1
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
2
|
Zhong C, Schleifenbaum J. Genetically Encoded Calcium Indicators: A New Tool in Renal Hypertension Research. Front Med (Lausanne) 2019; 6:128. [PMID: 31263699 PMCID: PMC6585435 DOI: 10.3389/fmed.2019.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Hypertension is ranked as the third cause of disability-adjusted life-years. The percentage of the population suffering from hypertension will continue to increase over the next years. Renovascular disease is one of the most common causes of secondary hypertension. Vascular changes seen in hypertension are partially based on dysfunctional calcium signaling. This signaling can be studied using calcium indicators (loading dyes and genetically encoded calcium indicators; GECIs). Most progress in development has been seen in GECIs, which are used in an increasing number of publications concerning calcium signaling in vasculature and the kidney. The use of transgenic mouse models expressing GECIs will facilitate new possibilities to study dysfunctional calcium signaling in a cell type-specific manner, thus helping to identify more specific targets for treatment of (renal) hypertension.
Collapse
Affiliation(s)
- Cheng Zhong
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Cangiotti AM, Lorenzi T, Zingaretti MC, Fabri M, Morroni M. Polarized Ends of Human Macula Densa Cells: Ultrastructural Investigation and Morphofunctional Correlations. Anat Rec (Hoboken) 2018; 301:922-931. [PMID: 29266784 DOI: 10.1002/ar.23759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 11/07/2022]
Abstract
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela Maria Cangiotti
- Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| |
Collapse
|
4
|
Pannabecker TL, Layton AT. Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. Am J Physiol Renal Physiol 2014; 307:F649-55. [PMID: 25056344 DOI: 10.1152/ajprenal.00276.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Renal medullary function is characterized by corticopapillary concentration gradients of various molecules. One example is the generally decreasing axial gradient in oxygen tension (Po2). Another example, found in animals in the antidiuretic state, is a generally increasing axial solute gradient, consisting mostly of NaCl and urea. This osmolality gradient, which plays a principal role in the urine concentrating mechanism, is generally considered to involve countercurrent multiplication and countercurrent exchange, although the underlying mechanism is not fully understood. Radial oxygen and solute gradients in the transverse dimension of the medullary parenchyma have been hypothesized to occur, although strong experimental evidence in support of these gradients remains lacking. This review considers anatomic features of the renal medulla that may impact the formation and maintenance of oxygen and solute gradients. A better understanding of medullary architecture is essential for more clearly defining the compartment-to-compartment flows taken by fluid and molecules that are important in producing axial and radial gradients. Preferential interactions between nephron and vascular segments provide clues as to how tubular and interstitial oxygen flows contribute to safeguarding active transport pathways in renal function in health and disease.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
5
|
Braam B, Cupples WA, Joles JA, Gaillard C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 2013; 17:161-75. [PMID: 21553212 DOI: 10.1007/s10741-011-9246-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine/Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | | | | | | |
Collapse
|
6
|
Arroyo JP, Gamba G. Reply to Cheng Hwee Ming. Physiology (Bethesda) 2011. [DOI: 10.1152/physiol.00027.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Juan Pablo Arroyo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
7
|
Silva LA, Veira-Filho LD, Barreto IS, Cabral EV, Vieyra A, Paixão AD. Prenatal Undernutrition Changes Renovascular Responses of Nimesulide in Rat Kidneys. Basic Clin Pharmacol Toxicol 2010; 108:115-21. [DOI: 10.1111/j.1742-7843.2010.00625.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Cao C, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Intrinsic nitric oxide and superoxide production regulates descending vasa recta contraction. Am J Physiol Renal Physiol 2010; 299:F1056-64. [PMID: 20702600 DOI: 10.1152/ajprenal.00070.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Descending vasa recta (DVR) are 12- to 15-μm microvessels that supply the renal medulla with blood flow. We examined the ability of intrinsic nitric oxide (NO) and reactive oxygen species (ROS) generation to regulate their vasoactivity. Nitric oxide synthase (NOS) inhibition with N(ω)-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l), or asymmetric N(G),N(G)-dimethyl-l-arginine (ADMA; 100 μmol/l), constricted isolated microperfused DVR by 48.82 ± 4.34 and 27.91 ± 2.91%, respectively. Restoring NO with sodium nitroprusside (SNP; 1 mmol/l) or application of 8-Br-cGMP (100 μmol/l) reversed DVR vasoconstriction by l-NAME. The superoxide dismutase mimetic Tempol (1 mmol/l) and the NAD(P)H inhibitor apocynin (100, 1,000 μmol/l) also blunted ADMA- or l-NAME-induced vasoconstriction, implicating a role for concomitant generation of ROS. A role for ROS generation was also supported by an l-NAME-associated rise in oxidation of dihydroethidium that was prevented by Tempol or apocynin. To test whether H(2)O(2) might play a role, we examined its direct effects. From 1 to 100 μmol/l, H(2)O(2) contracted DVR whereas at 1 mmol/l it was vasodilatory. The H(2)O(2) scavenger polyethylene glycol-catalase reversed H(2)O(2) (10 μmol/l)-induced vasoconstriction; however, it did not affect l-NAME-induced contraction. Finally, the previously known rise in DVR permeability to (22)Na and [(3)H]raffinose that occurs with luminal perfusion was not prevented by NOS blockade. We conclude that intrinsic production of NO and ROS can modulate DVR vasoactivity and that l-NAME-induced vasoconstriction occurs, in part, by modulating superoxide concentration and not through H(2)O(2) generation. Intrinsic NO production does not affect DVR permeability to hydrophilic solutes.
