson WJ. Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies. eLife 2022; 11:e62856. [PMID: 35138248 PMCID: PMC8849334 DOI: 10.7554/elife.62856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regional control of fibrosis after myocardial infarction is critical for maintaining structural integrity in the infarct while preventing collagen accumulation in non-infarcted areas. Cardiac fibroblasts modulate matrix turnover in response to biochemical and biomechanical cues, but the complex interactions between signaling pathways confound efforts to develop therapies for regional scar formation. We employed a logic-based ordinary differential equation model of fibroblast mechano-chemo signal transduction to predict matrix protein expression in response to canonical biochemical stimuli and mechanical tension. Functional analysis of mechano-chemo interactions showed extensive pathway crosstalk with tension amplifying, dampening, or reversing responses to biochemical stimuli. Comprehensive drug target screens identified 13 mechano-adaptive therapies that promote matrix accumulation in regions where it is needed and reduce matrix levels in regions where it is not needed. Our predictions suggest that mechano-chemo interactions likely mediate cell behavior across many tissues and demonstrate the utility of multi-pathway signaling networks in discovering therapies for context-specific disease states.
Collapse
Affiliation(s)
- Jesse D Rogers
- Department of Bioengineering; Clemson UniversityClemsonUnited States
| | | |
Collapse
|
9
|
Miyano T, Suzuki A, Sakamoto N. Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells. PLoS One 2021; 16:e0261345. [PMID: 34932568 PMCID: PMC8691603 DOI: 10.1371/journal.pone.0261345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/30/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is a hallmark of renal tubulointerstitial fibrosis and is associated with chronic renal injury as well as acute renal injury. As one of the incidences and risk factors for acute renal injury, increasing the osmolality in the proximal tubular fluid by administration of intravenous mannitol has been reported, but the detailed mechanisms remain unclear. Hyperosmotic conditions caused by mannitol in the tubular tissue may generate not only osmotic but also mechanical stresses, which are known to be able to induce EMT in epithelial cells, thereby contributing to renal injury. Herein, we investigate the effect of hyperosmolarity on EMT in tubular epithelial cells. Normal rat kidney (NRK)-52E cells were exposed to mannitol-induced hyperosmotic stress. Consequently, the hyperosmotic stress led to a reduced expression of the epithelial marker E-cadherin and an enhanced expression of the mesenchymal marker, α-smooth muscle actin (α-SMA), which indicates an initiation of EMT in NKR-52E cells. The hyperosmotic condition also induced time-dependent disassembly and rearrangements of focal adhesions (FAs) concomitant with changes in actin cytoskeleton. Moreover, prevention of FAs rearrangements by cotreatment with Y-27632, a Rho-associated protein kinase inhibitor, could abolish the effects of hyperosmotic mannitol treatment, thus attenuating the expression of α-SMA to the level in nontreated cells. These results suggest that hyperosmotic stress may induce EMT through FAs rearrangement in proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
10
|
Wang A, Cao S, Stowe JC, Valdez-Jasso D. Substrate Stiffness and Stretch Regulate Profibrotic Mechanosignaling in Pulmonary Arterial Adventitial Fibroblasts. Cells 2021; 10:1000. [PMID: 33922850 PMCID: PMC8146344 DOI: 10.3390/cells10051000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial adventitial fibroblasts (PAAFs) are important regulators of fibrotic vascular remodeling during the progression of pulmonary arterial hypertension (PAH), a disease that currently has no effective anti-fibrotic treatments. We conducted in-vitro experiments in PAAFs cultured on hydrogels attached to custom-made equibiaxial stretchers at 10% stretch and substrate stiffnesses representing the mechanical conditions of mild and severe stages of PAH. The expression of collagens α(1)I and α(1)III and elastin messenger RNAs (Col1a1, Col3a1, Eln) were upregulated by increased stretch and substrate stiffness, while lysyl oxidase-like 1 and α-smooth muscle actin messenger RNAs (Loxl1, Acta2) were only significantly upregulated when the cells were grown on matrices with an elevated stiffness representative of mild PAH but not on a stiffness representative of severe PAH. Fibronectin messenger RNA (Fn1) levels were significantly induced by increased substrate stiffness and transiently upregulated by stretch at 4 h, but was not significantly altered by stretch at 24 h. We modified our published computational network model of the signaling pathways that regulate profibrotic gene expression in PAAFs to allow for differential regulation of mechanically-sensitive nodes by stretch and stiffness. When the model was modified so that stiffness activated integrin β3, the Macrophage Stimulating 1 or 2 (MST1\2) kinases, angiotensin II (Ang II), transforming growth factor-β (TGF-β), and syndecan-4, and stretch-regulated integrin β3, MST1\2, Ang II, and the transient receptor potential (TRP) channel, the model correctly predicted the upregulation of all six genes by increased stiffness and the observed responses to stretch in five out of six genes, although it could not replicate the non-monotonic effects of stiffness on Loxl1 and Acta2 expression. Blocking Ang II Receptor Type 1 (AT1R) with losartan in-vitro uncovered an interaction between the effects of stretch and stiffness and angiotensin-independent activation of Fn1 expression by stretch in PAAFs grown on 3-kPa matrices. This novel combination of in-vitro and in-silico models of PAAF profibrotic cell signaling in response to altered mechanical conditions may help identify regulators of vascular adventitial remodeling due to changes in stretch and matrix stiffness that occur during the progression of PAH in-vivo.
