1
|
Rein JL, Mackie K, Kleyman TR, Satlin LM. Cannabinoid receptor type 1 activation causes a water diuresis by inducing an acute central diabetes insipidus in mice. Am J Physiol Renal Physiol 2024; 326:F917-F930. [PMID: 38634131 DOI: 10.1152/ajprenal.00320.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.
Collapse
Affiliation(s)
- Joshua L Rein
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ken Mackie
- Gill Center for Biomolecular Medicine, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Jung HJ, Pham TD, Su XT, Grigore TV, Hoenderop JG, Olauson H, Wall SM, Ellison DH, Welling PA, Al-Qusairi L. Klotho is highly expressed in the chief sites of regulated potassium secretion, and it is stimulated by potassium intake. Sci Rep 2024; 14:10740. [PMID: 38729987 PMCID: PMC11087591 DOI: 10.1038/s41598-024-61481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Truyen D Pham
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Teodora Veronica Grigore
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susan M Wall
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Paul A Welling
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lama Al-Qusairi
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Welling PA, Little R, Al-Qusairi L, Delpire E, Ellison DH, Fenton RA, Grimm PR. Potassium-Switch Signaling Pathway Dictates Acute Blood Pressure Response to Dietary Potassium. Hypertension 2024; 81:1044-1054. [PMID: 38465625 PMCID: PMC11023808 DOI: 10.1161/hypertensionaha.123.22546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Potassium (K+)-deficient diets, typical of modern processed foods, increase blood pressure (BP) and NaCl sensitivity. A K+-dependent signaling pathway in the kidney distal convoluted tubule, coined the K+ switch, that couples extracellular K+ sensing to activation of the thiazide-sensitive NaCl cotransporter (NCC) and NaCl retention has been implicated, but causality has not been established. METHODS To test the hypothesis that small, physiological changes in plasma K+ (PK+) are translated to BP through the switch pathway, a genetic approach was used to activate the downstream switch kinase, SPAK (SPS1-related proline/alanine-rich kinase), within the distal convoluted tubule. The CA-SPAK (constitutively active SPS1-related proline/alanine-rich kinase mice) were compared with control mice over a 4-day PK+ titration (3.8-5.1 mmol) induced by changes in dietary K+. Arterial BP was monitored using radiotelemetry, and renal function measurements, NCC abundance, phosphorylation, and activity were made. RESULTS As PK+ decreased in control mice, BP progressively increased and became sensitive to dietary NaCl and hydrochlorothiazide, coincident with increased NCC phosphorylation and urinary sodium retention. By contrast, BP in CA-SPAK mice was elevated, resistant to the PK+ titration, and sensitive to hydrochlorothiazide and salt at all PK+ levels, concomitant with sustained and elevated urinary sodium retention and NCC phosphorylation and activity. Thus, genetically locking the switch on drives NaCl sensitivity and prevents the response of BP to potassium. CONCLUSIONS Low K+, common in modern ultraprocessed diets, presses the K+-switch pathway to turn on NCC activity, increasing sodium retention, BP, and salt sensitivity.