Collapse
Affiliation(s)
- Chunhua Cao
- Div. of Nephrology, N3W143, 22 S. Greene St., UMMS, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lai EY, Onozato ML, Solis G, Aslam S, Welch WJ, Wilcox CS. Myogenic responses of mouse isolated perfused renal afferent arterioles: effects of salt intake and reduced renal mass. Hypertension 2010; 55:983-9. [PMID: 20194294 DOI: 10.1161/hypertensionaha.109.149120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because defects in renal autoregulation may contribute to renal barotrauma in chronic kidney disease, we tested the hypothesis that the myogenic response is diminished by reduced renal mass. Kidneys from 5/6 nephrectomized mice had only a minor increase in the glomerular sclerosis index. The telemetric mean arterial pressure (108+/-10 mm Hg) was unaffected after 3 months of high-salt intake (6% salt in chow) or reduced renal mass. Afferent arterioles from 5/6 nephrectomized mice and sham-operated controls were perfused ex vivo during step changes in pressure from 40 to 134 mm Hg. Afferent arterioles developed a constriction and a linear increase in active wall tension above a perfusion pressure of 36+/-6 mm Hg, without a plateau. The slope of active wall tension versus perfusion pressure defined the myogenic response, which was similar in sham mice fed normal or high-salt diets for 3 months (2.90+/-0.22 versus 3.22+/-0.40 dynes x cm(-1)/mm Hg; P value not significant). The myogenic response was unaffected after 3 days of reduced renal mass on either salt diet (3.39+/-0.61 versus 4.04+/-0.47 dynes x cm(-1)/mm Hg) but was reduced (P<0.05) in afferent arterioles from reduced renal mass groups fed normal and high salt at 3 months (2.10+/-0.28 and 1.35+/-0.21 dynes x cm(-1)/mm Hg). In conclusion, mouse renal afferent arterioles develop a linear increase in myogenic tone around the range of ambient perfusion pressures. This myogenic response is impaired substantially in the mouse model of prolonged reduced renal mass, especially during high salt intake.
Collapse
Affiliation(s)
- En Yin Lai
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
10
|
Bell PD, Komlosi P, Zhang ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal 2009; 5:461-71. [PMID: 19330465 PMCID: PMC2776136 DOI: 10.1007/s11302-009-9148-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true "sensor cells" since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E(2) (PGE(2)) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells.
Collapse
Affiliation(s)
- P Darwin Bell
- Department of Medicine, Division of Nephrology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA,
| | | | | |
Collapse
|
11
|
Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol Renal Physiol 2008; 296:F939-46. [PMID: 19073638 DOI: 10.1152/ajprenal.90612.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The juxtaglomerular apparatus (JGA) is a specialized contact region between the glomerulus and the cortical thick ascending limb that plays an active role in the maintenance of ion homeostasis and control of blood pressure. The JGA accommodates several different cell types, including vascular smooth muscle cells, endothelial cells, mesangial cells, macula densa cells, and renin-secreting juxtaglomerular granular cells. These cells, with the exception of the macular densa cells, are tightly coupled by gap junctions. Gap junction-mediated intercellular communication in the JGA provides a pathway for signal transduction and coordination of multicellular functions. Disruption of cell-to-cell communication in the JGA results in altered preglomerular vascular tone and renin secretion. This review summarizes recent data about the roles of gap junctions in the JGA and illustrates how gap junction-mediated intercellular Ca(2+) signals determine physiological responses in the JGA.
