1
|
Busselman BW, Ratnayake I, Terasaki MR, Thakkar VP, Ilyas A, Otterpohl KL, Zimmerman JL, Chandrasekar I. Actin cytoskeleton and associated myosin motors within the renal epithelium. Am J Physiol Renal Physiol 2024; 327:F553-F565. [PMID: 39052845 PMCID: PMC11483076 DOI: 10.1152/ajprenal.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney. With recent advances in technologies to visualize the actin cytoskeleton and associated proteins within intact kidneys, it has become increasingly imperative to reimagine the functional roles of these proteins in situ to provide a rationale for their unique, cell type-specific functions that are necessary to establish and maintain complex physiological processes.
Collapse
Affiliation(s)
- Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | | | - Mark R Terasaki
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Vedant P Thakkar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Arooba Ilyas
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | - Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Jenna L Zimmerman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| |
Collapse
|
2
|
Hu X, Sun J, Wan M, Zhang B, Wang L, Zhong TP. Expression levels and stoichiometry of Hnf1β, Emx2, Pax8 and Hnf4 influence direct reprogramming of induced renal tubular epithelial cells. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:19. [PMID: 39347883 PMCID: PMC11442758 DOI: 10.1186/s13619-024-00202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Generation of induced renal epithelial cells (iRECs) from fibroblasts offers great opportunities for renal disease modeling and kidney regeneration. However, the low reprogramming efficiency of the current approach to generate iRECs has hindered potential therapeutic application and regenerative approach. This could be in part attributed to heterogeneous and unbalanced expression of reprogramming factors (RFs) Hnf1β (H1), Emx2 (E), Pax8 (P), and Hnf4α (H4) in transduced fibroblasts. Here, we establish an advanced retroviral vector system that expresses H1, E, P, and H4 in high levels and distinct ratios from bicistronic transcripts separated by P2A. Mouse embryonic fibroblasts (MEFs) harboring Cdh16-Cre; mT/mG allele are utilized to conduct iREC reprogramming via directly monitoring single cell fate conversion. Three sets of bicistronic RF combinations including H1E/H4P, H1H4/EP, and H1P/H4E have been generated to induce iREC reprogramming. Each of the RF combinations gives rise to distinct H1, E, P, and H4 expression levels and different reprogramming efficiencies. The desired H1E/H4P combination that results in high expression levels of RFs with balanced stoichiometry. substantially enhances the efficiency and quality of iRECs compared with transduction of separate H1, E, P, and H4 lentiviruses. We find that H1E/H4P-induced iRECs exhibit the superior features of renal tubular epithelial cells, as evidenced by expressing renal tubular-specific genes, possessing endocytotic arrogation activity and assembling into tubules along decellularized kidney scaffolds. This study establishes H1E/H4P cassette as a valuable platform for future iREC studies and regenerative medicine.
Collapse
Affiliation(s)
- Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Meng Wan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Shanghai, 200433, China.
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Zou Q, Chen X, Li B, Zhang R, Pan J, Zhang X, Zhang X, Sun SK. Bioinspired BSA@polydopamine@Fe Nanoprobe with Self-Purification Capacity for Targeted Magnetic Resonance Imaging of Acute Kidney Injury. ACS NANO 2024; 18:4783-4795. [PMID: 38301134 DOI: 10.1021/acsnano.3c09193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) of acute kidney injury (AKI) is severely hindered by the poor targeting capacity and potential toxicity of current contrast agents. Herein, we propose one-step fabrication of a bovine serum albumin@polydopamine@Fe (BSA@PDA@Fe, BPFe) nanoprobe with self-purification capacity for targeted CE-MRI of AKI. BSA endows the BPFe nanoprobe with renal tubule-targeting ability, and PDA is capable of completely inhibiting the intrinsic metal-induced reactive oxygen species (ROS), which are always involved in Fe/Mn-based agents. The as-prepared nanoprobe owns a tiny size of 2.7 nm, excellent solubility, good T1 MRI ability, superior biocompatibility, and powerful antioxidant capacity. In vivo CE-MRI shows that the BPFe nanoprobe can accumulate in the renal cortex due to the reabsorption effect toward the serum albumin. In the AKI model, impaired renal reabsorption function can be effortlessly detected via the diminishment of renal cortical signal enhancement. More importantly, the administration of the BPFe nanoprobe would not aggravate renal damage of AKI due to the outstanding self-purification capacity. Besides, the BPFe nanoprobe is employed for CE-MR angiography to visualize fine vessel structures. This work provides an MRI contrast agent with good biosafety and targeting ability for CE-MRI of kidney diseases.
Collapse
Affiliation(s)
- Quan Zou
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xi Chen
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruijie Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
4
|
Ikeda-Imafuku M, Fukuta T, Tuan Giam Chuang V, Sawa T, Maruyama T, Otagiri M, Ishida T, Ishima Y. Acute Kidney Injury Caused by Rhabdomyolysis Is Ameliorated by Serum Albumin-Based Supersulfide Donors through Antioxidative Pathways. Pharmaceuticals (Basel) 2024; 17:128. [PMID: 38256961 PMCID: PMC10819804 DOI: 10.3390/ph17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress is responsible for the onset and progression of various kinds of diseases including rhabdomyolysis-induced acute kidney injury (AKI). Antioxidants are, therefore, thought to aid in the recovery of illnesses linked to oxidative stress. Supersulfide species have been shown to have substantial antioxidative activity; however, due to their limited bioavailability, few supersulfide donors have had their actions evaluated in vivo. In this study, human serum albumin (HSA) and N-acetyl-L-cysteine polysulfides (NACSn), which have polysulfides in an oxidized form, were conjugated to create a supersulfide donor. HSA is chosen to be a carrier of NACSn because of its extended blood circulation and high level of biocompatibility. In contrast to a supersulfide donor containing reduced polysulfide in HSA, the NACSn-conjugated HSAs exhibited stronger antioxidant activity than HSA and free NACSn without being uptaken by the cells in vitro. The supersulfide donor reduced the levels of blood urea nitrogen and serum creatinine significantly in a mouse model of rhabdomyolysis-induced AKI. Supersulfide donors significantly reduced the expression of oxidative stress markers in the kidney. These results indicate that the developed supersulfide donor has the therapeutic effect on rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan; (M.I.-I.); (T.F.)
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan; (M.I.-I.); (T.F.)
| | - Victor Tuan Giam Chuang
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia;
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan;
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
- Laboratory of Biopharmaceutics, Kyoto Pharmaceutical University 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
5
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Vincenti F, Angeletti A, Ghiggeri GM. State of the art in childhood nephrotic syndrome: concrete discoveries and unmet needs. Front Immunol 2023; 14:1167741. [PMID: 37503337 PMCID: PMC10368981 DOI: 10.3389/fimmu.2023.1167741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical entity characterized by proteinuria, hypoalbuminemia, and peripheral edema. NS affects about 2-7 per 100,000 children aged below 18 years old yearly and is classified, based on the response to drugs, into steroid sensitive (SSNS), steroid dependent, (SDNS), multidrug dependent (MDNS), and multidrug resistant (MRNS). Forms of NS that are more difficult to treat are associated with a worse outcome with respect to renal function. In particular, MRNS commonly progresses to end stage renal failure requiring renal transplantation, with recurrence of the original disease in half of the cases. Histological presentations of NS may vary from minimal glomerular lesions (MCD) to focal segmental glomerulosclerosis (FSGS) and, of relevance, the histological patterns do not correlate with the response to treatments. Moreover, around half of MRNS cases are secondary to causative pathogenic variants in genes involved in maintaining the glomerular structure. The pathogenesis of NS is still poorly understood and therapeutic approaches are mostly based on clinical experience. Understanding of pathogenetic mechanisms of NS is one of the 'unmet needs' in nephrology and represents a significant challenge for the scientific community. The scope of the present review includes exploring relevant findings, identifying unmet needs, and reviewing therapeutic developments that characterize NS in the last decades. The main aim is to provide a basis for new perspectives and mechanistic studies in NS.
