1
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
2
|
Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2009; 298:F12-21. [PMID: 19640897 DOI: 10.1152/ajprenal.90723.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.
Collapse
Affiliation(s)
- Michelle L Gumz
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
3
|
Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 2009; 458:157-68. [PMID: 18839206 PMCID: PMC2730119 DOI: 10.1007/s00424-008-0593-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/20/2008] [Indexed: 12/13/2022]
Abstract
This review provides an overview of the molecular mechanisms of K transport in the mammalian connecting tubule (CNT) and cortical collecting duct (CCD), both nephron segments responsible for the regulation of renal K secretion. Aldosterone and dietary K intake are two of the most important factors regulating K secretion in the CNT and CCD. Recently, angiotensin II (AngII) has also been shown to play a role in the regulation of K secretion. In addition, genetic and molecular biological approaches have further identified new mechanisms by which aldosterone and dietary K intake regulate K transport. Thus, the interaction between serum-glucocorticoid-induced kinase 1 (SGK1) and with-no-lysine kinase 4 (WNK4) plays a significant role in mediating the effect of aldosterone on ROMK (Kir1.1), an important apical K channel modulating K secretion. Recent evidence suggests that WNK1, mitogen-activated protein kinases such as P38, ERK, and Src family protein tyrosine kinase are involved in mediating the effect of low K intake on apical K secretory channels.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA.
| | | |
Collapse
|
4
|
Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID, Cain BD, Wingo CS. Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HKalpha isoforms. Am J Physiol Renal Physiol 2007; 294:F621-7. [PMID: 18057185 DOI: 10.1152/ajprenal.00412.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two classes of H pumps, H-K-ATPase and H-ATPase, contribute to luminal acidification and HCO(3) transport in the collecting duct (CD). At least two H-K-ATPase alpha-subunits are expressed in the CD: HKalpha(1) and HKalpha(2). Both exhibit K dependence but have different inhibitor sensitivities. The HKalpha(1) H-K-ATPase is Sch-28080 sensitive, whereas the pharmacological profile of the HKalpha(2) H-K-ATPase is not completely understood. The present study used a nonpharmacological, genetic approach to determine the contribution of HKalpha(1) and HKalpha(2) to cortical CD (CCD) intercalated cell (IC) proton transport in mice fed a normal diet. Intracellular pH (pH(i)) recovery was determined in ICs using in vitro microperfusion of CCD after an acute intracellular acid load in wild-type mice and mice of the same strain lacking expression of HKalpha(1), HKalpha(2), or both H-K-ATPases (HKalpha(1,2)). A-type and B-type ICs were differentiated by luminal loading with BCECF-AM and peritubular chloride removal from CO(2)/HCO(3)-buffered solutions to identify the membrane locations of Cl/HCO(3) exchange activity. H-ATPase- and Na/H exchange-mediated H transport were inhibited with bafilomycin A(1) (100 nM) and EIPA (10 microM), respectively. Here, we report 1) initial pH(i) and buffering capacity were not significantly altered in the ICs of HKalpha-deficient mice, 2) either HKalpha(1) or HKalpha(2) deficiency resulted in slower acid extrusion, and 3) A-type ICs from HKalpha(1,2)-deficient mice had significantly slower acid extrusion compared with A-type ICs from HKalpha(1)-deficient mice alone. These studies are the first nonpharmacological demonstration that both HKalpha(1) and HKalpha(2) contribute to H secretion in both A-type and B-type ICs in animals fed a normal diet.