Collapse
Affiliation(s)
| | | | | | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA; (A.W.); (S.C.); (J.C.S.)
| |
Collapse
|
11
|
Kampanis V, Tolou-Dabbaghian B, Zhou L, Roth W, Puttagunta R. Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth. Cells 2020; 10:cells10010032. [PMID: 33379276 PMCID: PMC7824691 DOI: 10.3390/cells10010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) does not recover from traumatic axonal injury, but the peripheral nervous system (PNS) does. We hypothesize that this fundamental difference in regenerative capacity may be based upon the absence of stimulatory mechanical forces in the CNS due to the protective rigidity of the vertebral column and skull. We developed a bioreactor to apply low-strain cyclic axonal stretch to adult rat dorsal root ganglia (DRG) connected to either the peripheral or central nerves in an explant model for inducing axonal growth. In response, larger diameter DRG neurons, mechanoreceptors and proprioceptors showed enhanced neurite outgrowth as well as increased Activating Transcription Factor 3 (ATF3).
Collapse
Affiliation(s)
- Vasileios Kampanis
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Bahardokht Tolou-Dabbaghian
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Luming Zhou
- Laboratory of NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany;
| | - Wolfgang Roth
- Laboratory for Experimental Neurorehabilitation, Heidelberg University Hospital, 69118 Heidelberg, Germany;
| | - Radhika Puttagunta
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
- Correspondence:
| |
Collapse
|
12
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
13
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
14
|
Gasparitsch M, Schieber A, Schaubeck T, Keller U, Cattaruzza M, Lange-Sperandio B. Tyrphostin AG490 reduces inflammation and fibrosis in neonatal obstructive nephropathy. PLoS One 2019; 14:e0226675. [PMID: 31846485 PMCID: PMC6917291 DOI: 10.1371/journal.pone.0226675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Congenital obstructive nephropathy is the main cause of end-stage renal disease in infants and children. Renal insufficiency is due to impaired growth and maturation in the developing kidney with obstruction. Congenital obstructive nephropathy leads to cytokine mediated inflammation and the development of interstitial fibrosis. The Janus kinase-2 (JAK-2) and Signal Transducer and Activator of Transcription'-3 (STAT3) are involved in cytokine production, inflammation, and interstitial fibrosis. METHODS We studied the role of JAK2/STAT3 in a model of congenital obstructive nephropathy using unilateral ureteral obstruction (UUO) in neonatal mice at the second day of life. Cytokine production, inflammation, and interstitial fibrosis were analyzed in obstructed and sham operated kidneys of neonatal mice treated with or without JAK2/STAT3 inhibitor Tyrphostin AG490. To mimic obstruction and distension, proximal tubular cells were stretched in vitro. RESULTS We show that STAT3 is highly activated in the developing kidney with obstruction and in proximal tubular cells following stretch. JAK2/STAT3 activation mediates cytokine release and leukocyte recruitment into neonatal kidneys after UUO. Pharmacological blockade of JAK2/STAT3 by Tyrphostin AG490 reduced inflammation, tubular apoptosis, and interstitial fibrosis. JAK2/STAT3 blockade decreased pro-inflammatory and profibrotic mediators in tubular cells. CONCLUSION Our findings provide evidence that JAK2/STAT3 mediates inflammation and fibrosis in the developing kidney with obstruction. Blocking JAK2/STAT3 may prove beneficial in congenital obstructive nephropathy in children.
