1
|
Zemke NR, Lee S, Mamde S, Yang B, Berchtold N, Maximiliano Garduño B, Indralingam HS, Bartosik WM, Lau PK, Dong K, Yang A, Tani Y, Chen C, Zeng Q, Ajith V, Tong L, Seng C, Li D, Wang T, Xu X, Ren B. Epigenetic and 3D genome reprogramming during the aging of human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618338. [PMID: 39463924 PMCID: PMC11507755 DOI: 10.1101/2024.10.14.618338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Age-related cognitive decline is associated with altered physiology of the hippocampus. While changes in gene expression have been observed in aging brain, the regulatory mechanisms underlying these changes remain underexplored. We generated single-nucleus gene expression, chromatin accessibility, DNA methylation, and 3D genome data from 40 human hippocampal tissues spanning adult lifespan. We observed a striking loss of astrocytes, OPC, and endothelial cells during aging, including astrocytes that play a role in regulating synapses. Microglia undergo a dramatic switch from a homeostatic state to a primed inflammatory state through DNA methylome and 3D genome reprogramming. Aged cells experience erosion of their 3D genome architecture. Our study identifies age-associated changes in cell types/states and gene regulatory features that provide insight into cognitive decline during human aging.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nicole Berchtold
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- Immunis Inc, 18301 Von Karman Ave; Irvine, CA, USA
| | - B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Hannah S. Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Amanda Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Yasmine Tani
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Chumo Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Qiurui Zeng
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Varun Ajith
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Liqi Tong
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Chanrung Seng
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine; St. Louis, MO, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- The Center for Neural Circuit Mapping, University of California; Irvine, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| |
Collapse
|
2
|
Layton AT. A comparative modeling study of the mitochondrial function of the proximal tubule and thick ascending limb cells in the rat kidney. Am J Physiol Renal Physiol 2024; 326:F189-F201. [PMID: 37994410 DOI: 10.1152/ajprenal.00290.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chen S, Ma J, Xiao Y, Zhou D, He P, Chen Y, Zheng X, Lin H, Qiu F, Yuan Y, Zhong J, Li X, Pan X, Fang Z, Wang C. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer. Mol Pharm 2023; 20:5214-5225. [PMID: 37733628 DOI: 10.1021/acs.molpharmaceut.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..
Collapse
Affiliation(s)
- Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Dongyan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xiaolu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
- Pharmaceutical Department, Jinhua Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yuying Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jiaben Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| |
Collapse
|
5
|
Malinowska K, Sicińska P, Michałowicz J, Bukowska B. The effects of non-functionalized polystyrene nanoparticles of different diameters on the induction of apoptosis and mTOR level in human peripheral blood mononuclear cells. CHEMOSPHERE 2023; 335:139137. [PMID: 37285979 DOI: 10.1016/j.chemosphere.2023.139137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Particles of various types of plastics, including polystyrene nanoparticles (PS-NPs), have been determined in human blood, placenta, and lungs. These findings suggest a potential detrimental effect of PS-NPs on bloodstream cells. The purpose of this study was to assess the mechanism underlying PS-NPs-induced apoptosis in human peripheral blood mononuclear cells (PBMCs). Non-functionalized PS-NPs of three diameters: 29 nm, 44 nm, and 72 nm were studied used in this research. PBMCs were isolated from human leukocyte-platelet buffy coat and treated with PS-NPs at concentrations ranging from 0.001 to 200 μg/mL for 24 h. Apoptotic mechanism of action was evaluated by determining the level of cytosolic calcium ions, as well as mitochondrial transmembrane potential, and ATP levels. Furthermore, detection of caspase-8, -9, and -3 activation, as well as mTOR level was conducted. The presence of apoptotic PBMCs was confirmed by the method of double staining of the cells with propidium iodide and FITC-conjugated Annexin V. We found that all tested NPs increased calcium ion and depleted mitochondrial transmembrane potential levels. The tested NPs also activated caspase-9 and caspase-3, and the smallest NPs of 29 nm of diameter also activated caspase-8. The results clearly showed that apoptotic changes and an increase of mTOR level depended on the size of the tested NPs, while the smallest particles caused the greatest alterations. PS-NPs of 26 nm of diameter activated the extrinsic pathway (increased caspase-8 activity), as well as intrinsic (mitochondrial) pathway (increased caspase-9 activity, raised calcium ion level, and decreased transmembrane mitochondrial potential) of apoptosis. All PS-NPs increased mTOR level at the concentrations smaller than those that induced apoptosis and its level returned to control value when the process of apoptosis escalated.
Collapse
Affiliation(s)
- Kinga Malinowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Paulina Sicińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland.
| |
Collapse
|
6
|
Wang L, Lin Z, Carli J, Gladala‐Kostarz A, Davies JM, Franklin‐Tong VE, Bosch M. Depletion plays a pivotal role in self-incompatibility, revealing a link between cellular energy status, cytosolic acidification and actin remodelling in pollen tubes. THE NEW PHYTOLOGIST 2022; 236:1691-1707. [PMID: 35775998 PMCID: PMC9796540 DOI: 10.1111/nph.18350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 06/08/2023]
Abstract
Self-incompatibility (SI) involves specific interactions during pollination to reject incompatible ('self') pollen, preventing inbreeding in angiosperms. A key event observed in pollen undergoing the Papaver rhoeas SI response is the formation of punctate F-actin foci. Pollen tube growth is heavily energy-dependent, yet ATP levels in pollen tubes have not been directly measured during SI. Here we used transgenic Arabidopsis lines expressing the Papaver pollen S-determinant to investigate a possible link between ATP levels, cytosolic pH ([pH]cyt ) and alterations to the actin cytoskeleton. We identify for the first time that SI triggers a rapid and significant ATP depletion in pollen tubes. Artificial depletion of ATP triggered cytosolic acidification and formation of actin aggregates. We also identify in vivo, evidence for a threshold [pH]cyt of 5.8 for actin foci formation. Imaging revealed that SI stimulates acidic cytosolic patches adjacent to the plasma membrane. In conclusion, this study provides evidence that ATP depletion plays a pivotal role in SI upstream of programmed cell death and reveals a link between the cellular energy status, cytosolic acidification and alterations to the actin cytoskeleton in regulating Papaver SI in pollen tubes.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityPlas GogerddanAberystwythSY23 3EEUK
| | - Zongcheng Lin
- Key Laboratory of Horticultural Plant BiologyHuazhong Agricultural UniversityWuhan430070China
| | - José Carli
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityPlas GogerddanAberystwythSY23 3EEUK
| | - Agnieszka Gladala‐Kostarz
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityPlas GogerddanAberystwythSY23 3EEUK
| | - Julia M. Davies
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Vernonica E. Franklin‐Tong
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityPlas GogerddanAberystwythSY23 3EEUK
| |
Collapse
|
7
|
Holt AG, Davies AM. A comparison of mtDNA deletion mutant proliferation mechanisms. J Theor Biol 2022; 551-552:111244. [PMID: 35973607 DOI: 10.1016/j.jtbi.2022.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
In this paper we use simulation methods to investigate the proliferation of deletion mutations of mitochondrial DNA in neurons. We simulate three mtDNA proliferation mechanisms, namely, random drift, replicative advantage and vicious cycle. For each mechanism, we investigated the effect mutation rates have on neuron loss within a human host. We also compare heteroplasmy of each mechanism at mutation rates that yield the levels neuron loss that would be associated with dementia. Both random drift and vicious cycle predicted high levels of heteroplasmy, while replicative advantage showed a small number of dominant clones with a low background of heteroplasmy.