Collapse
Affiliation(s)
- I Jeanette Lynch
- North Florida/South Georgia Veterans Health System, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dherbecourt O, Cheval L, Bloch-Faure M, Meneton P, Doucet A. Molecular identification of Sch28080-sensitive K-ATPase activities in the mouse kidney. Pflugers Arch 2005; 451:769-75. [PMID: 16208521 DOI: 10.1007/s00424-005-1508-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/07/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Rat collecting ducts display either an ouabain-insensitive or an ouabain-sensitive K-ATPase activity inhibited by Sch28080 according as animals are fed a normal or a potassium-depleted diet (types I and III K-ATPase, respectively). Two isoforms of H,K-ATPase have been cloned from rat gastric mucosa and colon, respectively. Gastric and colonic H,K-ATPase are expressed in the kidney, suggesting that they might account for types I and III K-ATPases. However, this hypothesis is not fully supported by segmental expression of gastric and colonic H,K-ATPase along the rat collecting duct, as well as by comparison of the pharmacological properties of gastric and colonic H,K-ATPase expressed in Xenopus ovocyte and types I and III K-ATPases in rat collecting ducts. The aim of the present work is to address directly the molecular origin of types I and III K-ATPases in the mouse collecting duct by measuring K-ATPase activities in collecting ducts of wild-type mice and mice genetically deficient in either gastric or colonic H,K-ATPase fed either a regular or a potassium-depleted diet. Like the rat, mouse collecting ducts display type I or III K-ATPase activity when fed a regular or a potassium-depleted diet, respectively. Type I K-ATPase activity is detected in colonic H,K-ATPase-deficient mice but not in gastric H,K-ATPase-deficient animals. Conversely, type III K-ATPase activity disappears in colonic H,K-ATPase-deficient but not in gastric H,K-ATPase-deficient mice. In conclusion, types I and III K-ATPases measured in collecting ducts of normal and potassium-depleted mice reflect the functional expression of gastric and colonic H,K-ATPase, respectively.
Collapse
Affiliation(s)
- Olivier Dherbecourt
- Laboratoire de Physiologie et Génomique Rénales, Unité Mixte de Recherche CNRS/UPMC 7134, IFR 58, Institut des Cordeliers, 15 Rue de l'Ecole de Médecine, 75270 Paris Cedex 6, France
| | | | | | | | | |
Collapse
|
6
|
Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim YH, Han KH, Handlogten ME, Verlander JW, Weiner ID. Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 2005; 290:F397-408. [PMID: 16144966 DOI: 10.1152/ajprenal.00162.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis induces dramatic increases in net acid excretion that are predominantly due to increases in urinary ammonia excretion. The current study examines whether this increase is associated with changes in the expression of the renal ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). Chronic metabolic acidosis was induced in Sprague-Dawley rats by HCl ingestion for 1 wk; control animals were pair-fed. After 1 wk, metabolic acidosis had developed, and urinary ammonia excretion increased significantly. Rhcg protein expression was increased in both the outer medulla and the base of the inner medulla. Intercalated cells in the outer medullary collecting duct (OMCD) and in the inner medullary collecting duct (IMCD) in acid-loaded animals protruded into the tubule lumen and had a sharp, discrete band of apical Rhcg immunoreactivity, compared with a flatter cell profile and a broad band of apical immunolabel in control kidneys. In addition, basolateral Rhcg immunoreactivity was observed in both control and acidotic kidneys. Cortical Rhcg protein expression and immunoreactivity were not detectably altered. Rhcg mRNA expression was not significantly altered in the cortex, outer medulla, or inner medulla by chronic metabolic acidosis. Rhbg protein and mRNA expression were unchanged in the cortex, outer and inner medulla, and no changes in Rhbg immunolabel were evident in these regions. We conclude that chronic metabolic acidosis increases Rhcg protein expression in intercalated cells in the OMCD and in the IMCD, where it is likely to mediate an important role in the increased urinary ammonia excretion.