Collapse
Affiliation(s)
- Paul A. Welling
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Robert Little
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lama Al-Qusairi
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, USA
| | - David H. Ellison
- Department of Medicine, Division of Nephrology, Oregon Health Science Center, Portland, Oregon, US
| | - Robert A. Fenton
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - P. Richard Grimm
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Brooks HL, de Castro Brás LE, Brunt KR, Sylvester MA, Parvatiyar MS, Sirish P, Bansal SS, Sule R, Eadie AL, Knepper MA, Fenton RA, Lindsey ML, DeLeon-Pennell KY, Gomes AV. Guidelines on antibody use in physiology research. Am J Physiol Renal Physiol 2024; 326:F511-F533. [PMID: 38234298 PMCID: PMC11208033 DOI: 10.1152/ajprenal.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Antibodies are one of the most used reagents in scientific laboratories and are critical components for a multitude of experiments in physiology research. Over the past decade, concerns about many biological methods, including those that use antibodies, have arisen as several laboratories were unable to reproduce the scientific data obtained in other laboratories. The lack of reproducibility could be largely attributed to inadequate reporting of detailed methods, no or limited verification by authors, and the production and use of unvalidated antibodies. The goal of this guideline article is to review best practices concerning commonly used techniques involving antibodies, including immunoblotting, immunohistochemistry, and flow cytometry. Awareness and integration of best practices will increase the rigor and reproducibility of these techniques and elevate the quality of physiology research.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | | | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Megan A Sylvester
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States
| | - Shyam S Bansal
- Department of Cellular and Molecular Physiology, Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Rasheed Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| | - Ashley L Eadie
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| |
Collapse
|
5
|
Carbajal-Contreras H, Murillo-de-Ozores AR, Magaña-Avila G, Marquez-Salinas A, Bourqui L, Tellez-Sutterlin M, Bahena-Lopez JP, Cortes-Arroyo E, Behn-Eschenburg SG, Lopez-Saavedra A, Vazquez N, Ellison DH, Loffing J, Gamba G, Castañeda-Bueno M. Arginine vasopressin regulates the renal Na +-Cl - and Na +-K +-Cl - cotransporters through with-no-lysine kinase 4 and inhibitor 1 phosphorylation. Am J Physiol Renal Physiol 2024; 326:F285-F299. [PMID: 38096266 PMCID: PMC11207557 DOI: 10.1152/ajprenal.00343.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024] Open
Abstract
Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.
Collapse
Affiliation(s)
- Hector Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - German Magaña-Avila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Marquez-Salinas
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laurent Bourqui
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michelle Tellez-Sutterlin
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jessica P Bahena-Lopez
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Eduardo Cortes-Arroyo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sebastián González Behn-Eschenburg
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Lopez-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía del Instituto Nacional de Cancerología y la Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma Vazquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States
| | | | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
6
|
Jung HJ, Dixon EE, Coleman R, Watnick T, Reiter JF, Outeda P, Cebotaru V, Woodward OM, Welling PA. Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease. Physiol Genomics 2023; 55:565-577. [PMID: 37720991 PMCID: PMC11178268 DOI: 10.1152/physiolgenomics.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Grimm PR, Tatomir A, Rosenbaek LL, Kim BY, Li D, Delpire EJ, Fenton RA, Welling PA. Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure. J Clin Invest 2023; 133:e158498. [PMID: 37676724 PMCID: PMC10617769 DOI: 10.1172/jci158498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Consumption of low dietary potassium, common with ultraprocessed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the with no (K) lysine kinase/STE20/SPS1-related proline-alanine-rich protein kinase (WNK/SPAK) pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high-potassium "DASH-like" diets (dietary approaches to stop hypertension) inactivate the cotransporter and whether this decreases BP. A transcriptomics screen identified Ppp1Ca, encoding PP1A, as a potassium-upregulated gene, and its negative regulator Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK/SPAK kinase cascade, we confirmed that PP1A dephosphorylated NCC directly in a potassium-regulated manner. Prior adaptation to a high-potassium diet was required to maximally dephosphorylate NCC and lower BP in constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a and dephosphorylation of its cognate protein, inhibitory subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drove NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK/SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- P. Richard Grimm
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Anamaria Tatomir
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Lena L. Rosenbaek
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Bo Young Kim
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Dimin Li
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Eric J. Delpire
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennssee, USA
| | - Robert A. Fenton