Collapse
Affiliation(s)
- Mojca Gasparitsch
- Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandra Schieber
- Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany
| | - Teresa Schaubeck
- Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany
| | - Ursula Keller
- Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Cattaruzza
- Department of Physiology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Bärbel Lange-Sperandio
- Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
15
|
Zhu F, Bai X, Hong Q, Cui S, Wang X, Xiao F, Li J, Zhang L, Dong Z, Wang Y, Cai G, Chen X. STAT3 Inhibition Partly Abolishes IL-33–Induced Bone Marrow–Derived Monocyte Phenotypic Transition into Fibroblast Precursor and Alleviates Experimental Renal Interstitial Fibrosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:2644-2654. [DOI: 10.4049/jimmunol.1801273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
|
16
|
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang F, Gan L, Wang N, Yang X, Guo AY. Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene 2019; 38:6818-6834. [PMID: 31406247 PMCID: PMC6988105 DOI: 10.1038/s41388-019-0925-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels with unidentified mechanisms. Here we evaluated the transcriptome alteration during TRCs generation in 3D culture and revealed that a variety of molecules related with integrin/membrane and stemness were continuously altered by mechanical environment. Some key regulators such as MYC/STAT3/hsa-miR-199a-5p, were changed in the TRCs generation. They regulated membrane genes and the downstream mechanotransduction pathways such as Hippo/WNT/TGF-β/PI3K-AKT pathways, thus further affecting the expression of downstream cancer-related genes. By integrating networks for membrane proteins, the WNT pathway and cancer-related genes, we identified key molecules in the selection of TRCs, such as ATF4, SLC3A2, CCT3, and hsa-miR-199a-5p. Silencing ATF4 or CCT3 inhibited the selection and growth of TRCs whereas reduction of SLC3A2 or hsa-miR-199a-5p promoted TRCs growth. Further studies showed that CCT3 promoted cell proliferation and stemness in vitro, while its suppression inhibited TRCs-induced tumor formation. We also contemplated CCT3 as a stemness-related gene. Our findings provide insights in the mechanism of TRCs selection through transcriptome analysis.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xian Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fuxiang Wei
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ning Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
17
|
Shen W, Huang B, He Y, Shi L, Yang J. Long non‐coding RNA RP11‐820 promotes extracellular matrix production via regulating miR‐3178/MYOD1 in human trabecular meshwork cells. FEBS J 2019; 287:978-990. [PMID: 31495061 DOI: 10.1111/febs.15058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Wencui Shen
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Bingqing Huang
- Department of Pathology Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Ye He
- Tianjin Medical University Eye Hospital China
| | - Liukun Shi
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Jin Yang
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| |
Collapse
|
18
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
19
|
Xiao H, Liao Y, Tang C, Xiao Z, Luo H, Li J, Liu H, Sun L, Zeng D, Li Y. RNA‐Seq analysis of potential lncRNAs and genes for the anti‐renal fibrotic effect of norcantharidin. J Cell Biochem 2019; 120:17354-17367. [PMID: 31104327 DOI: 10.1002/jcb.28999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hengting Xiao
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Yingjun Liao
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Chengyuan Tang
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Zheng Xiao
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Hanwen Luo
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Jun Li
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Hong Liu
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Lin Sun
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Dong Zeng
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| | - Ying Li
- Department of Nephrology The Second Xiangya Hospital of Central South University and Blood Purification Changsha China
- Hunan Key Laboratory of Kidney Disease and Blood Purification The Second Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
20
|