Collapse
|
8
|
Rex DAB, Keshava Prasad TS, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci 2022; 23:ijms23137023. [PMID: 35806033 PMCID: PMC9266763 DOI: 10.3390/ijms23137023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus–host-specific molecule interactions.
Collapse
Affiliation(s)
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: (T.S.K.P.); (R.K.K.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O Box 505055, United Arab Emirates
- Correspondence: (T.S.K.P.); (R.K.K.)
| |
Collapse
|
9
|
Wang Z, Havasi A, Beeler AA, Borkan SC. Mechanisms of nucleophosmin (NPM)-mediated regulated cell death elucidated by Hsp70 during renal ischemia. Apoptosis 2022; 27:22-33. [PMID: 34762220 DOI: 10.1007/s10495-021-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Nucleophosmin (NPM), a nucleolar-based protein chaperone, promotes Bax-mediated mitochondrial injury and regulates cell death during acute kidney injury. However, the steps that transform NPM from an essential to a toxic protein during stress are unknown. To localize NPM-mediated events causing regulated cell death during ischemia, wild type (WT) and Hsp70 mutant proteins with characterized intracellular trafficking defects that restrict movement to either the nucleolar region (M45) or cytosol (985A) were expressed in primary murine proximal tubule epithelial cells (PTEC) harvested from Hsp70 null mice. After ischemia in vitro, PTEC survival was significantly improved and apoptosis reduced in rank order by selectively overexpressing WT > M45 > 985A Hsp70 proteins. Only Hsp70 with nuclear access (WT and M45) inhibited T95 NPM phosphorylation responsible for NPM translocation and also reduced cytosolic NPM accumulation. In contrast, WT or 985A > M45 significantly improved survival in Hsp70 null PTEC that expressed a cytosol-restricted NPM mutant, more effectively bound NPM, and also reduced NPM-Bax complex formation required for mitochondrial injury and cell death. Hsp70 knockout prevented the cytoprotective effect of suppressing NPM in ischemic PTEC and also increased cytosolic NPM accumulation after acute renal ischemia in vivo, emphasizing the inhibitory effect of Hsp70 on NPM-mediated toxicity. Distinct cytoprotective mechanisms by wild type and mutant Hsp70 proteins identify dual nuclear and cytosolic events that mediate NPM toxicity during stress-induced apoptosis and are rational targets for therapeutic AKI interventions. Antagonizing these early events in regulated cell death promotes renal cell survival during experimental AKI.
Collapse
Affiliation(s)
- Zhiyong Wang
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA
| | - Andrea Havasi
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA
| | - Aaron A Beeler
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Steven C Borkan
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA.
- Evans Biomedical Research Center, Rm 546, 650 Albany St, Boston, MA, 02118-2518, USA.
| |
Collapse
|
10
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Abstract
Hypothermic and normothermic machine perfusion in kidney transplantation are purported to exert a beneficial effect on post-transplant outcomes compared to the traditionally used method of static cold storage. Kidney perfusion techniques provide a window for organ reconditioning and quality assessment. However, how best to deliver these preservation methods or improve organ quality has not yet been conclusively defined. This review summarises the promising advances in machine perfusion science in recent years, which have the potential to further improve early graft function and prolong graft survival.
Collapse
|
12
|
Stochastic Effects in Retrotransposon Dynamics Revealed by Modeling under Competition for Cellular Resources. Life (Basel) 2021; 11:life11111209. [PMID: 34833085 PMCID: PMC8625273 DOI: 10.3390/life11111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Transposons are genomic elements that can relocate within a host genome using a ‘cut’- or ‘copy-and-paste’ mechanism. They make up a significant part of many genomes, serve as a driving force for genome evolution, and are linked with Mendelian diseases and cancers. Interactions between two specific retrotransposon types, autonomous (e.g., LINE1/L1) and nonautonomous (e.g., Alu), may lead to fluctuations in the number of these transposons in the genome over multiple cell generations. We developed and examined a simple model of retrotransposon dynamics under conditions where transposon replication machinery competed for cellular resources: namely, free ribosomes and available energy (i.e., ATP molecules). Such competition is likely to occur in stress conditions that a malfunctioning cell may experience as a result of a malignant transformation. The modeling revealed that the number of actively replicating LINE1 and Alu elements in a cell decreases with the increasing competition for resources; however, stochastic effects interfere with this simple trend. We stochastically simulated the transposon dynamics in a cell population and showed that the population splits into pools with drastically different transposon behaviors. The early extinction of active Alu elements resulted in a larger number of LINE1 copies occurring in the first pool, as there was no competition between the two types of transposons in this pool. In the other pool, the competition process remained and the number of L1 copies was kept small. As the level of available resources reached a critical value, both types of dynamics demonstrated an increase in noise levels, and both the period and the amplitude of predator–prey oscillations rose in one of the cell pools. We hypothesized that the presented dynamical effects associated with the impact of the competition for cellular resources inflicted on the dynamics of retrotransposable elements could be used as a characteristic feature to assess a cell state, or to control the transposon activity.
Collapse
|
13
|
Abdel-Rafei MK, Thabet NM, Abdel Maksoud MIA, Abd Elkodous M, Kawamura G, Matsuda A, Ashour AH, El-Batal AI, El-Sayyad GS. Influence of Ce 3+ Substitution on Antimicrobial and Antibiofilm Properties of ZnCe xFe 2-xO 4 Nanoparticles (X = 0.0, 0.02, 0.04, 0.06, and 0.08) Conjugated with Ebselen and Its Role Subsidised with γ-Radiation in Mitigating Human TNBC and Colorectal Adenocarcinoma Proliferation In Vitro. Int J Mol Sci 2021; 22:10171. [PMID: 34576334 PMCID: PMC8466506 DOI: 10.3390/ijms221810171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023] Open
Abstract
Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2-XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2-XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2-XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2-xO4; X = 0.06 treatment, morphological differences in S.aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2-XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.
Collapse
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - Noura M. Thabet
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - M. I. A. Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - M. Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - A. H. Ashour
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - Ahmed I. El-Batal
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| | - Gharieb S. El-Sayyad
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| |
Collapse
|
14
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
15
|
Vidičević S, Tošić J, Stanojević Ž, Isaković A, Mitić D, Ristić D, Dekanski D. Standardized Olea europaea L. leaf extract exhibits protective activity in carbon tetrachloride-induced acute liver injury in rats: the insight into potential mechanisms. Arch Physiol Biochem 2020; 126:399-407. [PMID: 30632811 DOI: 10.1080/13813455.2018.1550095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protective activity of dry olive leaf extract (DOLE) in carbon tetrachloride (CCl4)-induced liver damage and possible mechanisms involved in this protection were investigated in rats. Acute CCl4 intoxication resulted in a massive hepatic necrosis, in increased serum transaminases, and in a perturbation of oxidative stress parameters in liver tissue [malondyaldehide, glutathione (GSH), catalase]. CCl4 did not affect the expression of caspase-3 and cytochrome c as markers of apoptosis; however, CCl4 increased the AMP-activated protein kinase (AMPK) activity and the expression of autophagy-related protein LC3II and decreased the expression of p62 protein. The pre-treatment with DOLE significantly improved serum markers of liver damage, liver catalase activity, and GSH concentration, suggesting that antioxidative mechanism is responsible for hepatoprotection. Oral administration of DOLE did not influence LC3II conversion and p62 degradation in liver, but AMPK activity was significantly decreased, suggesting the energy balance perturbation as an additional potential mechanism of DOLE hepatoprotective effect.
