1
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
2
|
The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 2023; 46:50-62. [PMID: 36241707 DOI: 10.1038/s41440-022-01064-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.
Collapse
|
3
|
Camostat mesilate, a serine protease inhibitor, exerts aquaretic effects and decreases urinary exosomal AQP2 levels. J Pharmacol Sci 2022; 150:204-210. [DOI: 10.1016/j.jphs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
|
4
|
Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022; 23:ijms23147831. [PMID: 35887178 PMCID: PMC9324399 DOI: 10.3390/ijms23147831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The ischemia-reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin-angiotensin-aldosterone system.
Collapse
|
5
|
Anand D, Hummler E, Rickman OJ. ENaC activation by proteases. Acta Physiol (Oxf) 2022; 235:e13811. [PMID: 35276025 PMCID: PMC9540061 DOI: 10.1111/apha.13811] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Proteases are fundamental for a plethora of biological processes, including signalling and tissue remodelling, and dysregulated proteolytic activity can result in pathogenesis. In this review, we focus on a subclass of membrane‐bound and soluble proteases that are defined as channel‐activating proteases (CAPs), since they induce Na+ ion transport through an autocrine mechanism when co‐expressed with the highly amiloride‐sensitive epithelial sodium channel (ENaC) in Xenopus oocytes. These experiments first identified CAP1 (channel‐activating protease 1, prostasin) followed by CAP2 (channel‐activating protease 2, TMPRSS4) and CAP3 (channel‐activating protease 3, matriptase) as in vitro mediators of ENaC current. Since then, more serine‐, cysteine‐ and metalloproteases were confirmed as in vitro CAPs that potentially cleave and regulate ENaC, and thus this nomenclature was not further followed, but is accepted as functional term or alias. The precise mechanism of ENaC modulation by proteases has not been fully elucidated. Studies in organ‐specific protease knockout models revealed evidence for their role in increasing ENaC activity, although the proteases responsible for ENaC activation are yet to be identified. We summarize recent findings in animal models of these CAPs with respect to their implication in ENaC activation. We discuss the consequences of dysregulated CAPs underlying epithelial phenotypes in pathophysiological conditions, and the role of selected protease inhibitors. We believe that these proteases may present interesting therapeutic targets for diseases with aberrant sodium homoeostasis.
Collapse
Affiliation(s)
- Deepika Anand
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| | - Edith Hummler
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| | - Olivia J. Rickman
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| |
Collapse
|
6
|
Mizumoto T, Kakizoe Y, Nakagawa T, Iwata Y, Miyasato Y, Uchimura K, Adachi M, Deng Q, Hayata M, Morinaga J, Miyoshi T, Izumi Y, Kuwabara T, Sakai Y, Tomita K, Kitamura K, Mukoyama M. A serine protease inhibitor camostat mesilate prevents podocyte apoptosis and attenuates podocyte injury in metabolic syndrome model rats. J Pharmacol Sci 2021; 146:192-199. [PMID: 34116732 DOI: 10.1016/j.jphs.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with chronic kidney disease and proteinuria. Previously, we reported that a synthetic serine protease inhibitor, camostat mesilate (CM), mitigated hypertension and proteinuria in rodent disease models. The present study evaluated the anti-hypertensive and anti-proteinuric effects of CM in MetS model rats (SHR/ND mcr-cp). Rats were divided into normal salt-fed (NS), high salt-fed (HS), HS and CM-treated (CM), and HS and hydralazine-treated (Hyd) groups. Rats were sacrificed after four weeks of treatment. Severe hypertension and proteinuria were observed in the HS group. Although CM and Hyd equally alleviated hypertension, CM suppressed proteinuria and glomerular sclerosis more efficiently than Hyd. The HS group revealed a decrease in podocyte number and podocyte-specific molecules, together with an increase in glomerular apoptotic cells and apoptosis-related proteins in the kidney. These changes were significantly attenuated by CM, but not by Hyd. Furthermore, CM ameliorated the apoptotic signals in murine cultured podocytes stimulated with the high glucose and aldosterone medium. In conclusion, CM could exert renoprotective effects in MetS model rats, together with the inhibition of podocyte apoptosis. Our study suggests that serine protease inhibition may become a new therapeutic strategy against MetS-related hypertension and renal injuries.