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Paul A. Welling
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Physiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
8
|
Xu C, Yi X, Tang L, Wang H, Chu S, Yu J. Differential regulation of autophagy on urine-concentrating capability through modulating the renal AQP2 expression and renin-angiotensin system in mice. Am J Physiol Renal Physiol 2023; 325:F503-F518. [PMID: 37589054 DOI: 10.1152/ajprenal.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V2 receptor (V2R), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD72 mice, accompanied by downregulation of AQP2 and V2R expression in the renal cortex. 3-MA and CQ further increased AQP2 and V2R expression in the renal medulla of WD72 mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD72 mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD72 mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/V2R and ACE/ANG II signaling during WD.NEW & NOTEWORTHY Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/V2R and ACE/ANG II signaling in the renal cortex in WD mice.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Hui Wang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Shuhan Chu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
9
|
Al-Qusairi L, Ferdaus MZ, Pham TD, Li D, Grimm PR, Zapf AM, Abood DC, Tahaei E, Delpire E, Wall SM, Welling PA. Dietary anions control potassium excretion: it is more than a poorly absorbable anion effect. Am J Physiol Renal Physiol 2023; 325:F377-F393. [PMID: 37498547 PMCID: PMC10639028 DOI: 10.1152/ajprenal.00193.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
The urinary potassium (K+) excretion machinery is upregulated with increasing dietary K+, but the role of accompanying dietary anions remains inadequately characterized. Poorly absorbable anions, including [Formula: see text], are thought to increase K+ secretion through a transepithelial voltage effect. Here, we tested if they also influence the K+ secretion machinery. Wild-type mice, aldosterone synthase (AS) knockout (KO) mice, or pendrin KO mice were randomized to control, high-KCl, or high-KHCO3 diets. The K+ secretory capacity was assessed in balance experiments. Protein abundance, modification, and localization of K+-secretory transporters were evaluated by Western blot analysis and confocal microscopy. Feeding the high-KHCO3 diet increased urinary K+ excretion and the transtubular K+ gradient significantly more than the high-KCl diet, coincident with more pronounced upregulation of epithelial Na+ channels (ENaC) and renal outer medullary K+ (ROMK) channels and apical localization in the distal nephron. Experiments in AS KO mice revealed that the enhanced effects of [Formula: see text] were aldosterone independent. The high-KHCO3 diet also uniquely increased the large-conductance Ca2+-activated K+ (BK) channel β4-subunit, stabilizing BKα on the apical membrane, the Cl-/[Formula: see text] exchanger, pendrin, and the apical KCl cotransporter (KCC3a), all of which are expressed specifically in pendrin-positive intercalated cells. Experiments in pendrin KO mice revealed that pendrin was required to increase K+ excretion with the high-KHCO3 diet. In summary, [Formula: see text] stimulates K+ excretion beyond a poorly absorbable anion effect, upregulating ENaC and ROMK in principal cells and BK, pendrin, and KCC3a in pendrin-positive intercalated cells. The adaptive mechanism prevents hyperkalemia and alkalosis with the consumption of alkaline ash-rich diets but may drive K+ wasting and hypokalemia in alkalosis.NEW & NOTEWORTHY Dietary anions profoundly impact K+ homeostasis. Here, we found that a K+-rich diet, containing [Formula: see text] as the counteranion, enhances the electrogenic K+ excretory machinery, epithelial Na+ channels, and renal outer medullary K+ channels, much more than a high-KCl diet. It also uniquely induces KCC3a and pendrin, in B-intercalated cells, providing an electroneutral KHCO3 secretion pathway. These findings reveal new K+ balance mechanisms that drive adaption to alkaline and K+-rich foods, which should guide new treatment strategies for K+ disorders.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Truyen D Pham
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Dimin Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - P Richard Grimm
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ava M Zapf
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Delaney C Abood
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ebrahim Tahaei
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Susan M Wall
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
10
|
Vitzthum H, Koch M, Eckermann L, Svendsen SL, Berg P, Hübner CA, Wagner CA, Leipziger J, Meyer-Schwesinger C, Ehmke H. The AE4 transporter mediates kidney acid-base sensing. Nat Commun 2023; 14:3051. [PMID: 37236964 DOI: 10.1038/s41467-023-38562-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The kidney plays a key role in the correction of systemic acid-base imbalances. Central for this regulation are the intercalated cells in the distal nephron, which secrete acid or base into the urine. How these cells sense acid-base disturbances is a long-standing question. Intercalated cells exclusively express the Na+-dependent Cl-/HCO3- exchanger AE4 (Slc4a9). Here we show that AE4-deficient mice exhibit a major dysregulation of acid-base balance. By combining molecular, imaging, biochemical and integrative approaches, we demonstrate that AE4-deficient mice are unable to sense and appropriately correct metabolic alkalosis and acidosis. Mechanistically, a lack of adaptive base secretion via the Cl-/HCO3- exchanger pendrin (Slc26a4) is the key cellular cause of this derailment. Our findings identify AE4 as an essential part of the renal sensing mechanism for changes in acid-base status.