Hayashi N, Sato T, Yumoto M, Kokabu S, Fukushima Y, Kawata Y, Kajihara T, Mizuno Y, Mizuno Y, Kawakami T, Kirita T, Hayata T, Noda M, Yoda T. Cyclic stretch induces decorin expression via yes-associated protein in tenocytes: A possible mechanism for hyperplasia in masticatory muscle tendon-aponeurosis hyperplasia. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2019. [DOI: 10.1016/j.ajoms.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Profibrotic epithelial phenotype: a central role for MRTF and TAZ. Sci Rep 2019; 9:4323. [PMID: 30867502 PMCID: PMC6416270 DOI: 10.1038/s41598-019-40764-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Epithelial injury is a key initiator of fibrosis but - in contrast to the previous paradigm - the epithelium in situ does not undergo wide-spread epithelial-mesenchymal/myofibroblast transition (EMT/EMyT). Instead, it assumes a Profibrotic Epithelial Phenotype (PEP) characterized by fibrogenic cytokine production. The transcriptional mechanisms underlying PEP are undefined. As we have shown that two RhoA/cytoskeleton-regulated transcriptional coactivators, Myocardin-related transcription factor (MRTF) and TAZ, are indispensable for EMyT, we asked if they might mediate PEP as well. Here we show that mechanical stress (cyclic stretch) increased the expression of transforming growth factor-β1 (TGFβ1), connective tissue growth factor (CTGF), platelet-derived growth factor and Indian Hedgehog mRNA in LLC-PK1 tubular cells. These responses were mitigated by siRNA-mediated silencing or pharmacological inhibition of MRTF (CCG-1423) or TAZ (verteporfin). RhoA inhibition exerted similar effects. Unilateral ureteral obstruction, a murine model of mechanically-triggered kidney fibrosis, induced tubular RhoA activation along with overexpression/nuclear accumulation of MRTF and TAZ, and increased transcription of the above-mentioned cytokines. Laser capture microdissection revealed TAZ, TGFβ1 and CTGF induction specifically in the tubular epithelium. CCG-1423 suppressed total renal and tubular expression of these proteins. Thus, MRTF regulates epithelial TAZ expression, and both MRTF and TAZ are critical mediators of PEP-related epithelial cytokine production.
Collapse
|
22
|
Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed Pharmacother 2019; 109:1802-1808. [DOI: 10.1016/j.biopha.2018.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
|
23
|
Suppression of Elp2 prevents renal fibrosis and inflammation induced by unilateral ureter obstruction (UUO) via inactivating Stat3-regulated TGF-β1 and NF-κB pathways. Biochem Biophys Res Commun 2018; 501:400-407. [DOI: 10.1016/j.bbrc.2018.04.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 01/02/2023]
|
24
|
Hongtao C, Youling F, Fang H, Huihua P, Jiying Z, Jun Z. Curcumin alleviates ischemia reperfusion‐induced late kidney fibrosis through the APPL1/Akt signaling pathway. J Cell Physiol 2018; 233:8588-8596. [DOI: 10.1002/jcp.26536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Chen Hongtao
- Departmentof AnesthesiologyEighth People's Hospital of GuangzhouGuangzhouGuangdong ProvinceChina
| | - Fan Youling
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Huang Fang
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Peng Huihua
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Zhong Jiying
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| | - Zhou Jun
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| |
Collapse
|
25
|
Dipeptidyl peptidase-4 inhibition and renoprotection: the role of antifibrotic effects. Curr Opin Nephrol Hypertens 2018; 26:56-66. [PMID: 27820706 DOI: 10.1097/mnh.0000000000000291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article analyzes the potential beneficial effects of dipeptidyl peptidase (DPP)-4 inhibitors on renal diseases. RECENT FINDINGS The pathological significance of DPP-4, either dependent or independent on catalytic activities, on renal diseases has been reported in preclinical studies. With regard to this, we have shown that damaged endothelial cells are converted to a mesenchymal cell phenotype, which is associated with the induction of DPP-4 in endothelial cells. The endothelial mesenchymal transition may contribute to kidney fibrosis; indeed, the antifibrotic effects of DPP-4 inhibitors have been reported elsewhere. However, even though such potential benefits of DPP-4 inhibitors on renal diseases were shown in preclinical studies, clinical trials have not yet revealed significant benefits in renal hard outcomes of DPP-4 inhibitors. SUMMARY To completely understand the beneficial effects of DPP-4 inhibitors, both the following studies are required: first, preclinical studies that analyze deeper molecular mechanisms of DPP-4 inhibition, and, second, clinical studies that investigate whether such potential beneficial effects of DPP-4 inhibitors are relevant to the patients in the clinic.