Collapse
Affiliation(s)
- Flavio Vincenti
- Division of Nephrology, Department of Medicine and Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Andrea Angeletti
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
7
|
Wagner MC, Sandoval RM, Yadav SPS, Campos SB, Rhodes GJ, Phillips CL, Molitoris BA. Lrpap1 (RAP) Inhibits Proximal Tubule Clathrin Mediated and Clathrin Independent Endocytosis, Ameliorating Renal Aminoglycoside Nephrotoxicity. KIDNEY360 2023; 4:591-605. [PMID: 36848531 PMCID: PMC10278819 DOI: 10.34067/kid.0000000000000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Key Points Proximal tubule endocytosis of toxins often leads to nephrotoxicity. Inhibition of endocytosis with receptor-associated protein may serve as a clinical approach to reduce or eliminate kidney damage from a potential nephrotoxin. Background Proximal tubules (PTs) are exposed to many exogenous and endogenous nephrotoxins that pass through the glomerular filter. This includes many small molecules, such as aminoglycoside and myeloma light chains. These filtered molecules are rapidly endocytosed by the PTs and lead to nephrotoxicity. Methods To investigate whether inhibition of PT uptake of filtered toxins can reduce toxicity, we evaluated the ability of Lrpap1 or receptor-associated protein (RAP) to prevent PT endocytosis. Munich Wistar Frömter rats were used since both glomerular filtration and PT uptake can be visualized and quantified. The injury model chosen was the well-established gentamicin-induced toxicity, which leads to significant reductions in GFR and serum creatinine increases. CKD was induced with a right uninephrectomy and left 40-minute pedicle clamp. Rats had 8 weeks to recover and to stabilize GFR and proteinuria. Multiphoton microscopy was used to evaluate endocytosis in vivo and serum creatinine, and 24-hour creatinine clearances were used to evaluate kidney functional changes. Results Studies showed that preadministration of RAP significantly inhibited both albumin and dextran endocytosis in outer cortical PTs. Importantly, this inhibition was found to be rapidly reversible with time. RAP was also found to be an excellent inhibitor of PT gentamicin endocytosis. Finally, gentamicin administration for 6 days resulted in significant elevation of serum creatinine in vehicle-treated rats, but not in those receiving daily infusion of RAP before gentamicin. Conclusions This study provides a model for the potential use of RAP to prevent, in a reversible manner, PT endocytosis of potential nephrotoxins, thus protecting the kidney from damage.
Collapse
Affiliation(s)
- Mark C Wagner
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhao B, Tu C, Shen S, Qu J, Morris ME. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 2022; 24:109. [PMID: 36253507 DOI: 10.1208/s12248-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
9
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood-brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
11
|
Molecular Mechanisms of Acute Organophosphate Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23168855. [PMID: 36012118 PMCID: PMC9407954 DOI: 10.3390/ijms23168855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals produced by an esterification process and some other routes. They are the main components of herbicides, pesticides, and insecticides and are also widely used in the production of plastics and solvents. Acute or chronic exposure to OPs can manifest in various levels of toxicity to humans, animals, plants, and insects. OPs containing insecticides were widely used in many countries during the 20th century, and some of them continue to be used today. In particular, 36 OPs have been registered in the USA, and all of them have the potential to cause acute and sub-acute toxicity. Renal damage and impairment of kidney function after exposure to OPs, accompanied by the development of clinical manifestations of poisoning back in the early 1990s of the last century, was considered a rare manifestation of their toxicity. However, since the beginning of the 21st century, nephrotoxicity of OPs as a manifestation of delayed toxicity is the subject of greater attention of researchers. In this article, we present a modern view on the molecular pathophysiological mechanisms of acute nephrotoxicity of organophosphate compounds.
Collapse
|
12
|
Impact of Multiple Sclerosis Risk Polymorphism rs7665090 on MANBA Activity, Lysosomal Endocytosis, and Lymphocyte Activation. Int J Mol Sci 2022; 23:ijms23158116. [PMID: 35897697 PMCID: PMC9331056 DOI: 10.3390/ijms23158116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Deficiencies in Mannosidase β (MANBA) are associated with neurological abnormalities and recurrent infections. The single nucleotide polymorphism located in the 3′UTR of MANBA, rs7665090, was found to be associated with multiple sclerosis (MS) susceptibility. We aimed to study the functional impact of this polymorphism in lymphocytes isolated from MS patients and healthy controls. A total of 152 MS patients and 112 controls were genotyped for rs7665090. MANBA mRNA expression was quantified through qPCR and MANBA enzymatic activity was analyzed. Upon phytohemagglutinin stimulation, immune activation was evaluated by flow cytometry detection of CD69, endocytic function, and metabolic rates with Seahorse XFp Analyzer, and results were stratified by variation in rs7665090. A significantly reduced gene expression (p < 0.0001) and enzymatic activity (p = 0.018) of MANBA were found in lymphocytes of MS patients compared to those of controls. The rs7665090*GG genotype led to a significant β-mannosidase enzymatic deficiency correlated with lysosomal dysfunction, as well as decreased metabolic activation in lymphocytes of MS patients compared to those of rs7665090*GG controls. In contrast, lymphocytes of MS patients and controls carrying the homozygous AA genotype behaved similarly. Our work provides new evidence highlighting the impact of the MS-risk variant, rs7665090, and the role of MANBA in the immunopathology of MS.
Collapse
|
13
|
Vita GM, De Simone G, De Marinis E, Nervi C, Ascenzi P, di Masi A. Serum albumin and nucleic acids biodistribution: from molecular aspects to biotechnological applications. IUBMB Life 2022; 74:866-879. [PMID: 35580148 DOI: 10.1002/iub.2653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Abstract
Serum albumin (SA) is the most abundant protein in plasma and represents the main carrier of endogenous and exogenous compounds. Several evidence supports the notion that SA binds single and double stranded deoxy- and ribonucleotides at two sites, with values of the dissociation equilibrium constant (i.e., Kd ) ranging from micromolar to nanomolar values. This can be relevant from a physiological and pathological point of view as in human plasma circulate cell-free nucleic acids (cfNAs), which are single and double stranded NAs released by different tissues via apoptosis, necrosis, and secretions. Albeit SA shows low hydrolytic reactivity toward DNA and RNA, the high plasma concentration of this protein and the occurrence of several SA receptors may be pivotal for sequestering and hydrolyzing cfNAs. Therefore, pathological conditions like cancer, characterized by altered levels of human SA or by altered SA post-translational modifications, may influence cfNAs distribution and metabolism. Besides, the stability, solubility, biocompatibility, and low immunogenicity make SA a golden share for biotechnological applications related to the delivery of therapeutic NAs (TNAs). Indeed, pre-clinical studies report the therapeutic potential of SA:TNAs complexes in precision cancer therapy. Here, the molecular and biotechnological implications of SA:NAs interaction are discussed, highlighting new perspectives into SA plasmatic functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gian Marco Vita
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Giovanna De Simone
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Paolo Ascenzi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.,Accademia Nazionale dei Lincei, Roma, Italy
| | - Alessandra di Masi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| |
Collapse
|
14
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
16
|
de Ponte MC, Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Oliveira-Souza M. Early type 1 diabetes aggravates renal ischemia/reperfusion-induced acute kidney injury. Sci Rep 2021; 11:19028. [PMID: 34561469 PMCID: PMC8463569 DOI: 10.1038/s41598-021-97839-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the interaction between early diabetes and renal IR-induced AKI and to clarify the mechanisms involved. C57BL/6J mice were assigned to the following groups: (1) sham-operated; (2) renal IR; (3) streptozotocin (STZ-55 mg/kg/day) and sham operation; and (4) STZ and renal IR. On the 12th day after treatments, the animals were subjected to bilateral IR for 30 min followed by reperfusion for 48 h, at which time the animals were euthanized. Renal function was assessed by plasma creatinine and urea levels, as well urinary protein contents. Kidney morphology and gene and protein expression were also evaluated. Compared to the sham group, renal IR increased plasma creatinine, urea and albuminuria levels and decreased Nphs1 mRNA expression and nephrin and WT1 protein staining. Tubular injury was observed with increased Havcr1 and Mki67 mRNA expression accompanied by reduced megalin staining. Renal IR also resulted in increased SQSTM1 protein expression and increased proinflammatory and profibrotic factors mRNA expression. Although STZ treatment resulted in hyperglycemia, it did not induce significant changes in renal function. On the other hand, STZ treatment aggravated renal IR-induced AKI by exacerbating renal dysfunction, glomerular and tubular injury, inflammation, and profibrotic responses. Thus, early diabetes constitutes a relevant risk factor for renal IR-induced AKI.