Collapse
Affiliation(s)
- Sašenka Vidičević
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tošić
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Željka Stanojević
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isaković
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Mitić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dušica Ristić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dragana Dekanski
- Biomedical Research, R&D Institute, Galenika a.d., Belgrade, Serbia
| |
Collapse
|
16
|
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T, Chan SM. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med 2020; 11:11/516/eaax2863. [PMID: 31666400 DOI: 10.1126/scitranslmed.aax2863] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.
Collapse
Affiliation(s)
- David Sharon
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
17
|
Wang Z, Belghasem M, Salih E, Henderson J, Igwebuike C, Havasi A, Borkan SC. T95 nucleophosmin phosphorylation as a novel mediator and marker of regulated cell death in acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F552-F561. [PMID: 32686519 PMCID: PMC7509286 DOI: 10.1152/ajprenal.00230.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
The function of site-specific phosphorylation of nucleophosmin (NPM), an essential Bax chaperone, in stress-induced cell death is unknown. We hypothesized that NPM threonine 95 (T95) phosphorylation both signals and promotes cell death. In resting cells, NPM exclusively resides in the nucleus and T95 is nonphosphorylated. In contrast, phosphorylated T95 NPM (pNPM T95) accumulates in the cytosol after metabolic stress, in multiple human cancer cell lines following γ-radiation, and in postischemic human kidney tissue. Based on the T95 phosphorylation consensus sequence, we hypothesized that glycogen synthase kinase-3β (GSK-3β) regulates cytosolic NPM translocation by phosphorylating T95 NPM. In a cell-free system, GSK-3β phosphorylated a synthetic NPM peptide containing T95. In vitro, bidirectional manipulation of GSK-3β activity substantially altered T95 phosphorylation, cytosolic NPM translocation, and cell survival during stress, mechanistically linking these lethal events. Furthermore, GSK-3β inhibition in vivo decreased cytosolic pNPM T95 accumulation in kidney tissue after experimental ischemia. In patients with acute kidney injury, both cytosolic NPM accumulation in proximal tubule cells and NPM-rich intratubular casts were detected in frozen renal biopsy tissue. These observations show, for the first time, that GSK-3β promotes cell death partly by phosphorylating NPM at T95, to promote cytosolic NPM accumulation. T95 NPM is also a rational therapeutic target to ameliorate ischemic renal cell injury and may be a universal injury marker in mammalian cells.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Erdjan Salih
- Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | - Joel Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Chinaemere Igwebuike
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling. Cells 2020; 9:cells9092013. [PMID: 32883024 PMCID: PMC7565066 DOI: 10.3390/cells9092013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/25/2022] Open
Abstract
The greatest challenge in cancer therapy is posed by drug-resistant recurrence following treatment. Anticancer chemotherapy is largely focused on targeting the rapid proliferation and biosynthesis of cancer cells. This strategy has the potential to trigger autophagy, enabling cancer cell survival through the recycling of molecules and energy essential for biosynthesis, leading to drug resistance. Autophagy recycling contributes amino acids and ATP to restore mTOR complex 1 (mTORC1) activity, which leads to cell survival. However, autophagy with mTORC1 activation can be stalled by reducing the ATP level. We have previously shown that cytosolic NADH production supported by aldehyde dehydrogenase (ALDH) is critical for supplying ATP through oxidative phosphorylation (OxPhos) in cancer cell mitochondria. Inhibitors of the mitochondrial complex I of the OxPhos electron transfer chain and ALDH significantly reduce the ATP level selectively in cancer cells, terminating autophagy triggered by anticancer drug treatment. With the aim of overcoming drug resistance, we investigated combining the inhibition of mitochondrial complex I, using phenformin, and ALDH, using gossypol, with anticancer drug treatment. Here, we show that OxPhos targeting combined with anticancer drugs acts synergistically to enhance the anticancer effect in mouse xenograft models of various cancers, which suggests a potential therapeutic approach for drug-resistant cancer.
Collapse
|
19
|
Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin. Acta Pharmacol Sin 2020; 41:866-878. [PMID: 31937930 PMCID: PMC7468263 DOI: 10.1038/s41401-019-0342-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Etimicin (ETM), a fourth-generation aminoglycosides (AGs), is now widely clinically used in China due to its high efficacy and low toxicity. However, the mechanisms underlying its low nephrotoxicity and ototoxicity remain unclear. In the present study we compared the antibacterial and toxicity profiles of etimicin, gentamicin (GM, a second-generation AG), and amikacin (AMK, a third-generation AG), and investigated their pharmacokinetic properties in the toxicity target organs (kidney and inner ear) and subcellular compartments. We first demonstrated that ETM exhibited superior antibacterial activities against clinical isolates to GM and AMK, and it exerted minimal nephrotoxicity and ototoxicity in rats following multi-dose administration. Then, we conducted pharmacokinetic studies in rats, showed that the three AGs accumulated in the kidney and inner ear with ETM being distributed to a lesser degree in the two toxicity target organs as compared with GM and AMK high-dose groups. Furthermore, we conducted in vitro experiments in NRK-52E rat renal tubular epithelial cells and HEI-OC1 cochlear hair cells, and revealed that all the three AGs were distributed predominantly in the mitochondria with ETM showing minimal accumulation; they not only directly inhibited the activity of mitochondrial complexes IV and V but also inhibited mitochondrial function and its related PGC-1α-NRF1-TFAM pathway; ETM caused minimal damage to the mitochondrial complex and mitochondrial biogenesis. Our results demonstrate that the minimal otonephrotoxicity of ETM results from its lesser accumulation in mitochondria of target cells and subsequently lesser inhibition of mitochondrial function. These results provide a new strategy for discovering novel AGs with high efficacy and low toxicity.
Collapse
|
20
|
Lee SH, Jeon Y, Kang JH, Jang H, Lee H, Kim SY. The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer. Cancers (Basel) 2020; 12:cancers12061382. [PMID: 32481524 PMCID: PMC7352727 DOI: 10.3390/cancers12061382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Lung adenocarcinoma cells express high levels of ALDH1L1, an enzyme of the one-carbon pathway that catalyzes the conversion of 10-formyltetrahydrofolate into tetrahydrofolate and NAD(P)H. In this study, we evaluated the potential of ALDH1L1 as a therapeutic target by deleting the Aldh1l1 gene in KrasLA2 mice, a model of spontaneous non-small cell lung cancer (NSCLC). Reporter assays revealed KRAS-mediated upregulation of the ALDH1L1 promoter in human NSCLC cells. Aldh1l1-/- mice exhibited a normal phenotype, with a 10% decrease in Kras-driven lung tumorigenesis. By contrast, the inhibition of oxidative phosphorylation inhibition using phenformin in Aldh1l1-/-; KrasLA2 mice dramatically decreased the number of tumor nodules and tumor area by up to 50%. Furthermore, combined treatment with pan-ALDH inhibitor and phenformin showed a decreased number and area of lung tumors by 70% in the KrasLA2 lung cancer model. Consistent with this, previous work showed that the combination of ALDH1L1 knockdown and phenformin treatment decreased ATP production by as much as 70% in NSCLS cell lines. Taken together, these results suggest that the combined inhibition of ALDH activity and oxidative phosphorylation represents a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Seon-Hyeong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (S.-H.L.); (Y.J.); (J.H.K.); (H.J.)
| | - Yoon Jeon
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (S.-H.L.); (Y.J.); (J.H.K.); (H.J.)
| | - Joon Hee Kang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (S.-H.L.); (Y.J.); (J.H.K.); (H.J.)
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (S.-H.L.); (Y.J.); (J.H.K.); (H.J.)
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
- Correspondence: (S.-Y.K.); (H.L.)
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (S.-H.L.); (Y.J.); (J.H.K.); (H.J.)