Collapse
|
26
|
Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond) 2018; 132:489-507. [PMID: 29491123 PMCID: PMC5828949 DOI: 10.1042/cs20180031] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors used to treat type 2 diabetes may have nephroprotective effects beyond the reduced renal risk conferred by glycemic control. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. The kidneys contain the highest levels of DPP-4, which is increased in diabetic nephropathy. DPP-4 inhibitors are a chemically heterogeneous class of drugs with important pharmacological differences. Of the globally marketed DPP-4 inhibitors, linagliptin is of particular interest for diabetic nephropathy as it is the only compound that is not predominantly excreted in the urine. Linagliptin is also the most potent DPP-4 inhibitor, has the highest affinity for this protein, and has the largest volume of distribution; these properties allow linagliptin to penetrate kidney tissue and tightly bind resident DPP-4. In animal models of kidney disease, linagliptin elicited multiple renoprotective effects, including reducing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis, independent of changes in glucagon-like peptide-1 (GLP-1) and glucose levels. At the molecular level, linagliptin prevented the pro-fibrotic endothelial-to-mesenchymal transition by disrupting the interaction between membrane-bound DPP-4 and integrin β1 that enhances signaling by transforming growth factor-β1 and vascular endothelial growth factor receptor-1. Linagliptin also increased stromal cell derived factor-1 levels, ameliorated endothelial dysfunction, and displayed unique antioxidant effects. Although the nephroprotective effects of linagliptin are yet to be translated to the clinical setting, the ongoing Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus (CARMELINA®) study will definitively assess the renal effects of this DPP-4 inhibitor. CARMELINA® is the only clinical trial of a DPP-4 inhibitor powered to evaluate kidney outcomes.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
27
|
Jackson L, Woodward M, Coward RJ. The molecular biology of pelvi-ureteric junction obstruction. Pediatr Nephrol 2018; 33:553-571. [PMID: 28286898 PMCID: PMC5859056 DOI: 10.1007/s00467-017-3629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Over recent years routine ultrasound scanning has identified increasing numbers of neonates as having hydronephrosis and pelvi-ureteric junction obstruction (PUJO). This patient group presents a diagnostic and management challenge for paediatric nephrologists and urologists. In this review we consider the known molecular mechanisms underpinning PUJO and review the potential of utilising this information to develop novel therapeutics and diagnostic biomarkers to improve the care of children with this disorder.
Collapse
Affiliation(s)
- Laura Jackson
- Bristol Renal Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Hospital for Children, Bristol, UK.
| | - Mark Woodward
- 0000 0004 0399 4960grid.415172.4Bristol Royal Hospital for Children, Bristol, UK
| | - Richard J. Coward
- 0000 0004 1936 7603grid.5337.2Bristol Renal Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY UK ,0000 0004 0399 4960grid.415172.4Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
28
|
Qu Y, Zhang H, Duan J, Liu R, Deng T, Bai M, Huang D, Li H, Ning T, Zhang L, Wang X, Ge S, Zhou L, Zhong B, Ying G, Ba Y. MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer. Oncotarget 2017; 7:33286-96. [PMID: 27120811 PMCID: PMC5078094 DOI: 10.18632/oncotarget.8946] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
TGFBR2 serves as an initial regulator of the TGF-β signaling pathway, and loss or reduction of its expression leads to uncontrolled cell growth and invasion. TGFBR2 plays a crucial role in the carcinogenesis and malignant process of gastric cancer, but the mechanism remains unclear. In this study, we found that TGFBR2 protein levels were consistently upregulated in gastric cancer tissues, whereas TGFBR2 mRNA levels varied among these tissues, indicating that a post-transcriptional mechanism is involved in the regulation of TGFBR2. MiRNAs are known to regulate gene expression at the post-transcriptional level. Therefore, we performed bioinformatics analyses to search for miRNAs potentially targeting TGFBR2. MiR-17-5p was found to bind to the 3'UTR of TGFBR2 mRNA, and further validation of this specific binding was performed through a reporter assay. An inverse correlation between miR-17-5p and TGFBR2 protein was observed in gastric cancer tissues. Cell studies revealed that miR-17-5p negatively regulated TGFBR2 expression by directly binding to the 3'UTR of TGFBR2 mRNA, thereby promoting cell growth and migration. We also validated the role of TGFBR2 using siRNA and an overexpression plasmid. The results of our study suggest a novel regulatory network in gastric cancer mediated by miR-17-5p and TGFBR2 and may indicate that TGFBR2 could serve as a new therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Benfu Zhong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
29
|
Abstract
Chronic kidney disease (CKD) is a public health challenge worldwide. As CKD is associated with high rates of morbidity and mortality, identification of novel targets for effective therapy is urgently needed. Yan et al. provide evidence that the Src kinase plays a critical role in the pathogenesis of CKD by integrating multiple fibrogenic signal inputs. Therefore, targeted inhibition of Src kinase may hold promise as a new strategy in the fight against CKD.