Collapse
Affiliation(s)
- Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | | | | |
Collapse
|
12
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Botros FT, Prieto-Carrasquero MC, Martin VL, Navar LG. Heme oxygenase induction attenuates afferent arteriolar autoregulatory responses. Am J Physiol Renal Physiol 2008; 295:F904-11. [PMID: 18632790 DOI: 10.1152/ajprenal.90377.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenases (HO-1, HO-2) catalyze conversion of heme to iron, carbon monoxide (CO), and biliverdin/bilirubin. We studied the effects of renal HO-1 induction on afferent arteriole (Aff-Art) autoregulatory responses to increases in renal perfusion pressure (RPP). Rats were treated with hemin and SnCl2 to induce HO-1, and Aff-Art autoregulatory responses were evaluated using the rat blood-perfused juxtamedullary nephron preparation. Renal HO-1 expression was significantly increased in hemin- and SnCl2-treated rats, while HO-2 was not altered. Aff-Art autoregulatory constrictor responses to increases in RPP from 100 to 150 mmHg were attenuated in hemin- and SnCl2-treated rats compared with control rats (+1.1+/-3.3, n=9 and +4.4+/-5.3, n=9 vs. -14.2+/-1.5%, n=10, respectively) (P<0.05). Acute HO inhibition with chromium mesoporphyrin (CrMP; 15 micromol/l) restored Aff-Art autoregulatory responses in hemin- and SnCl2-treated rats. Superfusing Aff-Arts from control rats with 100 micromol/l biliverdin did not alter autoregulatory responses; however, superfusion with 1 mmol/l CO significantly attenuated autoregulatory responses to increases in RPP from 100 to 150 mmHg (+3.3+/-5.4 vs. -16.6+/-3.8%, n=6) (P<0.05). Acute soluble guanylate cyclase inhibition with 10 micromol/l ODQ restored Aff-Art autoregulatory responses in hemin-treated rats. Immunohistochemistry shows HO-2 to be expressed mainly in epithelial cells with weak staining in proximal tubules, interlobular arteries, and Aff-Arts. In hemin- and SnCl2-treated rats, HO-1 was induced in tubular epithelial cells but not interlobular arteries and Aff-Arts. We conclude that induction of renal HO-1 attenuates Aff-Art constrictor responses to increases in RPP via increasing CO production from tubular epithelial cells, suggesting that an augmented HO system in pathophysiological conditions modulates renal autoregulation.
Collapse
Affiliation(s)
- Fady T Botros
- Department of Physiology, Hypertension and Renal Center, Tulane University Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
14
|
Rogers HL, Marshall J, Bock J, Dowling TC, Feller E, Robinson S, Gottlieb SS. A randomized, controlled trial of the renal effects of ultrafiltration as compared to furosemide in patients with acute decompensated heart failure. J Card Fail 2008; 14:1-5. [PMID: 18226766 DOI: 10.1016/j.cardfail.2007.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/02/2007] [Accepted: 09/08/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study was designed to evaluate the consequences of ultrafiltration (UF) and standard intravenous diuretic (furosemide) therapy on glomerular filtration rate (GFR) and renal plasma flow in patients with acute decompensated heart failure. BACKGROUND It has been hypothesized that treatment with diuretics may worsen renal function as the result of systemic neurohormonal activation and direct renal vascular effects. UF also removes fluid, but its actions on intrarenal hemodynamics, and therefore renal function, are unknown. METHODS Patients hospitalized for acute decompensated heart failure with an ejection fraction less than 40% and two or more signs of hypervolemia were randomized to receive UF or intravenous diuretics. Urine output, GFR (as measured by iothalamate), and renal plasma flow (as measured by para-aminohippurate) were assessed before fluid removal and after 48 hours. RESULTS Nineteen patients (59 +/- 16 years, 68% were male) were randomized to receive UF (n = 9) or intravenous diuretics (n = 10). The change in GFR (-3.4 +/- 7.7 mL/min vs. -3.6 +/- 11.5 mL/min; P = .966), renal plasma flow (26.6 +/- 62.7 mL/min vs. 16.1 +/- 42.0 mL/min; P = .669), and filtration fraction (-6.9 +/- 13.6 mL/min vs. -3.9 +/- 13.6 mL/min; P = .644) after treatment were not significantly different between the UF and furosemide treatment groups, respectively. There was no significant difference in net 48-hour fluid removal between the groups (-3211 +/- 2345 mL for UF and -2725 +/- 2330 mL for furosemide, P = .682). UF removed 3666 +/- 2402 mL. Urine output during 48 hours was significantly greater in the furosemide group (5786 +/- 2587 mL) compared with the UF group (2286 +/- 915 mL, P < .001). CONCLUSIONS During a 48-hour period, UF did not cause any significant differences in renal hemodynamics compared with the standard treatment of intravenous diuretics.