Collapse
Affiliation(s)
- H Vitzthum
- Center for Experimental Medicine, Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Koch
- Center for Experimental Medicine, Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Eckermann
- Center for Experimental Medicine, Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S L Svendsen
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - P Berg
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - C A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - C A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - J Leipziger
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - C Meyer-Schwesinger
- Center for Experimental Medicine, Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Ehmke
- Center for Experimental Medicine, Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
11
|
Little R, Murali SK, Poulsen SB, Grimm PR, Assmus A, Cheng L, Ivy JR, Hoorn EJ, Matchkov V, Welling PA, Fenton RA. Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation. JCI Insight 2023; 8:156437. [PMID: 36719746 PMCID: PMC10077486 DOI: 10.1172/jci.insight.156437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.
Collapse
Affiliation(s)
- Robert Little
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Paul R Grimm
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Tahaei E, Pham TD, Al-Qusairi L, Grimm R, Wall SM, Welling PA. Pendrin regulation is prioritized by anion in high-potassium diets. Am J Physiol Renal Physiol 2023; 324:F256-F266. [PMID: 36656986 PMCID: PMC9942896 DOI: 10.1152/ajprenal.00128.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The Cl-/[Formula: see text] exchanger pendrin in the kidney maintains acid-base balance and intravascular volume. Pendrin is upregulated in models associated with high circulating aldosterone concentration, such as dietary NaCl restriction or an aldosterone infusion. However, it has not been established if pendrin is similarly regulated by aldosterone with a high-K+ diet because the effects of accompanying anions have not been considered. Here, we explored how pendrin is modulated by different dietary potassium salts. Wild-type (WT) and aldosterone synthase (AS) knockout (KO) mice were randomized to control, high-KHCO3, or high-KCl diets. Dietary KCl and KHCO3 loading increased aldosterone in WT mice to the same extent but had opposite effects on pendrin abundance. KHCO3 loading increased pendrin protein and transcript abundance. Conversely, high-KCl diet feeding caused pendrin to decrease within 8 h of switching from the high-KHCO3 diet, coincident with an increase in plasma Cl- and a decrease in [Formula: see text]. In contrast, switching the high-KCl diet to the high-KHCO3 diet caused pendrin to increase in WT mice. Experiments in AS KO mice revealed that aldosterone is necessary to optimally upregulate pendrin protein in response to the high-KHCO3 diet but not to increase pendrin mRNA. We conclude that pendrin is differentially regulated by different dietary potassium salts and that its regulation is prioritized by the dietary anion, providing a mechanism to prevent metabolic alkalosis with high-K+ base diets and safeguard against hyperchloremic acidosis with consumption of high-KCl diets.NEW & NOTEWORTHY Regulation of the Cl-/[Formula: see text] exchanger pendrin has been suggested to explain the aldosterone paradox. A high-K+ diet has been proposed to downregulate a pendrin-mediated K+-sparing NaCl reabsorption pathway to maximize urinary K+ excretion. Here, we challenged the hypothesis, revealing that the accompanying anion, not K+, drives pendrin expression. Pendrin is downregulated with a high-KCl diet, preventing acidosis, and upregulated with an alkaline-rich high-K+ diet, preventing metabolic alkalosis. Pendrin regulation is prioritized for acid-base balance.