Collapse
Affiliation(s)
- Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jun Morinaga
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taku Miyoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshiki Sakai
- Ono Pharmaceutical Co. Ltd., Research Headquarters, 1-8-2 Kyutaromachi, Chuo-ku, Osaka 541-8564, Japan
| | - Kimio Tomita
- The Chronic Kidney Disease Research Center, Tomei Atsugi Hospital, 232 Funako, Atsugi, Kanagawa 243-8571, Japan
| | - Kenichiro Kitamura
- Kitakurihama Takuchi Clinic, 3-16-1 Negishi-cho, Yokosuka, Kanagawa 239-0807, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
7
|
Huo Z, Ye H, Ye P, Xiao G, Zhang Z, Kong Y. Comparative efficacy of different renin angiotensin system blockade therapies in patients with IgA nephropathy: a Bayesian network meta-analysis of 17 RCTs. PeerJ 2021; 9:e11661. [PMID: 34268008 PMCID: PMC8269645 DOI: 10.7717/peerj.11661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background IgA nephropathy (IgAN) is still one of the most prevalent forms of primary glomerulonephritis globally. However, no guidelines have clearly indicated which kinds of renin angiotensin system blockade therapies (ACEIs or ARBs or their combination) in patients with IgAN result in a greater reduction in proteinuria and a better preservation of kidney function. Thus, we conducted a Bayesian network analysis to evaluate the relative effects of these three therapy regimens in patients with IgAN. Methods The protocol was registered in PROSPERO with ID CRD42017073726. We comprehensively searched the PubMed, the Cochrane Library, Embase, China Biology Medicine disc, WanFang and CNKI databases for studies published since 1993 as well as some grey literature according to PICOS strategies. Pairwise meta-analysis and Bayesian network analysis were conducted to evaluate the effect of different regimens. Results Seventeen randomized controlled trials (RCTs) involving 1,006 patients were analyzed. Co-administration of ACEIs and ARBs had the highest probability (92%) of being the most effective therapy for reducing proteinuria and blood pressure, but ACEIs would be the most appropriate choice for protecting kidney function in IgAN. Conclusion The combination of ACEIs and ARBs seems to have a significantly better antiproteinuric effect and a greater reduction of blood pressure than ACEI or ARB monotherapy in IgAN. ACEIs appear to be a more renoprotective therapy regimen among three therapies.
Collapse
Affiliation(s)
- Zhihao Huo
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huizhen Ye
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China.,Staff Health Care Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peiyi Ye
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Guanqing Xiao
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Zhe Zhang
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
8
|
Ozawa S, Matsubayashi M, Nanaura H, Yanagita M, Mori K, Asanuma K, Kajiwara N, Hayashi K, Ohashi H, Kasahara M, Yokoi H, Kataoka H, Mori E, Nakagawa T. Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury. J Biol Chem 2020; 295:16002-16012. [PMID: 32907879 DOI: 10.1074/jbc.ra120.013721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Podocyte injury is a critical step toward the progression of renal disease and is often associated with a loss of slit diaphragm proteins, including Podocin. Although there is a possibility that the extracellular domain of these slit diaphragm proteins can be a target for a pathological proteolysis, the precise mechanism driving the phenomenon remains unknown. Here we show that Matriptase, a membrane-anchored protein, was activated at podocytes in CKD patients and mice, whereas Matriptase inhibitors slowed the progression of mouse kidney disease. The mechanism could be accounted for by an imbalance favoring Matriptase over its cognate inhibitor, hepatocyte growth factor activator inhibitor type 1 (HAI-1), because conditional depletion of HAI-1 in podocytes accelerated podocyte injury in mouse model. Matriptase was capable of cleaving Podocin, but such a reaction was blocked by either HAI-1 or dominant-negative Matriptase. Furthermore, the N terminus of Podocin, as a consequence of Matriptase cleavage of Podocin, translocated to nucleoli, suggesting that the N terminus of Podocin might be involved in the process of podocyte injury. Given these observations, we propose that the proteolytic cleavage of Podocin by Matriptase could potentially cause podocyte injury and that targeting Matriptase could be a novel therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Shota Ozawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Research Unit/Innovative Medical Science, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoko Yanagita