Collapse
Affiliation(s)
- Ramanathan M Seshadri
- University of Florida College of Medicine, P. O. Box 100224, Gainesville, FL 32610-0224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Extracellular K must be kept within a narrow concentration range for the normal function of neurons, skeletal muscle, and cardiac myocytes. Maintenance of normal plasma K is achieved by a dual mechanism that includes extrarenal factors such as insulin and beta-adrenergic agonists, which stimulate the movement of K from extracellular to intracellular fluid and modulate renal K excretion. Dietary K intake is an important factor for the regulation of K secretion: An increase in K intake stimulates secretion, whereas a decrease inhibits K secretion and enhances absorption. This effect of changes in dietary K intake on tubule K transport is mediated by aldosterone-dependent and -independent mechanisms. Recently, it has been demonstrated that the protein tyrosine kinase (PTK)-dependent signal transduction pathway is an important aldosterone-independent regulatory mechanism that mediates the effect of altered K intake on K secretion. A low-K intake stimulates PTK activity, which leads to increase in phosphorylation of cloned inwardly rectifying renal K (ROMK) channels, whereas a high-K intake has the opposite effect. Stimulation of tyrosine phosphorylation also suppresses K secretion in principal cell by facilitating the internalization of apical K channels in the collecting duct.
Collapse
Affiliation(s)
- WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
9
|
Petrovic S, Barone S, Xu J, Conforti L, Ma L, Kujala M, Kere J, Soleimani M. SLC26A7: a basolateral Cl-/HCO3- exchanger specific to intercalated cells of the outer medullary collecting duct. Am J Physiol Renal Physiol 2004; 286:F161-9. [PMID: 12965893 DOI: 10.1152/ajprenal.00219.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The outer medullary collecting duct (OMCD) plays an important role in bicarbonate reabsorption and acid-base regulation. An apical V-type H+-ATPase and a basolateral Cl-/HCO3- exchanger, located in intercalated cells of OMCD, mediate the bicarbonate reabsorption. Here we report the identification of a new basolateral Cl-/HCO3- exchanger in OMCD intercalated cells in rat kidney. Northern hybridizations demonstrated the predominant expression of this transporter, also known as SLC26A7, in the outer medulla, with lower expression levels in the inner medulla. SLC26A7 was recognized as a approximately 90-kDa band in the outer medulla by immunoblot analysis and was localized on the basolateral membrane of a subset of OMCD cells by immunocytochemical staining. No labeling was detected in the cortex. Double-immunofluorescence labeling with the aquaporin-2 and SLC26A7 antibodies or anion exchanger-1 and SLC26A7 antibodies identified the SLC26A7-expressing cells as alpha-intercalated cells. Functional studies in oocytes demonstrated that increasing the osmolality of the media (to simulate the physiological milieu in the medulla) increased the Cl-/HCO3- exchanger activity mediated via SLC26A7 by about threefold (P < 0.02 vs. normal condition). We propose that SLC26A7 is a basolateral Cl-/HCO3- exchanger in intercalated cells of the OMCD and may play an important role in bicarbonate reabsorption in medullary collecting duct.
Collapse
Affiliation(s)
- Snezana Petrovic
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, 231 Albert Sabin Way, MSB G259, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yip KP, Tsuruoka S, Schwartz GJ, Kurtz I. Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD. Am J Physiol Renal Physiol 2002; 283:F1098-104. [PMID: 12372786 DOI: 10.1152/ajprenal.0241.