Collapse
|
30
|
Felsen D, Diaz BJ, Chen J, Gonzalez J, Kristensen MLV, Bohn AB, Roth BT, Poppas DP, Nørregaard R. Pressure and stretch differentially affect proliferation of renal proximal tubular cells. Physiol Rep 2017; 5:e13346. [PMID: 28904080 PMCID: PMC5599855 DOI: 10.14814/phy2.13346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
Renal obstruction is frequently found in adults and children. Mechanical stimuli, including pressure and stretch in the obstructed kidney, contribute to damage; animal models of obstruction are characterized by increased cellular proliferation. We were interested in the direct effects of pressure and stretch on renal tubular cell proliferation. Human HKC-8 or rat NRK-52E proximal tubule cells were subjected to either pressure [0, 60 or 90 mmHg] or static stretch [0 or 20%] for 24 or 48 h. Cell proliferation was measured by cell counting, cell cycle analyzed by flow cytometry, and PCNA and Skp2 expression were determined by qPCR or western blot. Blood gases were determined in an iSTAT system. Proliferation was also assessed in vivo after 24 h of ureteral obstruction. There was a significant increase in HKC-8 cell number after 48 h of exposure to either 60 or 90 mmHg pressure. Western blot and qPCR confirmed increased expression of PCNA and Skp2 in pressurized cells. Cell cycle measurements demonstrated an increase in HKC-8 in S phase. Mechanical stretching increased PCNA protein expression in HKC-8 cells after 48 h while no effect was observed on Skp2 and cell cycle measurements. Increased PCNA expression was found at 24 h after ureteral obstruction. We demonstrate direct transduction of pressure into a proliferative response in HKC-8 and NRK-52E cells, measured by cell number, PCNA and Skp2 expression and increase in cells in S phase, whereas stretch had a less robust effect on proliferation.
Collapse
Affiliation(s)
- Diane Felsen
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Bianca J Diaz
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Jie Chen
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Juana Gonzalez
- Center for Clinical and Translational Science Rockefeller University, New York, New York
| | | | - Anja B Bohn
- Department of Clinical Medicine, Aarhus University, Aarhus C., Denmark
| | - Brendan T Roth
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Dix P Poppas
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
31
|
Targeting Src attenuates peritoneal fibrosis and inhibits the epithelial to mesenchymal transition. Oncotarget 2017; 8:83872-83889. [PMID: 29137389 PMCID: PMC5663561 DOI: 10.18632/oncotarget.20040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Src has been reported to mediate tissue fibrosis in several organs, but its role in peritoneal fibrosis remains unknown. In this study, we evaluated the therapeutic effect of KX2-391, a highly selective inhibitor of Src, on the development of peritoneal fibrosis in a rat model. Daily intraperitoneal injections of chlorhexidine gluconate induced peritoneal fibrosis, as indicated by thickening of the submesothelial area with an accumulation of collagen fibrils and activation of myofibroblasts. This was accompanied by time-dependent phosphorylation of Src at tyrosine 416. Administration of KX2-391 attenuated peritoneal fibrosis and abrogated increased phosphorylation of Src and multiple signaling molecules associated with tissue fibrosis, including epidermal growth factor receptor, Akt, Signal transducer and activator of transcription 3 and nuclear factor-κB in the injured peritoneum. KX2-391 also inhibited the production of proinflammatory cytokines and the infiltration of macrophages into the injured peritoneum. In cultured human peritoneal mesothelial cells, inhibition of Src by KX2-391 or siRNA resulted in decreased expression of α-smooth muscle actin (α-SMA), fibronectin and collagen I, the hallmarks of epithelial to mesenchymal transition. These results suggest that Src is a critical mediator of peritoneal fibrosis and the epithelial to mesenchymal transition. Thus, Src could be a potential therapeutic target in the treatment of peritoneal fibrosis.