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katsuhiko Asanuma
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Chiba University, Chiba, Japan
| | | | - Kazuyuki Hayashi
- Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Hiroshi Ohashi
- Department of Pathology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University, Kashihara, Nara, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Kihara, Miyazaki, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Takahiko Nakagawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
9
|
Recent insights into sodium and potassium handling by the aldosterone-sensitive distal nephron: implications on pathophysiology and drug discovery. J Nephrol 2020; 33:447-466. [DOI: 10.1007/s40620-020-00700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
10
|
Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2019; 225:e13249. [PMID: 30597733 DOI: 10.1111/apha.13249] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Sodium retention and extracellular volume expansion are typical features of patients with nephrotic syndrome. In recent years, from in vitro data, endoluminal activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases has been proposed as an underlying mechanism. Recently, this concept was supported in vivo in nephrotic mice that were protected from proteolytic ENaC activation and sodium retention by the use of aprotinin for the pharmacological inhibition of urinary serine protease activity. These and other findings from studies in both rodents and humans highlight the impact of active proteases in the urine, or proteasuria, on ENaC-mediated sodium retention and edema formation in nephrotic syndrome. Targeting proteasuria could become a therapeutic approach to treat patients with nephrotic syndrome. However, pathophysiologically relevant proteases remain to be identified. In this review, we introduce the concept of proteasuria to explain tubular sodium avidity and conclude that proteasuria can be considered as a key mechanism of sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
11
|
Kakizoe Y, Miyasato Y, Onoue T, Nakagawa T, Hayata M, Uchimura K, Morinaga J, Mizumoto T, Adachi M, Miyoshi T, Sakai Y, Tomita K, Mukoyama M, Kitamura K. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity. J Pharmacol Sci 2016; 132:145-153. [DOI: 10.1016/j.jphs.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
|
12
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
13
|
Iwashita Y, Kuwabara T, Hayata M, Kakizoe Y, Izumi Y, Iiyama J, Kitamura K, Mukoyama M. Mild systemic thermal therapy ameliorates renal dysfunction in a rodent model of chronic kidney disease. Am J Physiol Renal Physiol 2016; 310:F1206-15. [DOI: 10.1152/ajprenal.00519.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Thermal therapy has become a nonpharmacological therapy in clinical settings, especially for cardiovascular diseases. However, the practical role of thermal therapy on chronic kidney disease remains elusive. We performed the present study to investigate whether a modified thermal protocol, repeated mild thermal stimulation (MTS), could affect renal damages in chronic kidney disease using a mouse renal ablation model. Mice were subjected to MTS or room temperature (RT) treatment once daily for 4 wk after subtotal nephrectomy (Nx) or sham operation (Sh). We revealed that MTS alleviated renal impairment as indicated by serum creatinine and albuminuria in Nx groups. In addition, the Nx + MTS group showed attenuated tubular histological changes and reduced urinary neutrophil gelatinase-associated lipocalin excretion approximately by half compared with the Nx + RT group. Increased apoptotic signaling, such as TUNEL-positive cell count and cleavage of caspase 3, as well as enhanced oxidative stress were significantly reduced in the Nx + MTS group compared with the Nx + RT group. These changes were accompanied with the restoration of kidney Mn-SOD levels by MTS. Heat shock protein 27, a key molecular chaperone, was phosphorylated by MTS only in Nx kidneys rather than in Sh kidneys. MTS also tended to increase the phosphorylation of p38 MAPK and Akt in Nx kidneys, possibly associated with the activation of heat shock protein 27. Taken together, these results suggest that modified MTS can protect against renal injury in a rodent model of chronic kidney disease.