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The outer medullary collecting duct (OMCD) plays an important role in mediating transepithelial HCO transport [J(HCO(3)(-))] and urinary acidification. HCO absorption by type A intercalated cells in the OMCD inner stripe (OMCD(is)) segment is thought to by mediated by an apical vacuolar H(+)-ATPase and H(+)-K(+)-ATPase coupled to a basolateral Cl(-)-HCO exchanger (AE1). Besides these Na(+)-independent transporters, previous studies have shown that OMCD(is) type A intercalated cells have an apical electroneutral EIPA-sensitive, DIDS-insensitive Na(+)-HCO cotransporter (NBC3); a basolateral Na(+)/H(+) antiporter; and a basolateral Na(+)-K(+)-ATPase. In this study, we reexamined the Na(+) dependence of transepithelial Na(+) transport in the OMCD(is) and determined the role of apical NBC3 in intracellular (pH(i)) regulation in OMCD(is) type A intercalated cells. Control tubules absorbed HCO at a rate of approximately 13 pmol. min(-1). mm(-1). Lowering luminal Na(+) from 140 to 40 mM decreased [J(HCO(3)(-))] by approximately 15% without a change in transepithelial potential (V(te)). Furthermore, 50 microM EIPA (lumen) also decreased [J(HCO(3)(-))] by approximately 13% without a change in V(te). The effect of lowering luminal Na(+) and adding EIPA were not additive. These results demonstrate that [J(HCO(3)(-))] in the OMCD(is) is in part Na(+) dependent. In separate experiments, the pH(i) recovery rate after an NH prepulse was monitored in single type A intercalated cells with confocal fluorescence microscopy. The pH(i) recovery rate was approximately 0.21 pH/min in Na(+)-containing solutions and decreased to approximately 0.16 pH/min with EIPA (50 microM, lumen). In tubules perfused/bathed without Na(+), luminal Na(+) addition resulted in a pH(i) recovery rate of approximately 0.36 pH/min, whereas the Na(+)-independent recovery rate was approximately 0.16 pH/min. EIPA (50 microM, lumen) decreased the Na(+)-dependent pH(i) recovery rate to approximately 0.07 pH/min. The Na(+)-independent recovery rate was decreased to approximately 0.06 pH/min by bafilomycin (10 nM, lumen) and to approximately 0.10 pH/min using Schering 28080 (10 microM, lumen). These findings indicate that NBC3 contributes to pH(i) regulation in OMCD(is) type A intercalated cells and plays only a minor role in mediating [J(HCO(3)(-))] in the OMCD(is).
Collapse
Affiliation(s)
- Kay-Pong Yip
- Department of Physiology and Biophysics, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
11
|
Youmans SJ, Barry CR. BAFILOMYCIN A1 AT NANOMOLAR CONCENTRATIONS SATURABLY INHIBITS A PORTION OF TURTLE BLADDER ACIDIFICATION CURRENT. J Exp Biol 2001; 204:2911-9. [PMID: 11683444 DOI: 10.1242/jeb.204.16.2911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
An earlier report indicated that acid secretion in turtle urinary bladder is driven by an unusual vacuolar H+-ATPase and that the ATPase accounts for essentially all acid secreted. These results, however, are difficult to reconcile with the acid transporters currently ascribed to the renal collecting duct. Here, we re-examine the effect of bafilomycin A1, an inhibitor of vacuolar (V-type) H+-ATPases, on acid secretion by intact isolated bladders from Pseudemys scriptaturtles. Serosal-side bafilomycin had no effect on the transepithelial acidification current (AC). In the mucosal solution, bafilomycin inhibited the AC, with inhibition developing over the range 0.1-10 nmol l-1, with a sigmoidal dose—response curve, and an IC50 of 0.47 nmol l-1. At saturation, approximately 70 % of H+ secretion was inhibited. The remaining 30 % could be abolished by 30 μmol l-1 Sch-28080, which is a level that in other systems is known to inhibit H+/K+-ATPase transport activity specifically and essentially completely. When the order of addition was reversed (Sch-28080 first), there was no change in the magnitude of the effect produced by either inhibitor, and the two together again eliminated the AC. The data indicate that baseline acid secretion in intact bladders is due (i) in part to a highly bafilomycin-sensitive process, with sensitivity typical of vacuolar H+ ATPases; and (ii) in part to a more bafilomycin-resistant process that is sensitive to Sch-28080.
Collapse
Affiliation(s)
- S J Youmans
- Department of Physiology, New York College of Osteopathic Medicine, New York Institute of Technology, Long Island 11568-8000, USA.