Collapse
Affiliation(s)
- Hobart L Rogers
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Nonlinear modelling of renal vasoaction. Biomed Signal Process Control 2007. [DOI: 10.1016/j.bspc.2007.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
18
|
Franco M, Martínez F, Rodríguez-Iturbe B, Johnson RJ, Santamaría J, Montoya A, Nepomuceno T, Bautista R, Tapia E, Herrera-Acosta J. Angiotensin II, interstitial inflammation, and the pathogenesis of salt-sensitive hypertension. Am J Physiol Renal Physiol 2006; 291:F1281-7. [PMID: 16868307 DOI: 10.1152/ajprenal.00221.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transient administration of ANG II causes persistent salt-sensitive hypertension associated with arteriolopathy, interstitial inflammation, and cortical vasoconstriction; blocking the vascular and inflammatory changes with mycophenolate mofetil (MMF) prevents vasoconstriction. While infiltrating leukocytes during the salt-sensitive hypertension phase express ANG II, the functional role of ANG II during this phase is not known. We examined the acute effect of candesartan on renal hemodynamics during the established salt-sensitive hypertensive phase and related these findings to direct measurement of intrarenal ANG II and inflammatory cells in rats previously exposed to ANG II with or without MMF treatment. Sham controls were also examined. The administration of ANG II, followed by exposure to high-salt diet, resulted in hypertension, cortical vasoconstriction, an increase in interstitial inflammatory cells (44.8 +/- 1.3 lymphocytes/mm2, and 30.8 +/- 1.2 macrophages/mm2 ANG II vs. 19.6 +/- 2 lymphocytes/mm2, and 22 +/- 0.7 macrophages/mm2 Sham), and increase in renal ANG II levels (1,358 +/- 74.6 pg/ml ANG II vs. 194 +/- 9.28 pg/ml Sham). Treatment with MMF during the administration of exogenous ANG II resulted in reduction in renal interstitial inflammation (19.7 +/- 0.9 lymphocytes/mm2 and 15.9 +/- 0.8 machophages/mm2), ANG II levels (436.9 +/- 52.29 pg/ml), cortical vasoconstriction, and stable blood pressure levels during the subsequent challenge with a high-salt diet. Acute administration of candesartan similarly reduced renal vasoconstriction and blood pressure. We conclude that the cortical vasoconstriction occurring with salt-sensitive hypertension following exposure to ANG II is mediated by intrarenal ANG II, related, at least in part, to the interstitial inflammation.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiología I Ch, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Carroll MA, Doumad AB, Li J, Cheng MK, Falck JR, McGiff JC. Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway. Am J Physiol Renal Physiol 2006; 291:F155-61. [PMID: 16478979 DOI: 10.1152/ajprenal.00231.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dilation of rat preglomerular microvessels (PGMV) by activation of adenosine A2A receptors (A2AR) is coupled to epoxyeicosatrienoic acid (EET) release. We have investigated the commonality of this signal transduction pathway, i.e., sequential inhibition of G(salpha), adenylyl cyclase, PKA, and Ca2+-activated K+ (KCa) channel activity, to the vasoactive responses to A2AR activation by a selective A2A agonist, CGS-21680, compared with those of 11,12-EET. Male Sprague-Dawley rats were anesthetized, and microdissected arcuate arteries (110-130 microm) were cannulated and pressurized to 80 mmHg. Vessels were superfused with Krebs solution containing NG-nitro-L-arginine methyl ester (L-NAME) and indomethacin and preconstricted with phenylephrine. We assessed the effect of 3-aminobenzamide (10 microM), an inhibitor of mono-ADP-ribosyltranferases, on responses to 11,12-EET (3 nM) and CGS-21680 (10 microM) and found that both were inhibited by approximately 70% (P<0.05), whereas the response to SNP (10 microM) was unaffected. Furthermore, 11,12-EET (100 nM), like cholera toxin (100 ng/ml), stimulated ADP-ribose formation in homogenates of arcuate arteries compared with control. SQ-22536 (10 microM), an inhibitor of adenylyl cyclase activity, and myristolated PKI (14-22) amide (5 microM), an inhibitor of PKA, decreased activity of 11,12-EET and CGS-21680. Incubation of 11,12-EET (3 nM-3 microM) with PGMV resulted in an increase in cAMP levels (P<0.05). The responses to both 11,12-EET and CGS-21680 were significantly reduced by superfusion of iberiotoxin (100 nM), an inhibitor of KCa channel activity. Thus in rat PGMV activation of A2AR is coupled to EET release upstream of adenylyl cyclase activation and EETs stimulate mono-ADP-ribosyltransferase, resulting in Gsalpha protein activation.