Collapse
Affiliation(s)
- Yoshihiro Iwashita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan; and
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Junichi Iiyama
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan; and
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
14
|
Pei Y, Xu Y, Ruan J, Rong L, Jiang M, Mo Y, Jiang X. Plasma oxidative stress level of IgA nephropathy in children and the effect of early intervention with angiotensin-converting enzyme inhibitors. J Renin Angiotensin Aldosterone Syst 2016; 17:1470320316647240. [PMID: 27198042 PMCID: PMC5843921 DOI: 10.1177/1470320316647240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/29/2016] [Indexed: 11/15/2022] Open
Abstract
AIM The purpose of this study was to investigate the change of the plasma oxidative stress level in children with IgA nephropathy (IgAN) and analyze its relativity to the clinical and pathological classification. To discuss the early effects of angiotensin-converting enzyme inhibitors (ACEIs) on the plasma oxidative stress level in children with IgA nephropathy. METHODS Thirty-eight children with IgAN were divided into groups according to their clinical features, pathologic grades, and treatments. Twenty healthy children were included in the control group. RESULTS The plasma level of advanced oxidation protein products (AOPPs), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected. The plasma level of oxidative stress was significantly increased in the IgAN group, including a higher plasma level of AOPP and MDA and a lower plasma level of SOD. After treatment, the plasma level of oxidative stress was significantly decreased in the ACEI group. CONCLUSIONS The children with IgAN had an increase in the plasma level of oxidative stress, expressed as an increased plasma level of AOPP and MDA and a decreased plasma level of SOD. Oxidative stress was associated with the progression of IgAN in children. Early treatment with ACEI therapy can significantly reduce the plasma level of oxidative stress in children with IgAN.
Collapse
Affiliation(s)
- Yuxin Pei
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Jingwei Ruan
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Mengjie Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Ying Mo
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| |
Collapse
|
15
|
Kitamura K. [The Cutting-edge of Medicine; Molecular basis of salt-sensitivity and renal injury]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2016; 105:300-306. [PMID: 27228728 DOI: 10.2169/naika.105.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
16
|
Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model. J Pharmacol Sci 2016; 130:110-6. [DOI: 10.1016/j.jphs.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 11/23/2022] Open
|
17
|
Ueda M, Uchimura K, Narita Y, Miyasato Y, Mizumoto T, Morinaga J, Hayata M, Kakizoe Y, Adachi M, Miyoshi T, Shiraishi N, Kadowaki D, Sakai Y, Mukoyama M, Kitamura K. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron Clin Pract 2015; 129:223-32. [PMID: 25766432 DOI: 10.1159/000375308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We have so far demonstrated the renoprotective effect of camostat mesilate (CM) in 5/6 nephrectomized rats at least partly through its antioxidant effect. However, precise mechanisms were not fully clarified. Therefore, we now examined the renoprotective and antioxidant mechanisms of CM by using the adenine-induced chronic kidney disease (CKD) rat model. METHODS In protocol 1, we analyzed the effect of CM on CKD. Rats were fed on a 0.75% adenine diet for 3 weeks to induce CKD followed by the experimental period with vehicle, CM, or hydralazine (HYD) treatment for 5 weeks. In protocol 2, we examined the safety of CM and HYD on the normal rats. In addition, we explored free radical scavenging activities of CM and its metabolites in vitro using electron paramagnetic resonance (EPR) spectroscopy. RESULTS CM, but not HYD, significantly reduced the serum creatinine levels, although both treatments showed similar reduction in the blood pressure. CM decreased mRNA expression and protein levels of fibrotic markers, the severity of renal fibrosis, the accumulation of oxidative stress, and the expression of NADPH oxidase components in the kidney. In the protocol 2, there were no statistically significant differences in general parameters except for the systolic blood pressure in HYD group. EPR study revealed that CM and its metabolites have potent hydroxyl radical scavenging activities in vitro. CONCLUSION Our findings indicate that CM significantly ameliorates the progression of CKD partly through its antioxidant effect independently from its blood pressure-lowering effect. Our results suggest the possibility that CM could be a new therapeutic agent that could arrest the progression of CKD.