Collapse
Affiliation(s)
- Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-900, Brazil
| | - Vanessa Gerolde Cardoso
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-900, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-900, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-900, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
17
|
Kwak G, Kim H, Park J, Kim EH, Jang H, Han G, Wang SY, Yang Y, Chan Kwon I, Kim SH. A Trojan-Horse Strategy by In Situ Piggybacking onto Endogenous Albumin for Tumor-Specific Neutralization of Oncogenic MicroRNA. ACS NANO 2021; 15:11369-11384. [PMID: 34191497 DOI: 10.1021/acsnano.1c00799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a recently discovered class of noncoding RNAs, play pivotal roles in regulating fundamental biological processes by suppressing the expression of target genes. Aberrant miRNA expression is commonly correlated with human diseases, including cancers. Anti-miRNA oligonucleotides provide an innovative therapeutic strategy for silencing disease-associated miRNAs. However, the clinical application of anti-miRNA therapy has been limited by formulation challenges and physiological delivery barriers. Here, to provide the safe and effective tumor-targeted delivery of anti-miRNAs, we designed carrier-free maleimide-functionalized anti-miRNAs (MI-Anti-miRNAs) that enable "piggybacking" onto albumin in vivo. These functionalized MI-Anti-miRNAs covalently bind to cysteine-34 of endogenous albumin within minutes. In addition to resulting in a markedly extended blood circulation lifetime, this strategy allows MI-Anti-miRNAs to "hitchhike" to the tumor site. Importantly, in situ-generated albumin-Anti-miRNAs are capable of intracellularly internalizing highly negatively charged anti-miRNA molecules and knocking down target miRNAs. In particular, MI-Anti-miRNAs that targeted miRNA-21, which is involved in tumor initiation, progression, invasion, and metastasis in several types of cancer, successfully repressed miRNA-21 activity, resulting in a superior antitumor activity in both solid and metastatic tumor models without causing systemic toxicity. This endogenous albumin-piggybacking approach using MI-Anti-miRNAs provides a simple and broadly applicable platform strategy for the systemic delivery of anti-miRNA therapeutics.
Collapse
Affiliation(s)
- Gijung Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jooho Park
- Department of Biomedical & Health Science, Konkuk University, 268 Chungwon-daero, Chungju 27478, Republic of Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sun Young Wang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KIST-DFCI On-Site-Lab, Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
18
|
Babaeenezhad E, Nouryazdan N, Nasri M, Ahmadvand H, Moradi Sarabi M. Cinnamic acid ameliorate gentamicin-induced liver dysfunctions and nephrotoxicity in rats through induction of antioxidant activities. Heliyon 2021; 7:e07465. [PMID: 34278037 PMCID: PMC8264605 DOI: 10.1016/j.heliyon.2021.e07465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
This study was the first to evaluate the possible protective effects of cinnamic acid (CA) against Gentamicin (GM) induced liver and kidney dysfunctions in rats. Adult male Wistar rats were randomly assigned to 4 equal groups (n = 8): Control group (saline, 0.5 ml/day), CA group (CA, 50 mg/kg/day), GM group (GM, 100 mg/kg/day), and GM + CA group (100 & 50 mg/kg/day). Following 12 days of treatments, blood and 24 h urine samples were collected and kidneys were taken out for biochemical, histopathological, and molecular studies. Following CA treatment, renal function markers and transaminases activities including serum urea (59.92%) and creatinine (50.41%), protein excretion rate (43.67%), and serum activities of aspartate aminotransferase (AST) (54.34%) and alanine aminotransferase (ALT) (47.26%) significantly reduced in the treated group as compared with the GM group (P < 0.05). Also, CA could significantly ameliorate the levels of triglyceride (29.70%), cholesterol (13.02%), very low-density lipoprotein (29.69%) and high-density lipoprotein-cholesterol (7.28%). CA could also attenuate oxidative stress through a decrease of serum malondialdehyde (MDA) (50.86%) and nitric oxide (NO) (0.85%) and an increase of renal catalase (CAT) (196.14%) and glutathione peroxidase (GPX) activities (45.88%) as well as GPX mRNA expression (44.42-fold) as compared with the GM group (P < 0.05). Moreover, histopathological evaluations revealed attenuated tubular damages and reduced inflammatory cellular infiltration in CA treated animals. Overall, CA alleviates GM-induced nephrotoxicity and alterations in transaminases activities in rats through its antioxidant activities.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Nouryazdan
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasri
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
19
|
Gburek J, Konopska B, Gołąb K. Renal Handling of Albumin-From Early Findings to Current Concepts. Int J Mol Sci 2021; 22:ijms22115809. [PMID: 34071680 PMCID: PMC8199105 DOI: 10.3390/ijms22115809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Albumin is the main protein of blood plasma, lymph, cerebrospinal and interstitial fluid. The protein participates in a variety of important biological functions, such as maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver, as well as in the kidney tubular epithelium. Long-lasting investigation in this area has delineated the principal route of its catabolism involving glomerular filtration, tubular endocytic uptake via the multiligand scavenger receptor tandem—megalin and cubilin-amnionless complex, as well as lysosomal degradation to amino acids. However, the research of the last few decades indicates that also additional mechanisms may operate in this process to some extent. Direct uptake of albumin in glomerular podocytes via receptor for crystallizable region of immunoglobulins (neonatal FC receptor) was demonstrated. Additionally, luminal recycling of short peptides into the bloodstream and/or back into tubular lumen or transcytosis of whole molecules was suggested. The article discusses the molecular aspects of these processes and presents the major findings and controversies arising in the light of the research concerning the last decade. Their better characterization is essential for further research into pathophysiology of proteinuric renal failure and development of effective therapeutic strategies.