Collapse
Affiliation(s)
- Mairéad A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Fuller AJ, Hauschild BC, Gonzalez-Villalobos R, Awayda MS, Imig JD, Inscho EW, Navar LG. Calcium and chloride channel activation by angiotensin II-AT1 receptors in preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2005; 289:F760-7. [PMID: 15942047 PMCID: PMC1314975 DOI: 10.1152/ajprenal.00422.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathways responsible for the rapid and sustained increases in [Ca(2+)](i) following activation of ANG II receptors (AT(1)) in renal vascular smooth muscle cells were evaluated using fluorescence microscopy. Resting intracellular calcium concentration [Ca(2+)](i) averaged 75 +/- 9 nM. The response to ANG II (100 nM) was characterized by a rapid initial increase of [Ca(2+)](i) by 74 +/- 6 nM (n = 35) followed by a decrease to a sustained level of 12 +/- 2 nM above baseline. The average time from peak to 50% reduction from the peak value (50% time point) was 32 +/- 4 s. AT(1) receptor blockade with 1 microM candesartan (n = 5) prevented the responses to ANG II. In nominally calcium-free conditions (n = 8), the peak increase in [Ca(2+)](i) averaged 42 +/- 7 nM but the sustained phase was absent and the 50% time point was reduced to 11 +/- 4 s. L-type calcium channel blockade with diltiazem reduced the peak [Ca(2+)](i) to 24 +/- 8 nM and the sustained level to 4 +/- 2 nM (n = 10). In cells preincubated in low Cl(-) (3.0 mM), the peak response to ANG II was suppressed as was the sustained response. Blockade of chloride channels with DIDS eliminated both the peak and sustained responses (n = 11); chloride channel blockade with DPC (n = 17) suppressed the peak increase in [Ca(2+)](i) to 18 +/- 5 and also prevented the sustained response. IP3 receptor blockade by 10 microM TMB-8 (n = 6) reduced the peak to 22 +/- 8 and prevented the sustained response. Exposure to 10 microM TMB-8 in the presence of Ca(2+)-free medium prevented the ANG II response (n = 9). In the presence of 100 microM DPC and 10 microM TMB-8 (n = 7), the ANG II response was also prevented. Thus the rapid initial increase in [Ca(2+)](i) is due not only to release from intracellular stores, but also to Ca(2+) influx from the extracellular fluid. Although Ca(2+) entry via L-type calcium channels is responsible for the major portion of the sustained response, other entry pathways participate. The finding that chloride channel blockers markedly attenuate both rapid and sustained responses indicates that chloride channel activation contributes to, rather than being the consequence of, the initial rapid response.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology
- Angiotensin II/pharmacology
- Animals
- Benzimidazoles/pharmacology
- Biphenyl Compounds
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/metabolism
- Calibration
- Capillaries/cytology
- Capillaries/drug effects
- Capillaries/metabolism
- Cell Separation
- Chloride Channels/metabolism
- Diltiazem/pharmacology
- Gallic Acid/analogs & derivatives
- Gallic Acid/pharmacology
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Potassium Chloride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/physiology
- Tetrazoles/pharmacology
- Vasoconstrictor Agents/pharmacology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Andrew J. Fuller
- Department of Physiology and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center 1430 Tulane Avenue New Orleans, LA
| | - Benjamin C. Hauschild
- Department of Physiology and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center 1430 Tulane Avenue New Orleans, LA
| | - Romer Gonzalez-Villalobos
- Department of Physiology and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center 1430 Tulane Avenue New Orleans, LA
| | - Mouhamed S. Awayda
- Department of Physiology and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center 1430 Tulane Avenue New Orleans, LA
| | - John D. Imig
- Vascular Biology Center Medical College of Georgia Augusta, GA
| | | | - L. Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center 1430 Tulane Avenue New Orleans, LA
| |
Collapse
|
22
|
Abstract
The Nephrology Research and Training Center, established in 1977 at the University of Alabama at Birmingham by Thomas E. Andreoli, served as a catalyst to stimulate multiple areas of investigations in renal physiology and nephrology. Individuals with backgrounds in biophysics, membrane transport, renal hemodynamics, structural biology, and nephrology interacted with each other, thus providing an exciting and collegial environment. The laboratory of renal hemodynamics focused on the control of renal blood flow, glomerular filtration rate in normal and hypertensive models, and on the important role of the macula densa in providing communication from the tubules to the vascular elements. Studies initially focused on the role of the macula densa feedback mechanism in mediating renal autoregulatory behavior. Subsequent experiments examined various aspects of the feedback system, including the identification and characterization of membrane transport events that sense changes in tubular fluid concentration and transfer information to intracellular signaling mechanisms. More recent investigations have focused on the capability of the macula densa cells to synthesize and release various vasoactive mediators that can influence vascular tone of the glomerular arterioles. In particular, the ability of the macula densa cells to secrete ATP has stimulated continued interest in the hypothesis that ATP may serve an important role in mediating signals to afferent arteriolar vascular smooth muscle cells.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology SL39, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | |
Collapse
|
23
|
Kawada N, Dennehy K, Solis G, Modlinger P, Hamel R, Kawada JT, Aslam S, Moriyama T, Imai E, Welch WJ, Wilcox CS. TP receptors regulate renal hemodynamics during angiotensin II slow pressor response. Am J Physiol Renal Physiol 2004; 287:F753-9. [PMID: 15213069 DOI: 10.1152/ajprenal.00423.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the hypothesis that thromboxane A2(TxA2)-prostaglandin H2receptors (TP-Rs) mediate the hemodynamic responses and increase in reactive oxygen species (ROS) to ANG II (400 ng·kg−1·min−1sc for 14 days) using TP-R knockout (TP −/−) and wild-type (+/+) mice. TP −/− had normal basal mean arterial blood pressure (MAP) and glomerular filtration rate but reduced renal blood flow and increased filtration fraction (FF) and renal vascular resistance (RVR) and markers of ROS (thiobarbituric acid-reactive substances and 8-isoprostane PGF2α) and nitric oxide (NOx). Infusion of ANG II into TP +/+ increased ROS and thromboxane B2(TxB2) and increased RVR and FF. ANG II infusion into TP −/− mice reduced ANG I and increased aldosterone but caused a blunted increase in MAP (TP −/−: +6 ± 2 vs. TP +/+: +15 ± 3 mmHg) and failed to increase FF, ROS, or TxB2but increased NOx and paradoxically decreased RVR (−2.1 ± 1.7 vs. +2.6 ± 0.8 mmHg·ml−1·min−1·g−1). Blockade of AT1receptor of TP −/− mice infused with ANG II reduced MAP (−8 mmHg) and aldosterone but did not change the RVR or ROS. In conclusion, during an ANG II slow pressor response, AT1receptors activate TP-Rs that generate ROS and prostaglandins but inhibit NO. TP-Rs mediate all of the increase in RVR and FF, part of the increase in MAP, but are not implicated in the suppression of ANG I or increase in aldosterone. TP −/− mice have a basal increase in RVR and FF associated with ROS.