| | | |
Collapse
|
12
|
Xia SL, Noh SH, Verlander JW, Gelband CH, Wingo CS. Apical membrane of native OMCD(i) cells has nonselective cation channels. Am J Physiol Renal Physiol 2001; 281:F48-55. [PMID: 11399645 DOI: 10.1152/ajprenal.2001.281.1.f48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine cation channel activity in the apical membrane of the outer medullary collecting duct of the inner stripe (OMCD(i)) using the patch-clamp technique. In freshly isolated and lumen-opened rabbit OMCD(i), we have observed a single channel conductance of 23.3 +/- 0.6 pS (n = 17) in cell-attached (c/a) patches with high KCl in the bath and in the pipette at room temperature. Channel open probability varied among patches from 0.06 +/- 0.01 at -60 mV (n = 5) to 0.31 +/- 0.04 at 60 mV (n = 6) and consistently increased upon membrane depolarization. In inside-out (i/o) patches with symmetrical KCl solutions, the channel conductance (22.8 +/- 0.8 pS; n = 10) was similar as in the c/a configuration. Substitution of the majority of Cl- with gluconate from KCl solution in the pipette and bath did not significantly alter reversal potential (E(rev)) or the channel conductance (19.7 +/- 1.1 pS in asymmetrical potassium gluconate, n = 4; 21.4 +/- 0.5 pS in symmetrical potassium gluconate, n = 3). Experiments with 10-fold lower KCl concentration in bath solution in i/o patches shifted E(rev) to near the E(rev) of K+. The estimated permeability of K+ vs. Cl- was over 10, and the conductance was 13.4 +/- 0.1 pS (n = 3). The channel did not discriminate between K+ and Na+, as evidenced by a lack of a shift in the E(rev) with different K+ and Na+ concentration solutions in i/o patches (n = 3). The current studies demonstrate the presence of cation channels in the apical membrane of native OMCD(i) cells that could participate in K+ secretion or Na+ absorption.
Collapse
Affiliation(s)
- S L Xia
- Department of Medicine, University of Florida, Gainsville 32610-0224, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
A mathematical model of the outer medullary collecting duct (OMCD) has been developed, consisting of alpha-intercalated cells and a paracellular pathway, and which includes Na(+), K(+), Cl(-), HCO(3)(-), CO(2), H(2)CO(3), phosphate, ammonia, and urea. Proton secretion across the luminal cell membrane is mediated by both H(+)-ATPase and H-K-ATPase, with fluxes through the H-K-ATPase given by a previously developed kinetic model (Weinstein AM. Am J Physiol Renal Physiol 274: F856-F867, 1998). The flux across each ATPase is substantial, and variation in abundance of either pump can be used to control OMCD proton secretion. In comparison with the H(+)-ATPase, flux through the H-K-ATPase is relatively insensitive to changes in lumen pH, so as luminal acidification proceeds, proton secretion shifts toward this pathway. Peritubular HCO(3)(-) exit is via a conductive pathway and via the Cl(-)/HCO(3)(-) exchanger, AE1. To represent AE1, a kinetic model has been developed based on transport studies obtained at 38 degrees C in red blood cells. (Gasbjerg PK, Knauf PA, and Brahm J. J Gen Physiol 108: 565-575, 1996; Knauf PA, Gasbjerg PK, and Brahm J. J Gen Physiol 108: 577-589, 1996). Model calculations indicate that if all of the chloride entry via AE1 recycles across a peritubular chloride channel and if this channel is anything other than highly selective for chloride, then it should conduct a substantial fraction of the bicarbonate exit. Since both luminal membrane proton pumps are sensitive to small changes in cytosolic pH, variation in density of either AE1 or peritubular anion conductance can modulate OMCD proton secretory rate. With respect to the OMCD in situ, available buffer is predicted to be abundant, including delivered HCO(3)(-) and HPO(4)(2-), as well as peritubular NH(3). Thus, buffer availability is unlikely to exert a regulatory role in total proton secretion by this tubule segment.