Collapse
Affiliation(s)
- Ebrahim Tahaei
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Truyen D Pham
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lama Al-Qusairi
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rick Grimm
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
13
|
Azurmendi PJ, Toro AR, Celía AF, Guevara D, Solerno MR, Di Ciano LA, Toledo JE, Ibarra FR, Arrizurieta EE, Oddo EM. Behavior of the renal kallikrein in spontaneously hypertensive rats: Influence of sexual hormones and aldosterone-sensitive distal nephron ion channels. Peptides 2023; 160:170925. [PMID: 36549423 DOI: 10.1016/j.peptides.2022.170925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The renal kallikrein-kinin system (RKKS) has been related to blood pressure control and sodium and water balance. We have previously shown that female spontaneously hypertensive rats (SHR) have high urinary kallikrein activity (UKa) and lower blood pressure (BP) than males whereas ovariectomy stimulates UKa and diminishes BP. We also showed that high K+ intake and prepuberal gonadectomy (Gx) diminish BP with a concomitant increase in UKa and plasma aldosterone levels. Since kallikrein co-localize in the same distal nephron segments of aldosterone effectors, we explored the effect of pharmacological blockage of aldosterone receptor, epithelial Na+ (ENaC) and the rectifying outer medulla K+ (ROMK) channels in different gonad contexts on the gene expression, renal tissue content and urine release of kallikrein. Klk1 gene expression was determined by real-time PCR and enzymatic activity of kallikrein by the amidolytic method. We found that the inhibition of the aldosterone receptor by spironolactone increases kallikrein renal tissue storage and decreases its urinary activity, especially in Gx rats. Moreover, ENaC blockade by benzamil increases the renal content of kallikrein without affecting synthesis or excretion, especially in females and Gx animals, while the inhibition of ROMK by glibenclamide increases the synthesis and renal content of kallikrein only in intact male animals. We concluded that RKKS regulation showed sexual dimorphism and seemed to be modulated by sex hormones throughout a process involving aldosterone and the aldosterone-sensitive ion channels..
Collapse
Affiliation(s)
- Pablo Javier Azurmendi
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
| | - Ayelén Rayen Toro
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro Fabián Celía
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Darío Guevara
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Martín Rogelio Solerno
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis Alberto Di Ciano
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Jorge Eduardo Toledo
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Fernando Raúl Ibarra
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Universidad de Buenos Aires, Departamento de Ciencias Fisiológicas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay)-CONICET, Facultad de Medicina, Buenos Aires, Argentina
| | - Elvira Emilia Arrizurieta
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elisabet Mónica Oddo
- Universidad de Buenos Aires, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| |
Collapse
|
14
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
15
|
Ferdaus MZ, Terker AS, Koumangoye R, Delpire E. KCC3a, a Strong Candidate Pathway for K+ Loss in Alkalemia. Front Cell Dev Biol 2022; 10:931326. [PMID: 35874803 PMCID: PMC9301082 DOI: 10.3389/fcell.2022.931326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in the human potassium chloride cotransporter-3 (KCC3) cause a hereditary motor sensory neuropathy associated with agenesis of the corpus callosum. While recapitulating the neuropathy, KCC3-knockout mice also exhibit high blood pressure. This phenotype is believed to have neurogenic and/or vascular origins. The role of KCC3 in the kidney is poorly understood. KCC3 is encoded by two major isoforms originating from alternative promoters: KCC3a and KCC3b, with KCC3b being the predominant transcript in the kidney. Although the transporter has previously been localized to the proximal tubule, we show here the unique expression of the KCC3a isoform in the connecting tubule. Using a KCC3a-specific polyclonal antibody validated for both immunofluorescence and immunoblotting, we showed an intense KCC3a signal restricted to cortical intercalated cells. No overlap is detected between KCC3a and sodium chloride cotransporter (NCC), a distal convoluted tubule (DCT) marker; or between KCC3a and ENaC or calbindin, which are both principal cell markers. KCC3a signal was observed in cells expressing the apical V-ATPase and pendrin, establishing a unique expression pattern characteristic of intercalated cells of type-B or type-nonA/nonB. We further show that treatment of wild-type mice with hydrochlorothiazide, amiloride, or fed a K+-deficient diet up-regulates KCC3a level, suggesting that volume depletion increases KCC3a abundance. This hypothesis was confirmed by showing a higher abundance of KCC3a protein after 23-h water restriction or after placing the mice on a low-salt diet. More importantly, abundance of the Cl−/HCO3− exchanger, pendrin, which is known to secrete bicarbonate in alkalotic conditions, was significantly diminished in KCC3-knockout mice. In addition, KCC3a abundance increased significantly alongside pendrin abundance in bicarbonate-treated alkalotic mice, providing a credible mechanism for K+ loss in metabolic alkalosis.