Collapse
|
20
|
Gharbavi M, Johari B, Rismani E, Mousazadeh N, Taromchi AH, Sharafi A. NANOG Decoy Oligodeoxynucleotide-Encapsulated Niosomes Nanocarriers: A Promising Approach to Suppress the Metastatic Properties of U87 Human Glioblastoma Multiforme Cells. ACS Chem Neurosci 2020; 11:4499-4515. [PMID: 33283497 DOI: 10.1021/acschemneuro.0c00699] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, advances in the synthesis and development of multifunctional nanoparticle platforms have opened up great opportunities and advantages for specifically targeted delivery of genes of interest. BSA-coated niosome structures (NISM@B) can potentially improve the efficiency in vitro delivery of nucleic acid molecules and the transfection of genes. Few studies have reported the combined use of niosomes with nucleic acid as therapeutic agents or decoy oligodeoxynucleotides (ODNs). Herein, we synthesized NISM@B to encapsulate NANOG decoy ODN (NISM@B-DEC), after which the physicochemical characteristics and in vitro and in vivo properties of NISM@B-DEC were investigated. Our results regarding physicochemical characteristics revealed that the stable niosome nanocarrier system was successfully synthesized with a regular spherical shape and narrow size distribution with proper zeta-potential values and had an appropriate biocompatibility. The ODN release from the niosome nanocarrier system exhibited controlled and pH-dependent behavior as the best models to explain the ODN release profile. NISM@B-DEC was efficiently taken up by human glioblastoma cells (U87) and significantly inhibited cell growth. Finally, blockage of the NANOG pathway by NISM@B-DEC resulted in G1 cell cycle arrest, apoptosis, and cell death. In addition, NISM@B-DEC caused a significant decrease in tumor formation and improved wound-healing efficiency of the U87 cells. These findings confirm that NISM@B-DEC could potentially suppress the metastatic ability of these cells. It can be concluded that the presented nanocarrier system can be a promising approach for targeted gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Taromchi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Rybchyn MS, Abboud M, Puglisi DA, Gordon-Thomson C, Brennan-Speranza TC, Mason RS, Fraser DR. Skeletal Muscle and the Maintenance of Vitamin D Status. Nutrients 2020; 12:nu12113270. [PMID: 33114526 PMCID: PMC7692087 DOI: 10.3390/nu12113270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Vitamin D, unlike the micronutrients, vitamins A, E, and K, is largely obtained not from food, but by the action of solar ultraviolet (UV) light on its precursor, 7-dehydrocholesterol, in skin. With the decline in UV light intensity in winter, most skin production of vitamin D occurs in summer. Since no defined storage organ or tissue has been found for vitamin D, it has been assumed that an adequate vitamin D status in winter can only be maintained by oral supplementation. Skeletal muscle cells have now been shown to incorporate the vitamin D-binding protein (DBP) from blood into the cell cytoplasm where it binds to cytoplasmic actin. This intracellular DBP provides an array of specific binding sites for 25-hydroxyvitamin D (25(OH)D), which diffuses into the cell from the extracellular fluid. When intracellular DBP undergoes proteolytic breakdown, the bound 25(OH)D is then released and diffuses back into the blood. This uptake and release of 25(OH)D by muscle accounts for the very long half-life of this metabolite in the circulation. Since 25(OH)D concentration in the blood declines in winter, its cycling in and out of muscle cells appears to be upregulated. Parathyroid hormone is the most likely factor enhancing the repeated cycling of 25(OH)D between skeletal muscle and blood. This mechanism appears to have evolved to maintain an adequate vitamin D status in winter.
Collapse
Affiliation(s)
- Mark S. Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
| | - Myriam Abboud
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Dubai, Abu Dhabi P.O. Box 144534, UAE
| | - David A. Puglisi
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
| | - Clare Gordon-Thomson
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
| | - Tara C. Brennan-Speranza
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca S. Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.R.); (M.A.); (D.A.P.); (C.G.-T.); (T.C.B.-S.); (R.S.M.)
| | - David R. Fraser
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-93512139
| |
Collapse
|
22
|
de Araújo L, Costa-Pessoa JM, de Ponte MC, Oliveira-Souza M. Sodium Oxalate-Induced Acute Kidney Injury Associated With Glomerular and Tubulointerstitial Damage in Rats. Front Physiol 2020; 11:1076. [PMID: 32982795 PMCID: PMC7479828 DOI: 10.3389/fphys.2020.01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Acute crystalline nephropathy is closely related to tubulointerstitial injury, but few studies have investigated glomerular changes in this condition. Thus, in the current study, we investigated the factors involved in glomerular and tubulointerstitial injury in an experimental model of crystalline-induced acute kidney injury (AKI). We treated male Wistar rats with a single injection of sodium oxalate (NaOx, 7 mg⋅100 g-1⋅day-1, resuspended in 0.9% NaCl solution, i.p.) or vehicle (control). After 24 h of treatment, food and water intake, urine output, body weight gain, and renal function were evaluated. Renal tissue was used for the morphological studies, quantitative PCR and protein expression studies. Our results revealed that NaOx treatment did not change metabolic or electrolyte and water intake parameters or urine output. However, the treated group exhibited tubular calcium oxalate (CaOx) crystals excretion, followed by a decline in kidney function demonstrated along with glomerular injury, which was confirmed by increased plasma creatinine and urea concentrations, increased glomerular desmin immunostaining, nephrin mRNA expression and decreased WT1 immunofluorescence. Furthermore, NaOx treatment resulted in tubulointerstitial injury, which was confirmed by tubular dilation, albuminuria, increased Kim-1 and Ki67 mRNA expression, decreased megalin and Tamm-Horsfall protein (THP) expression. Finally, the treatment induced increases in CD68 protein staining, MCP-1, IL-1β, NFkappaB, and α-SMA mRNA expression, which are consistent with proinflammatory and profibrotic signaling, respectively. In conclusion, our findings provide relevant information regarding crystalline-induced AKI, showing strong tubulointerstitial and glomerular injury with a possible loss of podocyte viability.
Collapse
Affiliation(s)
- Larissa de Araújo
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Wang J, Tripathy N, Chung EJ. Targeting and therapeutic peptide-based strategies for polycystic kidney disease. Adv Drug Deliv Rev 2020; 161-162:176-189. [PMID: 32866560 PMCID: PMC7736157 DOI: 10.1016/j.addr.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by progressive cyst growth and is a leading cause of renal failure worldwide. Currently, there are limited therapeutic options available to PKD patients, and only one drug, tolvaptan, has been FDA-approved to slow cyst progression. Similar to other small molecule drugs, however, tolvaptan is costly, only moderately effective, and causes adverse events leading to high patient dropout rates. Peptides may mitigate many drawbacks of small molecule drugs, as they can be highly tissue-specific, biocompatible, and economically scaled-up. Peptides can function as targeting ligands that direct therapies to diseased renal tissue, or be potent as therapeutic agents themselves. This review discusses various aberrant signaling pathways in PKD and renal receptors that can be potential targets of peptide-mediated strategies. Additionally, peptides utilized in other kidney applications, but may prove useful in the context of PKD, are highlighted. Insights into novel peptide-based solutions that have potential to improve clinical management of PKD are provided.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nirmalya Tripathy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, Christensen EI, Baty CJ, Kashlan OB, Weisz OA. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Renal Physiol 2020; 318:F1284-F1294. [PMID: 32200668 DOI: 10.1152/ajprenal.00030.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proximal tubule (PT) cells express a single saturable albumin-binding site whose affinity matches the estimated tubular concentration of albumin; however, albumin uptake capacity is greatly increased under nephrotic conditions. Deciphering the individual contributions of megalin and cubilin to the uptake of normal and nephrotic levels of albumin is impossible in vivo, as knockout of megalin in mice globally disrupts PT endocytic uptake. We quantified concentration-dependent albumin uptake in an optimized opossum kidney cell culture model and fit the kinetic profiles to identify albumin-binding affinities and uptake capacities. Mathematical deconvolution fit best to a three-component model that included saturable high- and low-affinity uptake sites for albumin and underlying nonsaturable uptake consistent with passive uptake of albumin in the fluid phase. Knockdown of cubilin or its chaperone amnionless selectively reduced the binding capacity of the high-affinity site, whereas knockdown of megalin impacted the low-affinity site. Knockdown of disabled-2 decreased the capacities of both binding sites. Additionally, knockdown of megalin or disabled-2 profoundly inhibited the uptake of a fluid phase marker, with cubilin knockdown having a more modest effect. We propose a novel model for albumin retrieval along the PT in which cubilin and megalin receptors have different functions in recovering filtered albumin in proximal tubule cells. Cubilin binding to albumin is tuned to capture normally filtered levels of the protein. In contrast, megalin binding to albumin is of lower affinity, and its expression is also essential for enabling the recovery of high concentrations of albumin in the fluid phase.