Collapse
|
32
|
Sun L, Zou LX, Chen MJ. Make Precision Medicine Work for Chronic Kidney Disease. Med Princ Pract 2017; 26:101-107. [PMID: 28152529 PMCID: PMC5588375 DOI: 10.1159/000455101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
Precision medicine is based on accurate diagnosis and tailored intervention through the use of omics and clinical data together with epidemiology and environmental exposures. Precision medicine should be achieved with minimum adverse events and maximum efficacy in patients with chronic kidney disease (CKD). In this review, the breakthroughs of omics in CKD and the application of systems biology are reviewed. The potential role of transforming growth factor-β1 in the targeted intervention of renal fibrosis is discussed as an example of how to make precision medicine work for CKD.
Collapse
Affiliation(s)
- Ling Sun
- *Ling Sun, Department of Nephrology, Xuzhou Central Hospital, Medical College of Southeast University, Xuzhou City, Jiangsu Province (China), E-Mail
| | | | | |
Collapse
|
33
|
Kanasaki K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 2016; 7:212-220. [PMID: 30603266 DOI: 10.1007/s13340-016-0281-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial-mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.
Collapse
Affiliation(s)
- Keizo Kanasaki
- 1Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan.,2Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
34
|
Casare FAM, Thieme K, Costa-Pessoa JM, Rossoni LV, Couto GK, Fernandes FB, Casarini DE, Oliveira-Souza M. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Renal Physiol 2016; 310:F1295-307. [PMID: 26962104 DOI: 10.1152/ajprenal.00471.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/05/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic angiotensin II (ANG II) infusion for 1 or 2 wk leads to progressive hypertension and induces inward hypertrophic remodeling in preglomerular vessels, which is associated with increased renal vascular resistance (RVR) and decreased glomerular perfusion. Considering the ability of preglomerular vessels to exhibit adaptive responses, the present study was performed to evaluate glomerular perfusion and renal function after 6 wk of ANG II infusion. To address this study, male Wistar rats were submitted to sham surgery (control) or osmotic minipump insertion (ANG II 200 ng·kg(-1)·min(-1), 42 days). A group of animals was treated or cotreated with losartan (10 mg·kg(-1)·day(-1)), an AT1 receptor antagonist, between days 28 and 42 Chronic ANG II infusion increased systolic blood pressure to 185 ± 4 compared with 108 ± 2 mmHg in control rats. Concomitantly, ANG II-induced hypertension increased intrarenal ANG II level and consequently, preglomerular and glomerular injury. Under this condition, ANG II enhanced the total renal plasma flow (RPF), glomerular filtration rate (GFR), urine flow and induced pressure natriuresis. These changes were accompanied by lower RVR and enlargement of the lumen of interlobular arteries and afferent arterioles, consistent with impairment of renal autoregulatory capability and outward preglomerular remodeling. The glomerular injury culminated with podocyte effacement, albuminuria, tubulointerstitial macrophage infiltration and intrarenal extracellular matrix accumulation. Losartan attenuated most of the effects of ANG II. Our findings provide new information regarding the contribution of ANG II infusion over 2 wk to renal hemodynamics and function via the AT1 receptor.
Collapse
Affiliation(s)
| | - Karina Thieme
- Laboratory of Cellular and Molecular Endocrinology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Juliana Martins Costa-Pessoa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Dulce Elena Casarini
- Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|
35
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
36
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
37
|
Raghavan V, Weisz OA. Discerning the role of mechanosensors in regulating proximal tubule function. Am J Physiol Renal Physiol 2015; 310:F1-5. [PMID: 26662200 DOI: 10.1152/ajprenal.00373.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study.
Collapse
Affiliation(s)
- Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|