Collapse
Affiliation(s)
- Mohammed Zubaerul Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Andrew Scott Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
- *Correspondence: Eric Delpire,
| |
Collapse
|
16
|
Xu L, Xie H, Hu S, Zhao X, Han M, Liu Q, Feng P, Wang W, Li C. HDAC3 inhibition improves urinary-concentrating defect in hypokalaemia by promoting AQP2 transcription. Acta Physiol (Oxf) 2022; 234:e13802. [PMID: 35178888 DOI: 10.1111/apha.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
AIM This study investigated whether enhanced histone acetylation, achieved by inhibiting histone deacetylases (HDACs), could prevent decreased aquaporin-2 (AQP2) expression during hypokalaemia. METHODS Male Wistar rats were fed a potassium-free diet with or without 4-phenylbutyric acid (4-PBA) or the selective HDAC3 inhibitor RGFP966 for 4 days. Primary renal inner medullary collecting duct (IMCD) cells and immortalized mouse cortical collecting duct (mpkCCD) cells were cultured in potassium-deprivation medium with or without HDAC inhibitors. RESULTS 4-PBA increased the levels of AQP2 mRNA and protein in the kidney inner medullae in hypokalaemic (HK) rats, which was associated with decreased urine output and increased urinary osmolality. The level of acetylated H3K27 (H3K27ac) protein was decreased in the inner medullae of HK rat kidneys; this decrease was mitigated by 4-PBA. The H3K27ac levels were decreased in IMCD and mpkCCD cells cultured in potassium-deprivation medium. Decreased H3K27ac in the Aqp2 promoter region was associated with reduced Aqp2 mRNA levels. HDAC3 protein expression was upregulated in mpkCCD and IMCD cells in response to potassium deprivation, and the binding of HDAC3 to the Aqp2 promoter was also increased. RGFP966 increased the levels of H3K27ac and AQP2 proteins and enhanced binding between H3K27ac and AQP2 in mpkCCD cells. Furthermore, RGFP966 reversed the hypokalaemia-induced downregulation of AQP2 and H3K27ac and alleviated polyuria in rats. RGFP966 increased interstitial osmolality in the kidney inner medullae of HK rats but did not affect urinary cAMP levels. CONCLUSION HDAC inhibitors prevented the downregulation of AQP2 induced by potassium deprivation, probably by enhancing H3K27 acetylation.
Collapse
Affiliation(s)
- Long Xu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Haixia Xie
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Shan Hu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- The School of Basic Medicine Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaoduo Zhao
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Mengke Han
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Qiaojuan Liu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Pinning Feng
- Department of Clinical Laboratory The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Weidong Wang
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Nephrology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chunling Li
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| |
Collapse
|
17
|
Svendsen SL, Kornvig S, Berg P, Jensen IS, Araujo IBBA, Larsen CK, Leipziger J, Sørensen MV. Dietary K + acts as a genuine diuretic. Acta Physiol (Oxf) 2022; 234:e13762. [PMID: 34984847 DOI: 10.1111/apha.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/29/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
K+ balance in mammals relies on regulated renal K+ excretion matching unregulated fluctuating K+ intake. Upon a K+ rich meal, rapid and powerful K+ excretion is needed. Renal K+ secretion is stimulated by the increased tubular flow. We speculated that high K+ intake acutely increases urinary flow to stimulate K+ excretion. METHODS Mice were K+ challenged through diets or gavage. Post K+ loading urinary output, osmolarity, [K+ ]u , [Na+ ]u , plasma osmolarity, [copeptin]p , [K+ ]p , and [Na+ ]p were measured. To locate the mechanism of K+ -induced diuresis in the glomerular/tubular system we measured creatinine excretion and assessed functional transport in isolated perfused TALs and CDs during an acute [K+ ]bl switch from 3.6 to 6.5 mM. Molecular adaptations of transport proteins involved in water reabsorption were investigated by immunoblotting. RESULTS (1) Mice switched from a 1% to 2% K+ diet increased diuresis within 12 hours and reciprocally reduced diuresis when switched from 1% to 0.01% K+ diet. (2) A single K+ gavage load, corresponding to 25%-50% of daily K+ intake, induced 100% increase in diuresis within 30 minutes. This occurred despite augmented plasma osmolarity and AVP synthesis. (3) K+ gavage did not change GFR. (4) In isolated perfused TALs, shifting [K+ ]bl from 3.6 to 6.5 mM did not affect AVP-induced NaCl transport. (5) In sharp contrast, in isolated perfused CDs, shifting [K+ ]bl from 3.6 to 6.5 mM markedly reduced CD AVP sensitivity, ie inhibited water absorption. CONCLUSION Dietary K+ loading induces a rapidly on-setting diuresis. The mechanism of K+ -induced diuresis involves desensitization of the CD to AVP.