Collapse
Affiliation(s)
- Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Bu L, Mirocha J, Haas M. Immunoglobulin G/albumin staining in tubular protein reabsorption droplets in minimal change disease and focal segmental glomerulosclerosis. Nephrol Dial Transplant 2020; 36:1016-1022. [PMID: 32191308 DOI: 10.1093/ndt/gfaa039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Some renal biopsies cannot distinguish minimal change disease (MCD) from primary focal segmental glomerulosclerosis (FSGS) because of inadequate sampling and/or a lack of sampled glomeruli with segmental sclerosis. As protein excretion in MCD has been described as being albumin-selective, we examined whether the ratio of immunoglobulin G (IgG)/albumin staining in protein reabsorption droplets (tPRD) might help distinguish MCD from FSGS. METHODS Frozen tissue from 144 native renal biopsies from patients with nephrotic syndrome and a diagnosis of MCD or FSGS [73 MCD, 30 FSGS tip variant (FSGS-tip), 38 FSGS-not otherwise specified (FSGS-NOS), 3 FSGS collapsing] was retrospectively stained by direct immunofluorescence for IgG and albumin; none of these samples showed diagnostic lesions of FSGS. IgG and albumin staining of tPRD were graded on a scale of 0 to 3+ based on the distribution and intensity of staining. RESULTS Mean (standard deviation) IgG/albumin staining ratios were 0.186 ± 0.239 for MCD, 0.423 ± 0.334 for FSGS-tip (P = 0.0001 versus MCD) and 0.693 ± 0.297 for FSGS-NOS (P < 0.0001 versus MCD; P = 0.0001 versus FSGS-tip). Of 84 biopsies with a ratio ≤0.33, 63 (75%) showed MCD, whereas among 21 with a ratio of 1.0, all but one showed FSGS (15 FSGS-NOS). CONCLUSIONS In summary, IgG/albumin staining in tPRD was correlated with histologic diagnosis in renal biopsies with MCD and FSGS. A ratio of ≤0.33 was associated with MCD, whereas a ratio of 1.0 was most often seen with FSGS-NOS.
Collapse
Affiliation(s)
- Lihong Bu
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - James Mirocha
- Biostatistics Core, Research Institute and General Clinical Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Haas
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Megalin is well known for its role in the reabsorption of proteins from the ultrafiltrate. Recent studies suggest that megalin also reabsorbs renin and angiotensinogen. Indeed, without megalin urinary renin and angiotensinogen levels massively increase, and even prorenin becomes detectable in urine. RECENT FINDINGS Intriguingly, megalin might also contribute to renal angiotensin production, as evidenced from studies in megalin knockout mice. This review discusses these topics critically, concluding that urinary renin-angiotensin system components reflect diminished reabsorption rather than release from renal tissue sites and that alterations in renal renin levels or megalin-dependent signaling need to be ruled out before concluding that angiotensin production at renal tissue sites is truly megalin dependent. Future studies should evaluate megalin-mediated renin/angiotensinogen transcytosis (allowing interstitial angiotensin generation), and determine whether megalin prefers prorenin over renin, thus explaining why urine normally contains no prorenin.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Xifeng Lu
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Paul P, Antonydhason V, Gopal J, Haga SW, Hasan N, Oh JW. Bioinformatics for Renal and Urinary Proteomics: Call for Aggrandization. Int J Mol Sci 2020; 21:E961. [PMID: 32024005 PMCID: PMC7038205 DOI: 10.3390/ijms21030961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical sampling of urine is noninvasive and unrestricted, whereby huge volumes can be easily obtained. This makes urine a valuable resource for the diagnoses of diseases. Urinary and renal proteomics have resulted in considerable progress in kidney-based disease diagnosis through biomarker discovery and treatment. This review summarizes the bioinformatics tools available for this area of proteomics and the milestones reached using these tools in clinical research. The scant research publications and the even more limited bioinformatic tool options available for urinary and renal proteomics are highlighted in this review. The need for more attention and input from bioinformaticians is highlighted, so that progressive achievements and releases can be made. With just a handful of existing tools for renal and urinary proteomic research available, this review identifies a gap worth targeting by protein chemists and bioinformaticians. The probable causes for the lack of enthusiasm in this area are also speculated upon in this review. This is the first review that consolidates the bioinformatics applications specifically for renal and urinary proteomics.
Collapse
Affiliation(s)
- Piby Paul
- St. Jude Childrens Cancer Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Vimala Antonydhason
- Department of Microbiology and Immunology, Institute for Biomedicine, Gothenburg University, 413 90 Gothenburg, Sweden;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea;
| | - Steve W. Haga
- Department of Computer Science and Engineering, National Sun Yat Sen University, Kaohsiung 804, Taiwan;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
29
|
Differential trafficking of albumin and IgG facilitated by the neonatal Fc receptor in podocytes in vitro and in vivo. PLoS One 2019; 14:e0209732. [PMID: 30811433 PMCID: PMC6392300 DOI: 10.1371/journal.pone.0209732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
Proteinuria is strongly associated with kidney disease progression but the mechanisms underlying podocyte handling of serum proteins such as albumin and IgG remain to be elucidated. We have previously shown that albumin and IgG are transcytosed by podocytes in vitro. In other epithelial cells, the neonatal Fc receptor (FcRn) is required to salvage albumin and IgG from the degradative pathway thereby allowing these proteins to be transcytosed or recycled. Here we directly examine the role of FcRn in albumin and IgG trafficking in podocytes by studying handling of these proteins in FcRn knockout (KO) podocytes in vitro and in a podocyte-specific FcRn knockout mice in vivo. In vitro, we find that knockout of FcRn leads to IgG accumulation in podocytes but does not alter albumin trafficking. Similarly, in vivo, podocyte-specific knockout of FcRn does not result in albumin accumulation in podocytes in vivo as measured by mean albumin fluorescence intensity whereas these mice demonstrate significant intraglomerular accumulation of IgG over time. In addition we find that podocyte-specific FcRn KO mice demonstrate mesangial expansion as they age and activation of mesangial cells as demonstrated by increased expression of α-smooth muscle actin. Taken together, these results suggest that trafficking pathways for albumin and IgG differ in podocytes and that sustained disruption of trafficking of plasma proteins alters glomerular structure.
Collapse
|
30
|
Hiratsuka K, Monkawa T, Akiyama T, Nakatake Y, Oda M, Goparaju SK, Kimura H, Chikazawa-Nohtomi N, Sato S, Ishiguro K, Yamaguchi S, Suzuki S, Morizane R, Ko SBH, Itoh H, Ko MSH. Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Sci Rep 2019; 9:913. [PMID: 30696889 PMCID: PMC6351687 DOI: 10.1038/s41598-018-37485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
The derivation of kidney tissues from human pluripotent stem cells (hPSCs) and its application for replacement therapy in end-stage renal disease have been widely discussed. Here we report that consecutive transfections of two sets of synthetic mRNAs encoding transcription factors can induce rapid and efficient differentiation of hPSCs into kidney tissues, termed induced nephron-like organoids (iNephLOs). The first set - FIGLA, PITX2, ASCL1 and TFAP2C, differentiated hPSCs into SIX2+SALL1+ nephron progenitor cells with 92% efficiency within 2 days. Subsequently, the second set - HNF1A, GATA3, GATA1 and EMX2, differentiated these cells into PAX8+LHX1+ pretubular aggregates in another 2 days. Further culture in both 2-dimensional and 3-dimensional conditions produced iNephLOs containing cells characterized as podocytes, proximal tubules, and distal tubules in an additional 10 days. Global gene expression profiles showed similarities between iNephLOs and the human adult kidney, suggesting possible uses of iNephLOs as in vitro models for kidneys.