Collapse
Affiliation(s)
- Noritaka Kawada
- Cardiovascular Kidney Institute and Division of Nephrology and Hypertension, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cheng MK, Doumad AB, Jiang H, Falck JR, McGiff JC, Carroll MA. Epoxyeicosatrienoic acids mediate adenosine-induced vasodilation in rat preglomerular microvessels (PGMV) via A2A receptors. Br J Pharmacol 2004; 141:441-8. [PMID: 14718251 PMCID: PMC1574221 DOI: 10.1038/sj.bjp.0705640] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of rat adenosine2A receptors (A2A R) dilates preglomerular microvessels (PGMV), an effect mediated by epoxyeicosatrienoic acids (EETs). Incubation of PGMV with a selective A2A R agonist, 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 microM), increased isolated PGMV EET levels to 7.57+/-1.53 ng mg-1 protein from 1.06+/-0.22 ng mg-1 protein in controls (P<0.05), without affecting hydroxyeicosatetraenoic acid (HETE) levels (10.8+/-0.69 vs 11.02+/-0.74 ng mg-1 protein). CGS 21680-stimulated EETs was abolished by preincubation with an A2A R antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) (100 microM). A selective epoxygenase inhibitor, methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; 12 microM) prevented CGS 21680-induced increase in EETs, indicating inhibition of de novo synthesis of EETs. In pressurized (80 mmHg) renal arcuate arteries (110-130 microm) preconstricted with phenylephrine (20 nM), superfusion with CGS 21680 (0.01-10 microM) increased the internal diameter (i.d.) concentration-dependently; vasodilation was independent of nitric oxide and cyclooxygenase activity. CGS 21680 (10 microM) increased i.d. by 32+/-6 microm; vasodilation was prevented by inhibition of EET synthesis with MS-PPOH. Addition of 3 nM 5,6-EET, 8,9-EET and 11,12-EET increased i.d. by 53+/-9, 17+/-4 and 53+/-5 microm, respectively, whereas 14,15-EET was inactive. The responses to 5,6-EET were, however, significantly inhibited by indomethacin. We conclude that 11,12-EET is the likely mediator of A2A R-induced dilation of rat PGMV. Activation of A2A R coupled to de novo EET stimulation may represent an important mechanism in regulating preglomerular microvascular tone. British Journal of Pharmacology (2004) 141, 441-448. doi:10.1038/sj.bjp.0705640
Collapse
Affiliation(s)
- M K Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - A B Doumad
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - H Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - J R Falck
- Department of Molecular Genetics, University of Texas, Southwestern Medical Center, Dallas, TX 75235, U.S.A
| | - J C McGiff
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - M A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
- Author for correspondence:
| |
Collapse
|
25
|
Yu Z, Davis BB, Morisseau C, Hammock BD, Olson JL, Kroetz DL, Weiss RH. Vascular localization of soluble epoxide hydrolase in the human kidney. Am J Physiol Renal Physiol 2003; 286:F720-6. [PMID: 14665429 DOI: 10.1152/ajprenal.00165.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epoxyeicosatrienoic acids are cytochrome P-450 metabolites of arachidonic acid with multiple biological functions, including the regulation of vascular tone, renal tubular transport, cellular proliferation, and inflammation. Epoxyeicosatrienoic acids are converted by soluble epoxide hydrolase into the corresponding dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acid hydration is regarded as one mechanism whereby their biological effects are eliminated. Previous animal studies indicate that soluble epoxide hydrolase plays an important role in the regulation of renal eicosanoid levels and systemic blood pressure. To begin to elucidate the mechanism of these effects, we determined the cellular localization of soluble epoxide hydrolase in human kidney by examining biopsies taken from patients with a variety of non-end-stage renal diseases, as well as those without known renal disease. Immunohistochemical staining of acetone-fixed kidney biopsy samples revealed that soluble epoxide hydrolase was preferentially expressed in the renal vasculature with relatively low levels in the surrounding tubules. Expression of soluble epoxide hydrolase was evident in renal arteries of varying diameter and was localized mostly in the smooth muscle layers of the arterial wall. Western blot analysis and functional assays confirmed the expression of soluble epoxide hydrolase in the human kidney. There were no obvious differences in soluble epoxide hydrolase expression between normal and diseased human kidney tissue in the samples examined. Our results indicate that soluble epoxide hydrolase is present in the human kidney, being preferentially expressed in the renal vasculature, and support an essential role for this enzyme in renal hemodynamic regulation and its potential utility as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhigang Yu