Collapse
Affiliation(s)
- Samuel L. Svendsen
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | - Simon Kornvig
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | - Peder Berg
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | - Iben S. Jensen
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | | | - Casper K. Larsen
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
| | - Mads V. Sørensen
- Department of Biomedicine, Physiology, Health Aarhus University Aarhus C Denmark
- Aarhus Institute for Advanced Studies (AIAS) Aarhus University Aarhus C Denmark
| |
Collapse
|
18
|
Zapf AM, Grimm PR, Al-Qusairi L, Delpire E, Welling PA. Low Salt Delivery Triggers Autocrine Release of Prostaglandin E2 From the Aldosterone-Sensitive Distal Nephron in Familial Hyperkalemic Hypertension Mice. Front Physiol 2022; 12:787323. [PMID: 35069250 PMCID: PMC8770744 DOI: 10.3389/fphys.2021.787323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.
Collapse
Affiliation(s)
- Ava M Zapf
- Molecular Medicine, Graduate Program in Life Sciences, University of Maryland Medical School, Baltimore, MD, United States
| | - Paul R Grimm
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Wieërs MLAJ, Mulder J, Rotmans JI, Hoorn EJ. Potassium and the kidney: a reciprocal relationship with clinical relevance. Pediatr Nephrol 2022; 37:2245-2254. [PMID: 35195759 PMCID: PMC9395506 DOI: 10.1007/s00467-022-05494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/26/2022]
Abstract
By controlling urinary potassium excretion, the kidneys play a key role in maintaining whole-body potassium homeostasis. Conversely, low urinary potassium excretion (as a proxy for insufficient dietary intake) is increasingly recognized as a risk factor for the progression of kidney disease. Thus, there is a reciprocal relationship between potassium and the kidney: the kidney regulates potassium balance but potassium also affects kidney function. This review explores this relationship by discussing new insights into kidney potassium handling derived from recently characterized tubulopathies and studies on sexual dimorphism. These insights reveal a central but non-exclusive role for the distal convoluted tubule in sensing potassium and subsequently modifying the activity of the sodium-chloride cotransporter. This is another example of reciprocity: activation of the sodium-chloride cotransporter not only reduces distal sodium delivery and therefore potassium secretion but also increases salt sensitivity. This mechanism helps explain the well-known relationship between dietary potassium and blood pressure. Remarkably, in children, blood pressure is related to dietary potassium but not sodium intake. To explore how potassium deficiency can cause kidney injury, we review the mechanisms of hypokalemic nephropathy and discuss if these mechanisms may explain the association between low dietary potassium intake and adverse kidney outcomes. We discuss if potassium should be repleted in patients with kidney disease and what role dietary potassium plays in the risk of hyperkalemia. Supported by data and physiology, we reach the conclusion that we should view potassium not only as a potentially dangerous cation but also as a companion in the battle against kidney disease.
Collapse
Affiliation(s)
- Michiel L. A. J. Wieërs
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jaap Mulder
- grid.5645.2000000040459992XDepartment of Pediatrics, Division of Pediatric Nephrology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Pediatrics, Division of Pediatric Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I. Rotmans
- grid.10419.3d0000000089452978Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J. Hoorn
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|