Collapse
Affiliation(s)
- Ken Hiratsuka
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Toshiaki Monkawa
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sravan Kumar Goparaju
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiromi Kimura
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Nana Chikazawa-Nohtomi
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saeko Sato
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichiro Ishiguro
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shintaro Yamaguchi
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sayuri Suzuki
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Morizane
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
31
|
Establishment of renal proximal tubule cell lines derived from the kidney of p53 knockout mice. Cytotechnology 2019; 71:45-56. [PMID: 30603921 DOI: 10.1007/s10616-018-0261-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
The human cell line HK-2 is most commonly used as a model of renal proximal tubular epithelial cells (PTECs) for various studies despite the absence or low expression of transporters characteristic of parental PTECs. In an effort to develop reliable PTEC models, several human cell lines have been newly established over the last decade. In contrast, reliable mouse PTEC models are still unavailable. In this study, we established immortalized renal cortex tubule cell lines derived from p53 knockout mice and evaluated various PTEC characteristics toward the development of reliable mouse PTEC models. Here, we focus on MuRTE61, one of 13 newly established clonal cell lines. Albumin uptake in MuRTE61 cells was verified by incubation with fluorescent dye-labeled albumin. RT-PCR confirmed the expression of efflux transporter genes characteristic of PTECs in the MuRTE61 cells. MuRTE61 cells exhibited high sensitivity to treatment with cisplatin, a nephrotoxic agent, accompanied by upregulated expression of the uptake transporter Slc22a2 gene. Furthermore, MuRTE61 cells consistently formed spheroids with a lumen and apicobasal polarity in three-dimensional Matrigel cultures. Apical brush border microvilli were also observed in the spheroids by transmission electron microscopy. These data validate that MuRTE61 can be characterized as a reliable mouse PTEC line. In future, detailed analysis of reliable mouse and human PTEC lines will provide an accurate extrapolation of results of experiments using mice and humans, and may help resolve apparent inconsistencies between mouse and human nephrotoxicity.
Collapse
|
32
|
Otterpohl KL, Hart RG, Evans C, Surendran K, Chandrasekar I. Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney. Physiol Rep 2018; 5. [PMID: 29208685 PMCID: PMC5727274 DOI: 10.14814/phy2.13513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis. Here, we examined the expression patterns of Nonmuscle myosin 2 (NM2) heavy chains encoded by Myh9, Myh10, and Myh14 in mouse kidneys as these genes may confer unique nephron segment‐specific membrane transport properties. Interestingly, we found that each segment of the renal tubules predominately expressed only two of the three NM2 isoforms, with isoform‐specific subcellular localization, and different levels of expression within a nephron segment. Additionally, we identify Myh14 to be restricted to the intercalated cells and Myh10 to be restricted to the principal cells within the collecting ducts and connecting segments. We speculate that the distinct expression pattern of the NM2 proteins likely reflects the diversity of the intracellular trafficking machinery present within the different renal tubular epithelial segments.
Collapse
Affiliation(s)
- Karla L Otterpohl
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Ryan G Hart
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Claire Evans
- Molecular Pathology Core, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Indra Chandrasekar
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| |
Collapse
|
33
|
Feng J, Zhao C, Wang L, Qu L, Zhu H, Yang Z, An G, Tian H, Shou C. Development of a novel albumin-based and maleimidopropionic acid-conjugated peptide with prolonged half-life and increased in vivo anti-tumor efficacy. Theranostics 2018; 8:2094-2106. [PMID: 29721065 PMCID: PMC5928873 DOI: 10.7150/thno.22069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays a critical role in tumor aggressiveness, and a lot of anti-angiogenic agents have been used in clinical therapy. The therapeutic efficacy of peptides are generally restricted by the short in vivo life-time, thus, we were interested in developing a novel albumin-based and maleimidopropionic acid-conjugated peptide to prolong the half-life and improve the anti-tumor effect. Methods: We developed a peptide F56 with a maleimidopropionic acid (MPA) at the C-terminal (denoted as F56-CM), which allows immediate and irreversible conjugation with serum albumin. Biological property and anti-tumor activity of F56-CM were evaluated in vitro and in vivo. Results: We showed that F56-CM reduced migration and tube formation of endothelial cells in vitro and inhibited the generation of subintestinal vessels (SIV) in zebrafish embryos in vivo. F56-CM inhibited vascular endothelial growth factor (VEGF) induced phosphorylation of VEGFR1 and activation of the PI3K-AKT axis. Furthermore, F56-CM rapidly conjugated with albumin upon intravenous injection and extended the biological half-life of F56 from 0.4249 h to 6.967 h in rats. Compared with F56, F56-CM exhibited stronger anti-tumor activity on both BGC-823 gastric cancer and HT-29 colon cancer xenografts in nude mice, and the statistical difference was remarkable. More significantly, the efficacy of F56-CM inhibiting lung metastasis of BGC-823 cells was also better than that of F56. The inhibition rates were 62.1% and 78.9% for F56 and F56-CM respectively when administrated every day, and 43.8% and 63.1% when administrated every four days at equal dose. Conclusions: Taken together, our results demonstrated that F56-CM has considerable potential for cancer therapy.
Collapse
|
34
|
Jourdan T, Park JK, Varga ZV, Pálóczi J, Coffey NJ, Rosenberg AZ, Godlewski G, Cinar R, Mackie K, Pacher P, Kunos G. Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes Metab 2018; 20:698-708. [PMID: 29106063 DOI: 10.1111/dom.13150] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
AIMS To determine the specific role of podocyte-expressed cannabinoid-1 receptor (CB1 R) in the development of diabetic nephropathy (DN), relative to CB1 R in other renal cell types. MATERIAL AND METHODS We developed a mouse model with a podocyte-specific deletion of CB1 R (pCB1Rko) and challenged this model with streptozotocin (STZ)-induced type-1 DN. We also assessed the podocyte response to high glucose in vitro and its effects on CB1 R activation. RESULTS High glucose exposure for 48 hours led to an increase in CB1 R gene expression (CNR1) and endocannabinoid production in cultured human podocytes. This was associated with podocyte injury, reflected by decreased podocin and nephrin expression. These changes could be prevented by Cnr1-silencing, thus identifying CB1R as a key player in podocyte injury. After 12 weeks of chronic hyperglycaemia, STZ-treated pCB1Rko mice showed elevated blood glucose similar to that of their wild-type littermates. However, they displayed less albuminuria and less podocyte loss than STZ-treated wild-type mice. Unexpectedly, pCB1Rko mice also have milder tubular dysfunction, fibrosis and reduction of cortical microcirculation compared to wild-type controls, which is mediated, in part, by podocyte-derived endocannabinoids acting via CB1 R on proximal tubular cells. CONCLUSIONS Activation of CB1 R in podocytes contributes to both glomerular and tubular dysfunction in type-1 DN, which highlights the therapeutic potential of peripheral CB1 R blockade.