- Correspondence: (S.-Y.K.); (H.L.)
| |
Collapse
|
21
|
Grigalavicius M, Mastrangelopoulou M, Arous D, Juzeniene A, Ménard M, Skarpen E, Berg K, Theodossiou TA. Photodynamic Efficacy of Cercosporin in 3D Tumor Cell Cultures. Photochem Photobiol 2020; 96:699-707. [PMID: 32125700 DOI: 10.1111/php.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/02/2020] [Indexed: 11/29/2022]
Abstract
In the present work, we study the photodynamic action of cercosporin (cerco), a naturally occurring photosensitizer, on human cancer multicellular spheroids. U87 spheroids exhibit double the uptake of cerco than T47D and T98G spheroids as shown by flow cytometry on the single cell level. Moreover, cerco is efficiently internalized by cells throughout the spheroid as shown by confocal microscopy, for all three cell lines. Despite their higher cerco uptake, U87 spheroids show the least vulnerability to cerco-PDT, in contrast to the other two cell lines (T47D and T98G). While 300 μm diameter spheroids consistently shrink and become necrotic after cerco PDT, bigger spheroids (>500 μm) start to regrow following blue-light PDT and exhibit high viability. Cerco-PDT was found to be effective on bigger spheroids reaching 1mm in diameter especially under longer exposure to yellow light (~590 nm). In terms of metabolism, T47D and T98G undergo a complete bioenergetic collapse (respiration and glycolysis) as a result of cerco-PDT. U87 spheroids also experienced a respiratory collapse following cerco-PDT, but retained half their glycolytic activity.
Collapse
Affiliation(s)
- Mantas Grigalavicius
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maria Mastrangelopoulou
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Delmon Arous
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mathilde Ménard
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM cc 1701, Montpellier cedex 05, France
| | - Ellen Skarpen
- Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Theodossis A Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE, Kolodieznyi D, Calderon MJ, Stolz DB, Opresko PL, St Croix CM, Watkins S, Van Houten B, Bruchez MP, Burton EA. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. eLife 2020; 9:e51845. [PMID: 32180546 PMCID: PMC7077989 DOI: 10.7554/elife.51845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of multiple neurological diseases, but elucidation of underlying mechanisms is limited experimentally by the inability to damage specific mitochondria in defined neuronal groups. We developed a precision chemoptogenetic approach to target neuronal mitochondria in the intact nervous system in vivo. MG2I, a chemical fluorogen, produces singlet oxygen when bound to the fluorogen-activating protein dL5** and exposed to far-red light. Transgenic zebrafish expressing dL5** within neuronal mitochondria showed dramatic MG2I- and light-dependent neurobehavioral deficits, caused by neuronal bioenergetic crisis and acute neuronal depolarization. These abnormalities resulted from loss of neuronal respiration, associated with mitochondrial fragmentation, swelling and elimination of cristae. Remaining cellular ultrastructure was preserved initially, but cellular pathology downstream of mitochondrial damage eventually culminated in neuronal death. Our work provides powerful new chemoptogenetic tools for investigating mitochondrial homeostasis and pathophysiology and shows a direct relationship between mitochondrial function, neuronal biogenetics and whole-animal behavior.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Binxuan Jiao
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Vladimir A Ilin
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Ming Sun
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
| | | | - Dmytro Kolodieznyi
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
| | - Michael J Calderon
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Donna B Stolz
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
| | - Claudette M St Croix
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Simon Watkins
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Bennett Van Houten
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
- Department of Pharmacology and Chemical Biology, University of PittsburghPittsburghUnited States
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
- Molecular Biosensors and Imaging Center, Carnegie Mellon UniversityPittsburghUnited States
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| |
Collapse
|
23
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
24
|
Fujii K, Kubo A, Miyashita K, Sato M, Hagiwara A, Inoue H, Ryuzaki M, Tamaki M, Hishiki T, Hayakawa N, Kabe Y, Itoh H, Suematsu M. Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides. JCI Insight 2019; 4:124816. [PMID: 31723053 PMCID: PMC6948864 DOI: 10.1172/jci.insight.124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.
Collapse
Affiliation(s)
- Kentaro Fujii
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaaki Sato
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Aika Hagiwara
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Hiroyuki Inoue
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaki Ryuzaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masanori Tamaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
- Department of Nephrology, Graduate School of Medical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
25
|
Wang Z, Salih E, Igwebuike C, Mulhern R, Bonegio RG, Havasi A, Borkan SC. Nucleophosmin Phosphorylation as a Diagnostic and Therapeutic Target for Ischemic AKI. J Am Soc Nephrol 2019; 30:50-62. [PMID: 30573638 DOI: 10.1681/asn.2018040401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Ischemic AKI lacks a urinary marker for early diagnosis and an effective therapy. Differential nucleophosmin (NPM) phosphorylation is a potential early marker of ischemic renal cell injury and a therapeutic target.Methods Differential NPM phosphorylation was assessed by mass spectrometry in NPM harvested from murine and human primary renal epithelial cells, fresh kidney tissue, and urine before and after ischemic injury. The biologic behavior and toxicity of NPM was assessed using phospho-NPM mutant proteins that either mimic stress-induced or normal NPM phosphorylation. Peptides designed to interfere with NPM function were used to explore NPM as a therapeutic target.Results Within hours of stress, virtually identical phosphorylation changes were detected at distinct serine/threonine sites in NPM harvested from primary renal cells, tissue, and urine. A phosphomimic NPM protein that replicated phosphorylation under stress localized to the cytosol, formed monomers that interacted with Bax, a cell death protein, coaccumulated with Bax in isolated mitochondria, and significantly increased cell death after stress; wild-type NPM or a phosphomimic NPM with a normal phosphorylation configuration did not. Three renal targeted peptides designed to interfere with NPM at distinct functional sites significantly protected against cell death, and a single dose of one peptide administered several hours after ischemia that would be lethal in untreated mice significantly reduced AKI severity and improved survival.Conclusions These findings establish phosphorylated NPM as a potential early marker of ischemic AKI that links early diagnosis with effective therapeutic interventions.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Erdjan Salih
- Department of Periodontology, Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | | | - Ryan Mulhern
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Ramon G Bonegio
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Andrea Havasi
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Steven C Borkan
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| |
Collapse
|
26
|
Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun 2019; 10:4635. [PMID: 31604928 PMCID: PMC6789111 DOI: 10.1038/s41467-019-12554-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
The filamentous bacteriophage fd bind a cell target with exquisite specificity through its few copies of display peptides, whereas nanoparticles functionalized with hundreds to thousands of synthetically generated phage display peptides exhibit variable and often-weak target binding. We hypothesise that some phage peptides in a hierarchical structure rather than in monomeric form recognise and bind their target. Here we show hierarchial forms of a brain-specific phage-derived peptide (herein as NanoLigand Carriers, NLCs) target cerebral endothelial cells through transferrin receptor and the receptor for advanced glycation-end products, cross the blood-brain-barrier and reach neurons and microglial cells. Through intravenous delivery of NLC-β-secretase 1 (BACE1) siRNA complexes we show effective BACE1 down-regulation in the brain without toxicity and inflammation. Therefore, NLCs act as safe multifunctional nanocarriers, overcome efficacy and specificity limitations in active targeting with nanoparticles bearing phage display peptides or cell-penetrating peptides and expand the receptor repertoire of the display peptide. Bacteriophages can bind targets with only a few copies of a display peptide while most nanoparticles with thousands achieve poor binding. Here the authors form hierarchical arrangements of phage peptides to delivery siRNA across the blood brain barrier.