Collapse
Affiliation(s)
- A M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.
| |
Collapse
|
14
|
Frank AE, Wingo CS, Weiner ID. Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am J Physiol Renal Physiol 2000; 278:F219-26. [PMID: 10662726 DOI: 10.1152/ajprenal.2000.278.2.f219] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both acidosis and hypokalemia stimulate renal ammoniagenesis, and both regulate urinary proton and potassium excretion. We hypothesized that ammonia might play an important role in this processing by stimulating H(+)-K(+)-ATPase-mediated ion transport. Rabbit cortical collecting ducts (CCD) were studied using in vitro microperfusion, bicarbonate reabsorption was measured using microcalorimetry, and intracellular pH (pH(i)) was measured using the fluorescent, pH-sensitive dye, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Ammonia caused a concentration-dependent increase in net bicarbonate reabsorption that was inhibited by luminal addition of either of the H(+)-K(+)-ATPase inhibitors, Sch-28080 or ouabain. The stimulation of net bicarbonate reabsorption was not mediated through apical H(+)-ATPase, basolateral Na(+)-K(+)-ATPase, or luminal electronegativity. Although ammonia caused intracellular acidification, similar changes in pH(i) induced by inhibiting basolateral Na(+)/H(+) exchange did not alter net bicarbonate reabsorption. We conclude that ammonia regulates CCD proton and potassium transport, at least in part, by stimulating apical H(+)-K(+)-ATPase.
Collapse
Affiliation(s)
- A E Frank
- Division of Nephrology, Gainesville Veterans Affairs Medical Center, Gainesville, Florida 32610-0224, USA
| | | | | |
Collapse
|
15
|
Tsuruoka S, Schwartz GJ. Metabolic acidosis stimulates H+ secretion in the rabbit outer medullary collecting duct (inner stripe) of the kidney. J Clin Invest 1997; 99:1420-31. [PMID: 9077552 PMCID: PMC507958 DOI: 10.1172/jci119301] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The outer medullary collecting duct (OMCD) absorbs HCO3- at high rates, but it is not clear if it responds to metabolic acidosis to increase H+ secretion. We measured net HCO3- transport in isolated perfused OMCDs taken from deep in the inner stripes of kidneys from control and acidotic (NH4Cl-fed for 3 d) rabbits. We used specific inhibitors to characterize the mechanisms of HCO3- transport: 10 microM Sch 28080 or luminal K+ removal to inhibit P-type H+,K+-ATPase activity, and 5-10 nM bafilomycin A1 or 1-10 nM concanamycin A to inhibit H+-ATPase activity. The results were comparable using either of each pair of inhibitors, and allowed us to show in control rabbits that 65% of net HCO3- absorption depended on H+-ATPase (H flux), and 35% depended on H+,K+-ATPase (H,K flux). Tubules from acidotic rabbits showed higher rates of HCO3- absorption (16.8+/-0.3 vs. 12.8+/-0.2 pmol/min per mm, P < 0.01). There was no difference in the H,K flux (5.9+/-0.2 vs. 5.8+/-0.2 pmol/min per mm), whereas there was a 61% higher H flux in segments from acidotic rabbits (11.3+/-0.2 vs. 7.0+/-0.2 pmol/min per mm, P < 0.01). Transport was then measured in other OMCDs before and after incubation for 1 h at pH 6.8, followed by 2 h at pH 7.4 (in vitro metabolic acidosis). Acid incubation in vitro stimulated HCO3- absorption (12.3+/-0.3 to 16.2+/-0.3 pmol/min per mm, P < 0.01), while incubation at pH 7.4 for 3 h did not change basal rate (11.8+/-0.4 to 11.7+/-0.4 pmol/min per mm). After acid incubation the H,K flux did not change, (4.7+/-0.4 to 4.6+/-0.4 pmol/min per mm), however, there was a 60% increase in H flux (6.6+/-0.3 to 10.8+/-0.3 pmol/min per mm, P < 0.01). In OMCDs from acidotic animals, and in OMCDs incubated in acid in vitro, there was a higher basal rate and a further increase in HCO3- absorption (16.7+/-0.4 to 21.3+/-0.3 pmol/min per mm, P < 0.01) because of increased H flux (11.5+/-0.3 to 15.7+/-0.2 pmol/min per mm, P < 0.01) without any change in H,K flux (5.4+/-0.3 to 5.6+/-0.3 pmol/min per mm). These data indicate that HCO3- absorption (H+ secretion) in OMCD is stimulated by metabolic acidosis in vivo and in vitro by an increase in H+-ATPase-sensitive HCO3- absorption. The mechanism of adaptation may involve increased synthesis and exocytosis to the apical membrane of proton pumps. This adaptation helps maintain homeostasis during metabolic acidosis.