Collapse
Affiliation(s)
- Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - János Pálóczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
35
|
Tsuji S, Sugiura M, Tsutsumi S, Yamada H. Sex differences in the excretion levels of traditional and novel urinary biomarkers of nephrotoxicity in rats. J Toxicol Sci 2018; 42:615-627. [PMID: 28904297 DOI: 10.2131/jts.42.615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Urinary biomarkers have been used widely in preclinical toxicity studies to detect dysfunctions and injuries of the kidney caused by drugs under development. While they have been well studied for evaluating nephrotoxicity, knowledge of sex differences in excretion levels of urinary biomarkers remains inadequate. We conducted experiments focused on effects of endogenous sex hormones on urinary biomarkers using intact and castrated male and female rats. Comparisons of the urinary biomarker excretion levels between intact male and female rats at 5, 7, 9 and 12 weeks of age revealed higher excretion levels of leucine aminopeptidase (LAP), γ-glutamyl transpeptidase (γGTP), total protein, liver-type fatty acid-binding protein (L-FABP), cystatin C (Cys-C) and β2-microglobulin (β2-MG), and lower excretion level of kidney injury molecule 1 (Kim-1), in male rats as compared to female rats. Orchidectomized male rats showed lower urinary excretion levels of alkaline phosphatase (ALP), LAP, γGTP, N-acetyl-β-D-glucosaminidase (NAG), glucose, total protein, L-FABP, Cys-C, β2-MG and neutrophil gelatinase-associated lipocalin (NGAL), and higher urinary excretion levels of clusterin (CLU) and Kim-1, than sham-operated male rats. On the other hand, no significant differences in the urinary biomarker excretion levels excluding ALP were observed between ovariectomized and sham-operated female rats. In the present study, we demonstrated the existence of sex differences in excretion levels of urinary biomarkers that are universally used in preclinical toxicity studies, and also that these differences, especially in relation to the urinary excretions of ALP, LAP, γGTP, total protein, L-FABP, Cys-C, and β2-MG, may closely relate to the endogenous testosterone.
Collapse
Affiliation(s)
- Satoshi Tsuji
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masayuki Sugiura
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Shunsuke Tsutsumi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Hisaharu Yamada
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| |
Collapse
|
36
|
Jensen D, Kierulf-Lassen C, Kristensen MLV, Nørregaard R, Weyer K, Nielsen R, Christensen EI, Birn H. Megalin dependent urinary cystatin C excretion in ischemic kidney injury in rats. PLoS One 2017; 12:e0178796. [PMID: 28575050 PMCID: PMC5456377 DOI: 10.1371/journal.pone.0178796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Background Cystatin C, a marker of kidney injury, is freely filtered in the glomeruli and reabsorbed by the proximal tubules. Megalin and cubilin are endocytic receptors essential for reabsorption of most filtered proteins. This study examines the role of these receptors for the uptake and excretion of cystatin C and explores the effect of renal ischemia/reperfusion injury on renal cystatin C uptake and excretion in a rat model. Methods Binding of cystatin C to megalin and cubilin was analyzed by surface plasmon resonance analysis. ELISA and/or immunoblotting and immunohistochemistry were used to study the urinary excretion and tubular uptake of endogenous cystatin C in mice. Furthermore, renal uptake and urinary excretion of cystatin C was investigated in rats exposed to ischemia/reperfusion injury. Results A high affinity binding of cystatin C to megalin and cubilin was identified. Megalin deficient mice revealed an increased urinary excretion of cystatin C associated with defective uptake by endocytosis. In rats exposed to ischemia/reperfusion injury urinary cystatin C excretion was increased and associated with a focal decrease in proximal tubule endocytosis with no apparent change in megalin expression. Conclusions Megalin is essential for the normal tubular recovery of endogenous cystatin C. The increase in urinary cystatin C excretion after ischemia/reperfusion injury is associated with decreased tubular uptake but not with reduced megalin expression.
Collapse
Affiliation(s)
- Danny Jensen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | | | - Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, Kido S, Tatsumi S, Miyamoto KI. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 62:209-18. [PMID: 26399350 DOI: 10.2152/jmi.62.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation.
Collapse
Affiliation(s)
- Yuji Shiozaki
- Department of Molecular Nutrition, University of Tokushima Graduate School
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamaguchi S, Morizane R, Homma K, Monkawa T, Suzuki S, Fujii S, Koda M, Hiratsuka K, Yamashita M, Yoshida T, Wakino S, Hayashi K, Sasaki J, Hori S, Itoh H. Generation of kidney tubular organoids from human pluripotent stem cells. Sci Rep 2016; 6:38353. [PMID: 27982115 PMCID: PMC5159864 DOI: 10.1038/srep38353] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells.
Collapse
Affiliation(s)
- Shintaro Yamaguchi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuji Morizane
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Renal Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138, USA
| | - Koichiro Homma
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Monkawa
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayuri Suzuki
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shizuka Fujii
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Muneaki Koda
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken Hiratsuka
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Maho Yamashita
- Apheresis and Dialysis Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tadashi Yoshida
- Apheresis and Dialysis Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shu Wakino
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koichi Hayashi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junichi Sasaki
- Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shingo Hori
- Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
39
|
Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016; 18:1269-1280. [PMID: 27820600 DOI: 10.1038/ncb3437] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
Direct reprogramming by forced expression of transcription factors can convert one cell type into another. Thus, desired cell types can be generated bypassing pluripotency. However, direct reprogramming towards renal cells remains an unmet challenge. Here, we identify renal cell fate-inducing factors on the basis of their tissue specificity and evolutionarily conserved expression, and demonstrate that combined expression of Emx2, Hnf1b, Hnf4a and Pax8 converts mouse and human fibroblasts into induced renal tubular epithelial cells (iRECs). iRECs exhibit epithelial features, a global gene expression profile resembling their native counterparts, functional properties of differentiated renal tubule cells and sensitivity to nephrotoxic substances. Furthermore, iRECs integrate into kidney organoids and form tubules in decellularized kidneys. Our approach demonstrates that reprogramming factors can be identified by targeted in silico analysis. Renal tubular epithelial cells generated ex vivo by forced expression of transcription factors may facilitate disease modelling, drug and nephrotoxicity testing, and regenerative approaches.
Collapse
Affiliation(s)
- Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jelena Tosic
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Catena Kresbach
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Hannes Engel
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jonas Klockenbusch
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Anna-Lena Müller
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Florian Grahammer
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Department of Neuroanatomy, University of Freiburg, Albertstraße 17, 79104 Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Sebastian J Arnold
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
40
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
41
|
Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Sci Rep 2016; 6:34845. [PMID: 27725720 PMCID: PMC5057112 DOI: 10.1038/srep34845] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023] Open
Abstract
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.
Collapse
Affiliation(s)
- Kimberly A. Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - David B. Kolesky
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark A. Skylar-Scott
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jessica Herrmann
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Humphrey Obuobi
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Annie Moisan
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Jennifer A. Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Ma J, Guan M, Bowden DW, Ng MC, Hicks PJ, Lea JP, Ma L, Gao C, Palmer ND, Freedman BI. Association Analysis of the Cubilin (CUBN) and Megalin (LRP2) Genes with ESRD in African Americans. Clin J Am Soc Nephrol 2016; 11:1034-1043. [PMID: 27197912 PMCID: PMC4891762 DOI: 10.2215/cjn.12971215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Genetic variation in the cubilin (CUBN) gene is associated with albuminuria and CKD. Common and rare coding variants in CUBN and the gene encoding its transport partner megalin (LRP2) were assessed for association with ESRD in blacks. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Sixty-six CUBN and LRP2 single-nucleotide polymorphisms (SNPs) were selected and analyzed in this multistage study. Exome sequencing data from 529 blacks with type 2 diabetes (T2D) -associated ESRD and 535 controls lacking T2D or nephropathy (the Type 2 Diabetes Genes [T2D-GENES] Consortium) were first evaluated, focusing on coding variants in CUBN and LRP2; 15 potentially associated SNPs identified from the T2D-GENES Consortium as well as 51 other selected SNPs were then assessed in an independent T2D-ESRD sample set of blacks (the Affymetrix Axiom Biobank Genotyping Array [AXIOM]; 2041 patients with T2D-ESRD, 627 patients with T2D without nephropathy, and 1140 nondiabetic, non-nephropathy controls). A meta-analysis combining the T2D-GENES Consortium and the AXIOM data was performed for 18 overlapping SNPs. Additionally, all 66 SNPs were genotyped in the Wake Forest School of Medicine samples of blacks with nondiabetic ESRD (885 patients with nondiabetic ESRD and 721 controls). Association testing with ESRD was performed in models including age, sex, African ancestry proportion, and apolipoprotein L1 gene renal-risk variants. RESULTS CUBN SNP rs1801239 (I2984V), previously associated with albuminuria, was significantly associated with T2D-ESRD in blacks (the T2D-GENES Consortium and the AXIOM meta-analysis, P=0.03; odds ratio, 1.31; 95% confidence interval, 1.03 to 1.67; minor allele frequency =0.028). A novel LRP2 missense variant, rs17848169 (N2632D), was also significantly protective from T2D-ESRD (the T2D-GENES Consortium and the AXIOM, P<0.002; odds ratio, 0.47; 95% confidence interval, 0.29 to 0.75; meta-analysis minor allele frequency =0.007). Neither SNP was associated with T2D when contrasting patients with T2D with controls lacking diabetes. CUBN and LRP2 SNPs were not associated with nondiabetic etiologies of ESRD. CONCLUSIONS Evidence for genetic association exists between a cubilin and a rare megalin variant with diabetes-associated ESRD in populations with recent African ancestry.