Collapse
|
27
|
Ratajczak K, Lukasiak A, Grel H, Dworakowska B, Jakiela S, Stobiecka M. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent "On-Off" switching DNA aptamer. Anal Bioanal Chem 2019; 411:6899-6911. [PMID: 31407049 PMCID: PMC6834760 DOI: 10.1007/s00216-019-02061-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Adenosine triphosphate (ATP) is the main energy source in cells and an important biomolecule participating in cellular reactions in living organisms. Since the ATP level changes dynamically reflecting the development of a debilitating disease or carcinogenesis, we have focused in this work on monitoring of the oligomycin (OMC)-modulated ATP synthase inhibition using a fluorescent-switching DNA aptamer designed for the detection of ATP (Apt(ATP)), as the model for studies of dynamic ATP level variation. The behavior of the ATP aptamer has been characterized using fluorescence spectroscopy. The Intramolecular fluorescence resonance energy transfer (iFRET) operates in the proposed aptamer from the FAM dye moiety to guanines of the aptamer G-quadruplex when the target ATP is present and binds to the aptamer changing its conformation. The iFRET process enables the detection of ATP down to the limit of detection, LOD = 17 μM, without resorting to any extra chemi-amplification schemes. The selectivity coefficients for relevant interferent triphosphates (UTP, GTP, and CTP) are low for the same concentration as that of ATP. We have demonstrated an efficient transfection of intact cells and OMC-treated SW480 colon cancer cells with Apt(ATP), using microscopic imaging, iFRET measurements, and cell viability testing with MTT method. The applicability of the switching DNA aptamer for the analysis of real samples, obtained by lysis of SW480 cells, was also tested. The proposed Apt(ATP) may be considered as a viable candidate for utilization in measurements of dynamic ATP level modulation in cells in different stages of cancer development and testing of new drugs in pharmacological studies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Agnieszka Lukasiak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
28
|
Lieberthal W, Tang M, Abate M, Lusco M, Levine JS. AMPK-mediated activation of Akt protects renal tubular cells from stress-induced apoptosis in vitro and ameliorates ischemic AKI in vivo. Am J Physiol Renal Physiol 2019; 317:F1-F11. [DOI: 10.1152/ajprenal.00553.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have reported that preconditioning renal tubular cells (RTCs) with A-769662 [a pharmacological activator of AMP-activated protein kinase (AMPK)] reduces apoptosis of RTCs induced by subsequent stress and ameliorates the severity of ischemic acute kidney injury (AKI) in mice. In the present study, we examined the role of the phosphoinositide 3-kinase (PI3K)/Akt pathway in mediating these effects. Using shRNA, we developed knockdown (KD) RTCs to confirm that any novel effects of A-769662 are mediated specifically by AMPK. We reduced expression of the total β-domain of AMPK in KD RTCs by >80%. Control RTCs were transfected with “scrambled” shRNA. Preconditioning control RTCs with A-769662 increased both the phosphorylation (activity) of AMPK and survival of these cells when exposed to subsequent stress, but neither effect was observed in KD cells. These data demonstrate that activation of AMPK by A-769662 is profoundly impaired in KD cells. A-769662 activated PI3K and Akt in control but not KD RTCs. These data provide novel evidence that activation of the PI3K/Akt pathway by A-769662 is mediated specifically through activation of AMPK and not by a nonspecific mechanism. We also demonstrate that, in control RTCs, Akt plays a role in mediating the antiapoptotic effects of A-769662. In addition, we provide evidence that AMPK ameliorates the severity of ischemic AKI in mice and that this effect is also partially mediated by Akt. Finally, we provide evidence that AMPK activates PI3K by inhibiting mechanistic target of rapamycin complex 1 and preventing mechanistic target of rapamycin complex 1-mediated inhibition of insulin receptor substrate-1-associated activation of PI3K.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
- Division of Nephrology, Department of Medicine, Northport Veterans Affairs Hospital, Northport, New York
| | - Meiyi Tang
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Mersema Abate
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Mark Lusco
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jerrold S. Levine
- Division of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois
| |
Collapse
|
29
|
Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism-Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers? Int J Mol Sci 2019; 20:ijms20061385. [PMID: 30893889 PMCID: PMC6471292 DOI: 10.3390/ijms20061385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells exhibit a specialized metabolism supporting their superior ability for rapid proliferation, migration, and apoptotic evasion. It is reasonable to assume that the specific metabolic needs of the tumor cells can offer an array of therapeutic windows as pharmacological disturbance may derail the biochemical mechanisms necessary for maintaining the tumor characteristics, while being less important for normally proliferating cells. In addition, the specialized metabolism may leave a unique metabolic signature which could be used clinically for diagnostic or prognostic purposes. Quantitative global metabolic profiling (metabolomics) has evolved over the last two decades. However, despite the technology’s present ability to measure 1000s of endogenous metabolites in various clinical or biological specimens, there are essentially no examples of metabolomics investigations being translated into actual utility in the cancer clinic. This review investigates the current efforts of using metabolomics as a tool for translation of tumor metabolism into the clinic and further seeks to outline paths for increasing the momentum of using tumor metabolism as a biomarker and drug target opportunity.
Collapse
|
30
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
31
|
Lu B, Tonne JM, Munoz-Gomez M, Ikeda Y. Hyperinsulinemic hypoglycemia subtype glucokinase V91L mutant induces necrosis in β-cells via ATP depletion. Biochem Biophys Rep 2019; 17:108-113. [PMID: 30623114 PMCID: PMC6304456 DOI: 10.1016/j.bbrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
Hyperinsulinemic hypoglycemia subtype glucokinase (GCK-HH) is caused by an activating mutation in glucokinase (GCK) and has been shown to increase β-cell death. However, the mechanism of β-cell death in GCK-HH remains poorly understood. Here, we expressed the GCK-HH V91L GCK mutant in INS-1 832/13 cells to determine the effect of the mutation on β-cell viability and the mechanisms of β-cell death. We showed that expression of the V91L GCK mutant in INS-1 832/13 cells resulted in a rapid glucose concentration-dependent loss of cell viability. At 11 mM D-glucose, INS-1 832/13 cells expressing V91L GCK showed increased cell permeability without significant increases in Annexin V staining or caspase 3/7 activation, indicating that these cells are primarily undergoing cell death via necrosis. Over-expression of SV40 large T antigen, which inhibits the p53 pathway, did not affect the V91L GCK-induced cell death. We also found that non-phosphorylatable L-glucose did not induce rapid cell death. Of note, glucose phosphorylation coincided with a 90% loss of intracellular ATP content. Thus, our data suggest that the GCK V91L mutant induces rapid necrosis in INS-1 cells through accelerated glucose phosphorylation, ATP depletion, and increased cell permeability. V91L glucokinase mutant induces glucose-dependent death in rat INS-1 832/13 cells. Glucose induces necrosis in INS-1 832/13 cells expressing V91L glucokinase mutant. V91L glucokinase mutant depletes adenosine triphosphate in INS-1 832/13 cells.