Collapse
Affiliation(s)
- Miki Ueda
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, Berven FS, Reed RK, Vikse BE. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant 2014; 29:2217-27. [PMID: 25129444 PMCID: PMC4240179 DOI: 10.1093/ndt/gfu268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that hypertension may cause glomerular damage, but the molecular mechanisms involved are still incompletely understood. Methods In the present study, we used formalin-fixed paraffin-embedded (FFPE) tissue to investigate changes in the glomerular proteome in the non-clipped kidney of two-kidney one-clip (2K1C) hypertensive rats, with special emphasis on the glomerular filtration barrier. 2K1C hypertension was induced in 6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23 weeks later and compared with age-matched sham-operated controls (n = 6). Tissue was stored in FFPE tissue blocks and later prepared on tissue slides for laser microdissection. Glomeruli without severe morphological damage were isolated, and the proteomes were analysed using liquid chromatography–tandem mass spectrometry. Results 2K1C glomeruli showed reduced abundance of proteins important for slit diaphragm complex, such as nephrin, podocin and neph1. The podocyte foot process had a pattern of reduced abundance of transmembrane proteins but unchanged abundances of the podocyte cytoskeletal proteins synaptopodin and α-actinin-4. Lower abundance of important glomerular basement membrane proteins was seen. Possible glomerular markers of damage with increased abundance in 2K1C were transgelin, desmin and acyl-coenzyme A thioesterase 1. Conclusions Microdissection and tandem mass spectrometry could be used to investigate the proteome of isolated glomeruli from FFPE tissue. Glomerular filtration barrier proteins had reduced abundance in the non-clipped kidney of 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tone D Dahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway The Norwegian Multiple Sclerosis National Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Medicine, Haukeland University Hospital, Bergen, Norway Department of Medicine, Haugesund Hospital, Haugesund, Norway
| |
Collapse
|
19
|
Tashiro Y, Yogo K, Serizawa K, Endo K. Nicorandil suppresses urinary protein excretion and activates eNOS in Dahl salt-sensitive hypertensive rats. Clin Exp Nephrol 2014; 19:343-9. [DOI: 10.1007/s10157-014-0998-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
20
|
Lindquist JA, Mertens PR. Myofibroblasts, regeneration or renal fibrosis--is there a decisive hint? Nephrol Dial Transplant 2013; 28:2678-81. [PMID: 23975753 DOI: 10.1093/ndt/gft247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activated fibroblasts, denoted as myofibroblasts, express smooth muscle actin (SMA) and are considered key mediators of renal fibrosis. To identify and isolate these elusive cells, LeBleu et al. generated a new transgenic mouse model expressing a red fluorescent protein under the control of the alpha SMA promoter. Gene expression profiling from cultured myofibroblasts identified human epididymis protein 4 [HE4, also denoted whey acidic protein (WAP) four-disulphide core domain 2] as the most upregulated gene. Since the WAP domains are implicated in protease inhibition, the authors demonstrate the ability of recombinant HE4 to bind and inhibit a number of known proteases. To demonstrate an involvement of HE4 in disease pathology, the authors next showed that the neutralization of HE4 alleviates kidney fibrosis in murine disease models, i.e. 5/6 nephrectomy, unilateral ureteral obstruction and nephrotoxic serum-induced nephritis. Finally, they went on to verify the enhanced expression of HE4 in human fibrosis-associated fibroblasts in comparison to normal fibroblasts as well as in serum samples of patients with chronic kidney diseases. Thus, they conclude that HE4 can serve as a biomarker as well as a therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
21
|