Collapse
Affiliation(s)
- Jun Ma
- Department of Internal Medicine, Section on Nephrology and
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Meijian Guan
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald W. Bowden
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maggie C.Y. Ng
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Pamela J. Hicks
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Janice P. Lea
- Division of Renal Medicine, Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology and
| | - Chuan Gao
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D. Palmer
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
43
|
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. MOLECULAR AND CELLULAR THERAPIES 2016; 4:3. [PMID: 26925240 PMCID: PMC4769556 DOI: 10.1186/s40591-016-0048-8] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Abstract
The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
44
|
El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C, Baron W, Burtin M, Broueilh M, Heidet L, Mollet G, Druilhe A, Antignac C, Knebelmann B, Friedlander G, Bienaimé F, Gallazzini M, Terzi F. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun 2016; 7:10330. [PMID: 26787103 PMCID: PMC4735759 DOI: 10.1038/ncomms10330] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In chronic kidney disease (CKD), proteinuria results in severe tubulointerstitial lesions, which ultimately lead to end-stage renal disease. Here we identify 4-phenylbutyric acid (PBA), a chemical chaperone already used in humans, as a novel therapeutic strategy capable to counteract the toxic effect of proteinuria. Mechanistically, we show that albumin induces tubular unfolded protein response via cytosolic calcium rise, which leads to tubular apoptosis by Lipocalin 2 (LCN2) modulation through ATF4. Consistent with the key role of LCN2 in CKD progression, Lcn2 gene inactivation decreases ER stress-induced apoptosis, tubulointerstitial lesions and mortality in proteinuric mice. More importantly, the inhibition of this pathway by PBA protects kidneys from morphological and functional degradation in proteinuric mice. These results are relevant to human CKD, as LCN2 is increased in proteinuric patients. In conclusion, our study identifies a therapeutic strategy susceptible to improve the benefit of RAS inhibitors in proteinuria-induced CKD progression.
Collapse
Affiliation(s)
- Khalil El Karoui
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Amandine Viau
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Olivier Dellis
- UMR-S 757 INSERM, Université Paris Sud 11, Rue des Adèles, Orsay 91405, France
| | - Alessia Bagattin
- INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - William Baron
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Martine Burtin
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Mélanie Broueilh
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Laurence Heidet
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Géraldine Mollet
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Anne Druilhe
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Corinne Antignac
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Bertrand Knebelmann
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Gérard Friedlander
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Frank Bienaimé
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| |
Collapse
|
45
|
Human Urine Proteomics: Analytical Techniques and Clinical Applications in Renal Diseases. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:782798. [PMID: 26693351 PMCID: PMC4677025 DOI: 10.1155/2015/782798] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Urine has been in the center of attention among scientists of clinical proteomics in the past decade, because it is valuable source of proteins and peptides with a relative stable composition and easy to collect in large and repeated quantities with a noninvasive procedure. In this review, we discuss technical aspects of urinary proteomics in detail, including sample preparation, proteomic technologies, and their advantage and disadvantages. Several recent experiments are presented which applied urinary proteome for biomarker discovery in renal diseases including diabetic nephropathy, immunoglobulin A (IgA) nephropathy, focal segmental glomerulosclerosis, lupus nephritis, membranous nephropathy, and acute kidney injury. In addition, several available databases in urinary proteomics are also briefly introduced.
Collapse
|
46
|
Schießl IM, Hammer A, Kattler V, Gess B, Theilig F, Witzgall R, Castrop H. Intravital Imaging Reveals Angiotensin II-Induced Transcytosis of Albumin by Podocytes. J Am Soc Nephrol 2015; 27:731-44. [PMID: 26116357 DOI: 10.1681/asn.2014111125] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/11/2015] [Indexed: 11/03/2022] Open
Abstract
Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.
Collapse
Affiliation(s)
| | | | | | | | - Franziska Theilig
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany; and
| | | |
Collapse
|
47
|
Jensen TB, Cheema MU, Szymiczek A, Damkier HH, Praetorius J. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance. PLoS One 2015; 10:e0124902. [PMID: 25874770 PMCID: PMC4395387 DOI: 10.1371/journal.pone.0124902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.
Collapse
Affiliation(s)
| | | | - Agata Szymiczek
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
48
|
Sand KMK, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT. Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics. Front Immunol 2015; 5:682. [PMID: 25674083 PMCID: PMC4306297 DOI: 10.3389/fimmu.2014.00682] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The neonatal Fc receptor (FcRn) was first found to be responsible for transporting antibodies of the immunoglobulin G (IgG) class from the mother to the fetus or neonate as well as for protecting IgG from intracellular catabolism. However, it has now become apparent that the same receptor also binds albumin and plays a fundamental role in homeostatic regulation of both IgG and albumin, as FcRn is expressed in many different cell types and organs at diverse body sites. Thus, to gain a complete understanding of the biological function of each ligand, and also their distribution in the body, an in-depth characterization of how FcRn binds and regulates the transport of both ligands is necessary. Importantly, such knowledge is also relevant when developing new drugs, as IgG and albumin are increasingly utilized in therapy. This review discusses our current structural and biological understanding of the relationship between FcRn and its ligands, with a particular focus on albumin and design of albumin-based therapeutics.
Collapse
Affiliation(s)
- Kine Marita Knudsen Sand
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Malin Bern
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Jeannette Nilsen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway ; Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Hanna Theodora Noordzij
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Jan Terje Andersen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
49
|
Öberg CM, Rippe B. Letter to the Editor: "Can early plasma elimination rate be used to quantify renal clearance of macromolecules?". Am J Physiol Renal Physiol 2015; 308:F164-5. [PMID: 25560050 DOI: 10.1152/ajprenal.00491.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Carl M Öberg
- Department of Nephrology, Lund University, Lund, Sweden
| | - Bengt Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Koral K, Li H, Ganesh N, Birnbaum MJ, Hallows KR, Erkan E. Akt recruits Dab2 to albumin endocytosis in the proximal tubule. Am J Physiol Renal Physiol 2014; 307:F1380-9. [PMID: 25253241 DOI: 10.1152/ajprenal.00454.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.
Collapse
Affiliation(s)
- Kelly Koral
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hui Li
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Nandita Ganesh
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Morris J Birnbaum
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth R Hallows
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Elif Erkan
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|