Collapse
Affiliation(s)
- Brian Lu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Li B, Dou SX, Yuan JW, Liu YR, Li W, Ye F, Wang PY, Li H. Intracellular transport is accelerated in early apoptotic cells. Proc Natl Acad Sci U S A 2018; 115:12118-12123. [PMID: 30429318 PMCID: PMC6275518 DOI: 10.1073/pnas.1810017115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular transport of cellular proteins and organelles is critical for establishing and maintaining intracellular organization and cell physiology. Apoptosis is a process of programmed cell death with dramatic changes in cell morphology and organization, during which signaling molecules are transported between different organelles within the cells. However, how the intracellular transport changes in cells undergoing apoptosis remains unknown. Here, we study the dynamics of intracellular transport by using the single-particle tracking method and find that both directed and diffusive motions of endocytic vesicles are accelerated in early apoptotic cells. With careful elimination of other factors involved in the intracellular transport, the reason for the acceleration is attributed to the elevation of adenosine triphosphate (ATP) concentration. More importantly, we show that the accelerated intracellular transport is critical for apoptosis, and apoptosis is delayed when the dynamics of intracellular transport is regulated back to the normal level. Our results demonstrate the important role of transport dynamics in apoptosis and shed light on the apoptosis mechanism from a physical perspective.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo-Xing Dou
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Wen Yuan
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ru Liu
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
33
|
Rundle KI, Sharaf MS, Stevens D, Kamunde C, van den Heuvel MR. Oil Sands Derived Naphthenic Acids Are Oxidative Uncouplers and Impair Electron Transport in Isolated Mitochondria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10803-10811. [PMID: 30102860 DOI: 10.1021/acs.est.8b02638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are predominant compounds in oil sands influenced waters. These acids cause numerous acute and chronic effects in fishes. However, the mechanism of toxicity underlying these effects has not been fully elucidated. Due to their carboxylic acid moiety and the reported disruption of cellular bioenergetics by similar structures, we hypothesized that NAs would uncouple mitochondrial respiration with the resultant production of reactive oxygen species (ROS). Naphthenic acids were extracted and purified from 17-year-old oil sands tailings waters yielding an extract of 99% carboxylic acids with 90% fitting the classical O2-NA definition. Mitochondria were isolated from rainbow trout liver and exposed to different concentrations of NAs. Mitochondrial respiration, membrane potential, and ROS emission were measured using the Oroboros fluorespirometry system. Additionally, mitochondrial ROS emission and membrane potential were evaluated with real-time flow cytometry. Results showed NAs uncoupled oxidative phosphorylation, inhibited respiration, and increased ROS emission. The effective concentration (EC50) and inhibition concentration (IC50) values for the end points measured ranged from 21.0 to 157.8 mg/L, concentrations similar to tailings waters. For the same end points, EC10/IC10 values ranged from 11.8 to 66.7 mg/L, approaching concentrations found in the environment. These data unveil mechanisms underlying effects of NAs that may contribute to adverse effects on organisms in the environment.
Collapse
Affiliation(s)
- Kate I Rundle
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Mahmoud S Sharaf
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Michael R van den Heuvel
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
- Canadian Rivers Institute, Department of Biology , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| |
Collapse
|
34
|
Han M, Li Y, Wen D, Liu M, Ma Y, Cong B. NGAL protects against endotoxin-induced renal tubular cell damage by suppressing apoptosis. BMC Nephrol 2018; 19:168. [PMID: 29980183 PMCID: PMC6035415 DOI: 10.1186/s12882-018-0977-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/28/2018] [Indexed: 01/20/2023] Open
Abstract
Background We sought to confirm that neutrophil gelatinase-associated lipocalin (NGAL) protects against apoptosis during endotoxemia. Methods Endotoxemia was induced in rats with lipopolysaccharide (LPS; 3.5 mg/kg) and serum creatinine (SCr), urinary NGAL (uNGAL), renal histopathology confirmed acute kidney injury (AKI). Renal caspase 3 and NGAL were assayed with immunohistochemistry 6 h later. A HK-2 cell model was used in which NGAL and caspase 3 mRNA were evaluated by qRT-PCR within 6 h after LPS (50 μM) treatment, and correlations were studied. NGAL and caspase 3 mRNA expression were measured after delivering NGAL siRNA in HK-2 cells and apoptosis was measured with TUNEL and flow cytometry. Results SCr and uNGAL were significantly increased after LPS treatment and renal morphology data indicated AKI and renal tubular epithelial cell apoptosis. Caspase 3 and NGAL were predominantly expressed in the tubular epithelial cells and there was a correlation between caspase 3 and NGAL protein (r = 0.663, p = 0.01). In vitro, there was a strong correlation between caspase 3 and NGAL mRNA in LPS-injured HK-2 cells within 24 h (r = 0.448, p < 0.05). Suppressing the NGAL gene in HK-2 cells increased caspase 3 mRNA 4.5-fold and apoptosis increased 1.5-fold after LPS treatment. Conclusions NGAL is associated with caspase 3 in renal tubular cells with endotoxin-induced kidney injury, and may regulate its expression and inhibit apoptosis.
Collapse
Affiliation(s)
- Mei Han
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Li
- Department of Nephropathy, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Di Wen
- Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Maodong Liu
- Department of Nephropathy, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yuteng Ma
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Fungicidal Potency and Mechanisms of θ-Defensins against Multidrug-Resistant Candida Species. Antimicrob Agents Chemother 2018; 62:AAC.00111-18. [PMID: 29610196 DOI: 10.1128/aac.00111-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Systemic candidiasis is a growing health care concern that is becoming even more challenging due to the growing frequency of infections caused by multidrug-resistant (MDR) Candida species. Thus, there is an urgent need for new therapeutic approaches to candidiasis, including strategies bioinspired by insights into natural host defense against fungal pathogens. The antifungal properties of θ-defensins, macrocyclic peptides expressed in tissues of Old World monkeys, were investigated against a panel of drug-sensitive and drug-resistant clinical isolates of Candida albicans and non-albicans Candida species. Rhesus θ-defensin 1 (RTD-1), the prototype θ-defensin, was rapidly and potently fungicidal against drug-sensitive and MDR C. albicans strains. Fungal killing occurred by cell permeabilization that was temporally correlated with ATP release and intracellular accumulation of reactive oxygen species (ROS). Killing by RTD-1 was compared with that by histatin 5 (Hst 5), an extensively characterized anticandidal peptide expressed in human saliva. RTD-1 killed C. albicans much more rapidly and at a >200-fold lower concentration than that of Hst 5. Unlike Hst 5, the anticandidal activity of RTD-1 was independent of mitochondrial ATP production. Moreover, RTD-1 was completely resistant to Candida proteases for 2 h under conditions that rapidly and completely degraded Hst 5. MICs and minimum fungicidal concentrations (MFCs) of 14 natural θ-defensins isoforms against drug-resistant C. albicans isolates identified peptides that are more active than amphotericin B and/or caspofungin against fluconazole-resistant organisms, including MDR Candida auris. These results point to the potential of macrocyclic θ-defensins as structural templates for the design of antifungal therapeutics.
Collapse
|
36
|
Kang JH, Lee SH, Lee JS, Nam B, Seong TW, Son J, Jang H, Hong KM, Lee C, Kim SY. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 2018; 7:49397-49410. [PMID: 27384481 PMCID: PMC5226516 DOI: 10.18632/oncotarget.10354] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/19/2023] Open
Abstract
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin.