Morinaga J, Kakizoe Y, Miyoshi T, Onoue T, Ueda M, Mizumoto T, Yamazoe R, Uchimura K, Hayata M, Shiraishi N, Adachi M, Sakai Y, Tomita K, Kitamura K. The antifibrotic effect of a serine protease inhibitor in the kidney. Am J Physiol Renal Physiol 2013; 305:F173-81. [PMID: 23698112 DOI: 10.1152/ajprenal.00586.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interstitial fibrosis is a final common pathway for the progression of chronic kidney diseases. Activated fibroblasts have an extremely important role in the progression of renal fibrosis, and transforming growth factor (TGF)-β₁ is a major activator of fibroblasts. Since previous reports have indicated that serine protease inhibitors have a potential to inhibit TGF-β₁ signaling in vitro, we hypothesized that a synthetic serine protease inhibitor, camostat mesilate (CM), could slow the progression of renal fibrosis. TGF-β₁ markedly increased the phosphorylation of TGF-β type I receptor, ERK 1/2, and Smad2/3 and the levels of profibrotic markers, such as α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1, in renal fibroblasts (NRK-49F cells), and they were all significantly reduced by CM. In protocol 1, 8-wk-old male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) and were concurrently treated with a slow-release pellet of CM or vehicle for 14 days. Protocol 2 was similar to protocol 1 except that CM was administered 7 days after UUO. CM substantially improved renal fibrosis as determined by sirius red staining, collagen expression, and hydroxyproline levels. The phosphorylation of ERK1/2 and Smad2/3 and the levels of α-SMA, CTGF, promatrix metalloproteinase-2, and matrix metalloproteinase-2 were substantially increased by UUO, and they were all significantly attenuated by CM. These antifibrotic effects of CM were also observed in protocol 2. Our present results suggest the possibility that CM might represent a new class of therapeutic drugs for the treatment of renal fibrosis through the suppression of TGF-β₁ signaling.
Collapse
Affiliation(s)
- Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Svenningsen P, Friis UG, Versland JB, Buhl KB, Møller Frederiksen B, Andersen H, Zachar RM, Bistrup C, Skøtt O, Jørgensen JS, Andersen RF, Jensen BL. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf) 2013; 207:536-45. [PMID: 23216619 DOI: 10.1111/apha.12047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
In diseases with proteinuria, for example nephrotic syndrome and pre-eclampsia, there often are suppression of plasma renin-angiotensin-aldosterone system components, expansion of extracellular volume and avid renal sodium retention. Mechanisms of sodium retention in proteinuria are reviewed. In animal models of nephrotic syndrome, the amiloride-sensitive epithelial sodium channel ENaC is activated while more proximal renal Na(+) transporters are down-regulated. With suppressed plasma aldosterone concentration and little change in ENaC abundance in nephrotic syndrome, the alternative modality of proteolytic activation of ENaC has been explored. Proteolysis leads to putative release of an inhibitory peptide from the extracellular domain of the γ ENaC subunit. This leads to full activation of the channel. Plasminogen has been demonstrated in urine from patients with nephrotic syndrome and pre-eclampsia. Urine plasminogen correlates with urine albumin and is activated to plasmin within the urinary space by urokinase-type plasminogen activator. This agrees with aberrant filtration across an injured glomerular barrier independent of the primary disease. Pure plasmin and urine samples containing plasmin activate inward current in single murine collecting duct cells. In this study, it is shown that human lymphocytes may be used to uncover the effect of urine plasmin on amiloride- and aprotinin-sensitive inward currents. Data from hypertensive rat models show that protease inhibitors may attenuate blood pressure. Aberrant filtration of plasminogen and conversion within the urinary space to plasmin may activate γ ENaC proteolytically and contribute to inappropriate NaCl retention and oedema in acute proteinuric conditions and to hypertension in diseases with chronic microalbuminuria/proteinuria.
Collapse
Affiliation(s)
- P. Svenningsen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - U. G. Friis
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - J. B. Versland
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - K. B. Buhl
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - B. Møller Frederiksen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - H. Andersen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - R. M. Zachar
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - C. Bistrup
- Department of Nephrology; Odense University Hospital; Odense; Denmark
| | - O. Skøtt
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - J. S. Jørgensen
- Department of Obstetrics and Gynecology; Odense University Hospital; Odense; Denmark
| | - R. F. Andersen
- Department of Pediatrics; Aarhus University Hospital; Skejby; Aarhus; Denmark
| | - B. L. Jensen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| |
Collapse
|