- Dept. of Biopharmaceutical Sciences, Univ. of California San Francisco, 513 Parnassus, Box 0446, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Racasan S, Joles JA, Boer P, Koomans HA, Braam B. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat. Am J Physiol Renal Physiol 2003; 285:F105-12. [PMID: 12631552 DOI: 10.1152/ajprenal.00348.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the spontaneously hypertensive rat (SHR), renal blood flow (RBF) has been reported to be very dependent on nitric oxide (NO); however, autoregulation is normal, albeit shifted to higher perfusion pressures. To test the hypothesis that in the SHR NO dependency of RBF autoregulation is diminished, we investigated RBF autoregulation in anesthetized young male SHR and normotensive Wistar-Kyoto (WKY) rats before and during acute intravenous NO synthase (NOS) inhibition with N(omega)-nitro-L-arginine (L-NNA) and urinary excretion of nitrate plus nitrite (U(NOx)V) at different renal perfusion pressures (RPP). Under baseline conditions, SHR had higher mean arterial pressure (147 +/- 4 mmHg) and renal vascular resistance (16 +/- 1 U) than WKY (105 +/- 4 mmHg and 10 +/- 0.5 U, respectively, P < 0.05). RBF was similar (9.4 +/- 0.5 vs. 10.3 +/- 0.1 ml x min(-1)x g kidney wt(-1)). Acute NOS blockade increased mean arterial pressure similarly, but there was significantly more reduction in RBF and hence an enhanced increase in renal vascular resistance in SHR (to 36 +/- 3 vs. 17 +/- 1 U in WKY, P < 0.001). The renal vasculature of SHR is thus strongly dependent on NO in maintaining basal RBF. The lower limit of autoregulation was higher in SHR than WKY in the baseline situation (85 +/- 3 vs. 71 +/- 2 mmHg, P < 0.05). Acute L-NNA administration did not decrease the lower limit in the SHR (to 81 +/- 3 mmHg, not significant) and decreased the lower limit to 63 +/- 2 mmHg (P < 0.05) in the WKY. The degree of compensation as a measure of autoregulatory efficiency attained at spontaneous perfusion pressures was comparable in SHR vs. WKY but with a shift of the curve toward higher perfusion pressures in SHR. Acute NOS blockade only increased the degree of compensation in WKY. Remarkably, U(NOx)V was significantly lower at spontaneous RPP in SHR. After reduction of RPP, the observed decrease in U(NOx)V was significantly more pronounced in WKY than in SHR. In conclusion, the renal circulation in SHR is dependent on high levels of NO; however, the capacity to modulate NO in response to RPP-induced changes in shear stress seems to be limited.
Collapse
Affiliation(s)
- Simona Racasan
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Cheng MK, McGiff JC, Carroll MA. Renal arterial 20-hydroxyeicosatetraenoic acid levels: regulation by cyclooxygenase. Am J Physiol Renal Physiol 2003; 284:F474-9. [PMID: 12419775 DOI: 10.1152/ajprenal.00239.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-HETE, a potent vasoconstrictor, is generated by cytochrome P-450 omega-hydroxylases and is the principal eicosanoid produced by preglomerular microvessels. It is released from preglomerular microvessels by ANG II and is subject to metabolism by cyclooxygenase (COX). Because low-salt (LS) intake stimulates the renin-angiotensin system and induces renal cortical COX-2 expression, we examined 20-HETE release from renal arteries (interlobar and arcuate and interlobular arteries) obtained from 6- to 7-wk-old male Sprague-Dawley rats fed either normal salt (0.4% NaCl) or LS (0.05% NaCl) diets for 10 days. With normal salt intake, the levels of 20-HETE recovered were similar in arcuate and interlobular arteries and interlobar arteries: 30.1 +/- 8.5 vs. 24.6 +/- 5.3 ng. mg protein(-1). 30 min(-1), respectively. An LS diet increased 20-HETE levels in the incubate of either arcuate and interlobular or interlobar renal arteries only when COX was inhibited. Addition of indomethacin (10 microM) to the incubate of arteries obtained from rats fed an LS diet resulted in a two- to threefold increase in 20-HETE release from arcuate and interlobular arteries, from 39.1 +/- 13.2 to 101.8 +/- 42.6 ng. mg protein(-1). 30 min(-1) (P < 0.03), and interlobar arteries, from 31.7 +/- 15.1 to 61.9 +/- 29.4 ng. mg protein(-1). 30 min(-1) (P < 0.05) compared with release of 20-HETE when COX was not inhibited. An LS diet enhanced vascular expression of cytochrome P-4504A and COX-2 in arcuate and interlobular arteries; COX-1 was unaffected. Metabolism of 20-HETE by COX is proposed to represent an important regulatory mechanism in setting preglomerular microvascular tone.