Collapse
Affiliation(s)
- Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Seon-Hyeong Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jae-Seon Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Boas Nam
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae Wha Seong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyonchol Jang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Kyeong Man Hong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| |
Collapse
|
37
|
Singh SD, Sheik Abdul N, Phulukdaree A, Tiloke C, Nagiah S, Baijnath S, Chuturgoon AA. Toxicity assessment of mycotoxins extracted from contaminated commercial dog pelleted feed on canine blood mononuclear cells. Food Chem Toxicol 2018; 114:112-118. [PMID: 29452190 DOI: 10.1016/j.fct.2018.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Raw ingredients of pet food are often contaminated with mycotoxins. This is a serious health problem to pets and causes emotional and economical stress to the pet owners. The aim of this study was to determine the immunotoxicity of the most common mycotoxins (aflatoxin, fumonisin, ochratoxin A and zearalenone) by examining 20 samples of extruded dry dog food found on the South African market [10 samples from standard grocery store lines (SB), 10 from premium veterinarian lines (PB)]. Pelleted dog food was subjected to extraction protocols optimized for the above mentioned mycotoxins. Dog lymphocytes were treated with the extracts (24 h incubation and final concentration 40 μg/ml) to determine cell viability, mitochondrial function, oxidative stress, and markers of cell death using spectrophotometry, luminometry and flow cytometry. Malondialdehyde, a marker of oxidative stress showed no significant difference between SB and PB, however, GSH was significantly depleted in SB extract treatments. Markers of apoptosis (phosphatidylserine externalization) and necrosis (propidium iodide incorporation) were elevated in both food lines when compared to untreated control cells, interestingly SB extracts were significantly higher than PB. We also observed decreased ATP levels and increased mitochondrial depolarization in cells treated with both lines of feed with SB showing the greatest differences when compared to the control. This study provides evidence that irrespective of price, quality or marketing channels, pet foods present a high risk of mycotoxin contamination. Though in this study PB fared better than SB in regards to cell toxicity, there is a multitude of other factors that need to be studied which may have an influence on other negative outcomes.
Collapse
Affiliation(s)
- Sanil D Singh
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Charlette Tiloke
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Sooraj Baijnath
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
38
|
Dey A, Xiong X, Crim A, Dwivedi SKD, Mustafi SB, Mukherjee P, Cao L, Sydorenko N, Baiazitov R, Moon YC, Dumble M, Davis T, Bhattacharya R. Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Mol Cancer Ther 2018; 17:39-49. [PMID: 29158468 PMCID: PMC5752598 DOI: 10.1158/1535-7163.mct-17-0574] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
BMI-1, also known as a stem cell factor, is frequently upregulated in several malignancies. Elevated expression of BMI-1 correlates with poor prognosis and is therefore considered a viable therapeutic target in a number of malignancies including ovarian cancer. Realizing the immense pathologic significance of BMI-1, small-molecule inhibitors against BMI-1 are recently being developed. In this study, we functionally characterize PTC-028, an orally bioavailable compound that decreases BMI-1 levels by posttranslational modification. We report that PTC-028 treatment selectively inhibits cancer cells in clonal growth and viability assays, whereas normal cells remain unaffected. Mechanistically, hyperphosphorylation-mediated depletion of cellular BMI-1 by PTC-028 coupled with a concurrent temporal decrease in ATP and a compromised mitochondrial redox balance potentiates caspase-dependent apoptosis. In vivo, orally administered PTC-028, as a single agent, exhibits significant antitumor activity comparable with the standard cisplatin/paclitaxel therapy in an orthotopic mouse model of ovarian cancer. Thus, PTC-028 has the potential to be used as an effective therapeutic agent in patients with epithelial ovarian cancer, where treatment options are limited. Mol Cancer Ther; 17(1); 39-49. ©2017 AACR.
Collapse
Affiliation(s)
- Anindya Dey
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xunhao Xiong
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Aleia Crim
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Soumyajit Banerjee Mustafi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Priyabrata Mukherjee
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
39
|
Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC. Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series. J Am Coll Cardiol 2017; 70:196-211. [PMID: 28683968 DOI: 10.1016/j.jacc.2017.05.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
The generation of reactive oxygen species (ROS) is a fundamental aspect of normal human biology. However, when ROS generation exceeds endogenous antioxidant capacity, oxidative stress arises. If unchecked, ROS production and oxidative stress mediate tissue and cell damage that can spiral in a cycle of inflammation and more oxidative stress. This article is part 1 of a 3-part series covering the role of oxidative stress in cardiovascular disease. The broad theme of this first paper is the mechanisms and biology of oxidative stress. Specifically, the authors review the basic biology of oxidative stress, relevant aspects of mitochondrial function, and stress-related cell death pathways (apoptosis and necrosis) as they relate to the heart and cardiovascular system. They then explore telomere biology and cell senescence. As important regulators and sensors of oxidative stress, telomeres are segments of repetitive nucleotide sequence at each end of a chromosome that protect the chromosome ends from deterioration.
Collapse
Affiliation(s)
- Michael N Sack
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | | | | | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
40
|
Kiang JG. Exacerbation of Mild Hypoxia on Acute Radiation Syndrome and Subsequent Mortality. ADAPTIVE MEDICINE 2017; 9:28-33. [PMID: 34616568 PMCID: PMC8491646 DOI: 10.4247/am.2017.abg170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mild hypoxia induced by 20% hemorrhage results in increases in few cytokine concentrations and sclerostin levels in blood, but shows no changes in bone formation, bone marrow cellularity, and gastrointestinal (GI) integrity and no systemic bacterial infection as well as no subsequent mortality. On the other hand, severe hypoxia induced by 40% hemorrhage causes significant increases in most cytokine concentrations, GI injury, lung injury, systemic bacterial infection, cellular ATP reduction and subsequent mortality. The severe hypoxia drastically damages GI and lung morphology, elevates cytokine concentrations in blood and increases inducible nitric oxide synthase (iNOS) expression in cells that is mediated by transcription factors NF-κB/NF-IL6, subsequently producing free radicals that disrupt mitochondria. ATP depletion, p53 phosphorylation, and caspase-3 activation are found, suggesting cell apoptosis. As a result, mortality occurs. However, when mild hypoxia follows ionizing radiation, the mild hypoxia significantly enhances radiation-induced mortality and acute radiation syndrome, including injury of bone marrow, GI, kidney, and lung. The synergism also occurs at the molecular level, resulting in alteration of microRNAs, amplification of iNOS expression, cytokine increases, sepsis, and ATP depletion. This is the first demonstration of synergistic effects between mild hypoxia and ionizing radiation.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute Department of Pharmacology and Molecular Therapeutics, Department of Medicine Uniformed Services University of the Health Sciences, Bethesda, Maryland, U.S.A
| |
Collapse
|
41
|
Dyer A, Di Y, Calderon H, Illingworth S, Kueberuwa G, Tedcastle A, Jakeman P, Chia SL, Brown A, Silva MA, Barlow D, Beadle J, Hermiston T, Ferguson DJ, Champion B, Fisher KD, Seymour LW. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Mol Ther Oncolytics 2017; 4:18-30. [PMID: 28345021 PMCID: PMC5363721 DOI: 10.1016/j.omto.2016.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Enadenotucirev (EnAd) is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ying Di
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hugo Calderon
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Sam Illingworth
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Gray Kueberuwa
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alison Tedcastle
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Phil Jakeman
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Suet Lin Chia
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alice Brown
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Michael A. Silva
- Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - David Barlow
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Beadle
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Terry Hermiston
- Bayer HealthCare, 455 Mission Bay Blvd. S., San Francisco, CA 94158, USA
| | - David J.P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford OX3 9DU, UK
| | - Brian Champion
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Kerry D. Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
42
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
43
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
44
|
Yalamanchili N, Kriete A, Alfego D, Danowski KM, Kari C, Rodeck U. Distinct Cell Stress Responses Induced by ATP Restriction in Quiescent Human Fibroblasts. Front Genet 2016; 7:171. [PMID: 27757122 PMCID: PMC5047886 DOI: 10.3389/fgene.2016.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022] Open
Abstract
Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor (TF) landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated TFs and altered TF subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.