Collapse
Affiliation(s)
- S Tsuruoka
- Department of Pediatrics, University of Rochester School of Medicine, New York 14642, USA
| | | |
Collapse
|
16
|
Ikeda M, Murata M, Miyoshi T, Tamba K, Muto S, Imai M, Suzuki M. Transcriptional activation of RACTK1 K+ channel gene by apical alkalization in renal cortical collecting duct cells. J Clin Invest 1996; 98:474-81. [PMID: 8755659 PMCID: PMC507452 DOI: 10.1172/jci118814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously demonstrated that RACTK1 cDNA encodes a pH sensitive K+ channel expressed in the apical side of renal collecting tubule cells. To determine whether extracellular pH induces the RACTK1 gene expression in the renal cortical collecting duct (CCD) cells, we measured mRNA of the RACTK1 using cultured rabbit CCD cells. Alkalization of incubation medium activated the transcription of the RACKTK1 gene in a time- and dose-dependent manner after 1 h, and reached a maximal level after 12 h. To examine whether the stimulation of mRNA by alkalization of body fluid occurs also in vivo, mRNA levels were measured in mice loaded with acid or alkali. The RACTK1 mRNA was increased in association with the rise in urinary pH. To examine side face of the effect of pH on stimulation of mRNA, we observed the effect of pH in the apical or the basolateral side in the preparation where CCD cells were cultured on filter membrane supports. Alkalization of the apical side but not of the basolateral side, was shown to be a determinant in inducting the RACTK1 mRNA. These findings suggest that, in addition to rapid direct regulation of RACTK1 K+ channel conductance by intracellular pH, this channel is also regulated by the changes in luminal pH through synthesis of channel protein by transcriptional activation.
Collapse
Affiliation(s)
- M Ikeda
- Department of Pharmacology, Jichi Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Tsuruoka S, Schwartz GJ. Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro. J Clin Invest 1996; 97:1076-84. [PMID: 8613531 PMCID: PMC507155 DOI: 10.1172/jci118500] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Net HCO3- transport in the rabbit kidney cortical collecting duct (CCD) is mediated by simultaneous H+ secretion and HCO3- secretion, most likely occurring in a alpha- and beta-intercalated cells (ICs), respectively. The polarity of net HCO3- transport is shifted from secretion to absorption after metabolic acidosis or acid incubation of the CCD. We investigated this adaptation by measuring net HCO3- flux before and after incubating CCDs 1 h at pH 6.8 followed by 2 h at pH 7.4. Acid incubation always reversed HCO3- flux from net secretion to absorption, whereas incubation for 3 h at pH 7.4 did not. Inhibition of alpha-IC function (bath CL- removal or DIDS, luminal bafilomycin) stimulated net HCO3- secretion by approximately 2 pmol/min per mm before acid incubation, whereas after incubation these agents inhibited net HCO3- absorption by approximately 5 pmol/min per mm. Inhibition of beta-IC function (luminal Cl- removal) inhibited HCO3- secretion by approximately 9 pmol/min per mm before incubation, whereas after incubation HCO3- absorption by only 3 pmol/min per mm. After acid incubation, luminal SCH28080 inhibited HCO3- absorption by only 5-15% vs the circa 90% inhibitory effect of bafilomycin. In outer CCDs, which contain fewer alpha-ICs than midcortical segments, the reversal in polarity of HCO3- flux was blunted after acid incubation. We conclude that the CCD adapts to low pH in vitro by downregulation HCO3- secretion in beta-ICs via decreased apical CL-/base exchang activity and upregulating HCO3- absorption in alpha-ICs via increased apical H+ -ATPase and basolateral CL-/base exchange activities. Whether or not there is a reversal of IC polarity or recruitment of gamma-ICs in this adaptation remains to be established.
Collapse
Affiliation(s)
- S Tsuruoka
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|