Collapse
Affiliation(s)
- Nirupama Yalamanchili
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia PA, USA
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia PA, USA
| | - David Alfego
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia PA, USA
| | - Kelli M Danowski
- Department of Dermatology, St. Joseph Mercy Health System, Michigan State University, East Lansing MI, USA
| | - Csaba Kari
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia PA, USA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
45
|
Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 2016; 6:33046-64. [PMID: 26426994 PMCID: PMC4741748 DOI: 10.18632/oncotarget.5422] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, metastatic renal cell carcinoma (RCC) is still incurable. Artesunate (ART), a well-known anti-malarial drug with low toxicity, exhibits highly selective anti-tumor actions against various tumors through generation of cytotoxic carbon-centered free radical in the presence of free iron. However, the therapeutic efficacy of ART against metastatic RCC has not yet been fully elucidated. In the analysis on a dataset from The Cancer Genome Atlas (TCGA) (n = 469) and a tissue microarray set from Samsung Medical Center (n = 119) from a cohort of patients with clear cell RCC (ccRCC), up-regulation of transferrin receptor 1 (TfR1), which is a well-known predictive marker for ART, was correlated with the presence of distant metastasis and an unfavorable prognosis. Moreover, ART exerted potent selective cytotoxicity against human RCC cell lines (Caki-1, 786-O, and SN12C-GFP-SRLu2) and sensitized these cells to sorafenib in vitro, and the extent of ART cytotoxicity correlated with TfR1 expression. ART-mediated growth inhibition of human RCC cell lines was shown to result from the induction of cell cycle arrest at the G2/M phase and oncosis-like cell death. Furthermore, ART inhibited cell clonogenicity and invasion of human RCC cells and anti-angiogenic effects in vitro in a dose-dependent manner. Consistent with these in vitro data, anti-tumor, anti-metastatic and anti-angiogenic effects of ART were also validated in human 786-O xenografts. Taken together, ART is a promising novel candidate for treating human RCC, either alone or in combination with other therapies.
Collapse
|
46
|
Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 2016; 311:F145-61. [PMID: 27194714 PMCID: PMC4967168 DOI: 10.1152/ajprenal.00164.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
There is an alarming global increase in the incidence of end-stage kidney disease, for which early biomarkers and effective treatment options are lacking. Largely based on the histology of the end-stage kidney and on the model of unilateral ureteral obstruction, current investigation is focused on the pathogenesis of renal interstitial fibrosis as a central mechanism in the progression of chronic kidney disease (CKD). It is now recognized that cumulative episodes of acute kidney injury (AKI) can lead to CKD, and, conversely, CKD is a risk factor for AKI. Based on recent and historic studies, this review shifts attention from the glomerulus and interstitium to the proximal tubule as the primary sensor and effector in the progression of CKD as well as AKI. Packed with mitochondria and dependent on oxidative phosphorylation, the proximal tubule is particularly vulnerable to injury (obstructive, ischemic, hypoxic, oxidative, metabolic), resulting in cell death and ultimately in the formation of atubular glomeruli. Animal models of human glomerular and tubular disorders have provided evidence for a broad repertoire of morphological and functional responses of the proximal tubule, revealing processes of degeneration and repair that may lead to new therapeutic strategies. Most promising are studies that encompass the entire life cycle from fetus to senescence, recognizing epigenetic factors. The application of techniques in molecular characterization of tubule segments and the development of human kidney organoids may provide new insights into the mammalian kidney subjected to stress or injury, leading to biomarkers of early CKD and new therapies.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
47
|
Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury. PLoS One 2016; 11:e0157604. [PMID: 27299564 PMCID: PMC4907458 DOI: 10.1371/journal.pone.0157604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress.
Collapse
|
48
|
Lieberthal W, Tang M, Lusco M, Abate M, Levine JS. Preconditioning mice with activators of AMPK ameliorates ischemic acute kidney injury in vivo. Am J Physiol Renal Physiol 2016; 311:F731-F739. [PMID: 27252492 DOI: 10.1152/ajprenal.00541.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/01/2016] [Indexed: 12/25/2022] Open
Abstract
This study had two objectives: 1) to determine whether preconditioning cultured proximal tubular cells (PTCs) with pharmacological activators of AMP-activated protein kinase (AMPK) protects these cells from apoptosis induced by metabolic stress in vitro and 2) to assess the effects of preconditioning mice with these agents on the severity of ischemic acute renal kidney injury (AKI) in vivo. We demonstrate that preconditioning PTCs with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or A-769662 reduces apoptosis of PTCs induced by subsequent stress. We also show that the reduction in cell death during metabolic stress associated with pretreatment by AMPK activators is associated with an increase in the cytosolic level of ATP, which is mediated by an increase in the rate of glycolysis. In addition, we provide evidence that the effect of AMPK activators on glycolysis is mediated, at least in part, by an increased uptake of glucose, and by the induction of hexokinase II (HK II) expression. Our data also show that the increased in HK II expression associated with preconditioning with AMPK activators is mediated by the activation (phosphorylation) of the cAMP-response element binding protein (CREB). We also provide entirely novel evidence that that A-79662 is substantially more effective than AICAR in mediating these alterations in PTCs in vitro. Finally, we demonstrate that preconditioning mice with AICAR or A-769662 substantially reduces the severity of renal dysfunction and tubular injury in a model of ischemic AKI in vivo and that the efficacy of AICAR and A-768662 in ameliorating ischemic AKI in vivo is comparable.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Section of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York; Section of Nephrology, Department of Medicine, Northport Veterans Affairs Hospital, Northport, New York;
| | - Meiyi Tang
- Section of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Mark Lusco
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mersema Abate
- Section of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Jerrold S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois; and Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois
| |
Collapse
|
49
|
Crowder RN, Dicker DT, El-Deiry WS. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem 2016; 291:5960-5970. [PMID: 26757822 DOI: 10.1074/jbc.m115.713545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/01/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapy that selectively targets cancer cell death while non-malignant cells remain viable. Using a panel of normal human fibroblasts, we characterized molecular differences in human foreskin fibroblasts and WI-38 TRAIL-resistant cells and marginally sensitive MRC-5 cells compared with TRAIL-sensitive human lung and colon cancer cells. We identified decreased caspase-8 protein expression and protein stability in normal fibroblasts compared with cancer cells. Additionally, normal fibroblasts had incomplete TRAIL-induced caspase-8 activation compared with cancer cells. We found that normal fibroblasts lack the ubiquitin modification of caspase-8 required for complete caspase-8 activation. Treatment with the deubiquitinase inhibitor PR-619 increased caspase-8 ubiquitination and caspase-8 enzymatic activity and sensitized normal fibroblasts to TRAIL-mediated apoptosis. Therefore, posttranslational regulation of caspase-8 confers resistance to TRAIL-induced cell death in normal cells through blockade of initiation of the extrinsic cell death pathway.
Collapse
Affiliation(s)
- Roslyn N Crowder
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and
| | - David T Dicker
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and; the Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Wafik S El-Deiry
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and; the Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.
| |
Collapse
|
50
|
Kizmazoglu C, Aydin HE, Sevin IE, Kalemci O, Yüceer N, Atasoy MA. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats. J Korean Neurosurg Soc 2015; 58:508-12. [PMID: 26819684 PMCID: PMC4728087 DOI: 10.3340/jkns.2015.58.6.508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
Background Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.
Collapse
Affiliation(s)
- Ceren Kizmazoglu
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Hasan Emre Aydin
- Department of Neurosurgery, Eskisehir State Hospital, Eskisehir, Turkey.; Department of Pharmacology, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Ismail Ertan Sevin
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Orhan Kalemci
- Department of Neurosurgery, Dokuz Eylul University, School of Medicine Hospital, Izmir, Turkey
| | - Nurullah Yüceer
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Metin Ant Atasoy
- Department of Neurosurgery, Eskişehir Osmangazi University School of Medicine Hospital, Eskisehir, Turkey
| |
Collapse
|