Collapse
Affiliation(s)
- Monica K Cheng
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
28
|
Liu R, Persson AE. Effects of nitric oxide on P2Y receptor resensitization in spontaneously hypertensive rat mesangial cells. J Hypertens 2002; 20:1835-42. [PMID: 12195127 DOI: 10.1097/00004872-200209000-00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cellular responses to agonists of G protein-coupled receptors are usually rapidly attenuated - a process known as 'receptor desensitization'. The mechanisms that attenuate signalling are important both physiologically and therapeutically. OBJECTIVE To evaluate the effects of nitric oxide on the P2Y receptor resensitization in cultured glomerular mesangial cells in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats. METHODS The cytosolic calcium concentration ([Ca2+]i ) in cultured mesangial cells was determined with a fluorescence digital imaging system, using the intracellular fluorescent indicator, Fura 2-AM. RESULTS The first ATP-stimulated [Ca2+]i measured was significantly greater in SHRs (1330.25 +/- 360.31 nmol/l) than in WKY rats (974.28 +/- 397.72 nmol/l; 0.05). Spermine- -[4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]-butyl-1,3-propanediamine (spermine NONOate) and L-arginine significantly increased the fourth ATP-stimulated [Ca2+]i in WKY rats ( P<0.01, 0.05, respectively). In SHRs, only spermine-NONOate was able to restore the fourth ATP-challenged [Ca2+]i value significantly. Nomega-nitro-L-arginine methyl ester (L-NAME) greatly reduced the second, third and fourth ATP-stimulated [Ca2+]i in WKY rats (P< 0.01), but not in SHRs. When the cells from WKY rats were superfused with L-NAME, L-arginine or spermine-NONOate for a period of 5 min before and during one single ATP challenge, the responses observed were not significantly different from those in controls. CONCLUSIONS L-Arginine and spermine-NONOate are able to increase P2Y receptor resensitization in rat mesangial cells, an effect that is less potent in SHRs than in WKY rats. The presence of >l-NAME enhanced receptor desensitization in WKY rats, but not in SHRs.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
29
|
Nishiyama A, Navar LG. ATP mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 2002; 283:R273-5; discussion R278-9. [PMID: 12069954 DOI: 10.1152/ajpregu.00071.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Nishiyama
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | | |
Collapse
|
30
|
Nishiyama A, Navar LG. Response to J. Schnermann: Adenosine mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 2002. [DOI: 10.1152/ajpregu.2002.283.1.ra278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Nishiyama A, Kimura S, Fukui T, Rahman M, Yoneyama H, Kosaka H, Abe Y. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits. Am J Physiol Renal Physiol 2002; 282:F238-44. [PMID: 11788437 DOI: 10.1152/ajprenal.00087.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined responses of renal interstitial guanosine 3',5'-cyclic monophosphate (cGMP) to changes in renal perfusion pressure (RPP) within and below the range of renal blood flow (RBF) autoregulation. A microdialysis method was used to monitor renal cortical and medullary interstitial cGMP levels in anesthetized rabbits. RPP was reduced in two steps: from ambient pressure (89 +/- 3 mmHg) to 70 +/- 2 mmHg (step 1) and then to 48 +/- 3 mmHg (step 2). RBF was maintained in step 1 but was significantly decreased in step 2 from 2.94 +/- 0.23 to 1.47 +/- 0.08 ml x min(-1) x g(-1). Basal interstitial concentrations of cGMP were significantly lower in the cortex than in the medulla (12.1 +/- 1.4 and 19.9 +/- 0.4 nmol/l, respectively). Cortical and medullary cGMP did not change in step 1 but were significantly decreased in step 2, with significantly less reduction in cGMP concentrations in the medulla than in the cortex (-25 +/- 3 and -44 +/- 3%, respectively). Over this pressure range, changes in cortical and medullary cGMP were highly correlated with changes in RBF (r = 0.94, P < 0.005 for cortex; r = 0.82, P < 0.01 for medulla). Renal interstitial nitrate/nitrite was not changed in step 1 but was significantly decreased in step 2 (-38 +/- 2% in cortex and -20 +/- 2% in medulla). Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg bolus, 50 mg x kg(-1) x h(-1) i.v. infusion) significantly decreased RBF (by -46 +/- 4%) and interstitial concentrations of cGMP (-27 +/- 4% in cortex and -22 +/- 4% in medulla, respectively). During L-NAME treatment, renal interstitial concentrations of cGMP in the cortex and medulla were similarly not altered in step 1. However, L-NAME significantly attenuated cGMP responses to a reduction in RPP in step 2. These results indicate that acute changes in RBF result in alterations in nitric oxide-dependent renal interstitial cGMP levels, with differential effects in the medulla compared with the cortex.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Janssen BJA, Lukoshkova EV, Head GA. Sympathetic modulation of renal blood flow by rilmenidine and captopril: central vs. peripheral effects. Am J Physiol Renal Physiol 2002; 282:F113-23. [PMID: 11739119 DOI: 10.1152/ajprenal.0153.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) is modulated by renal sympathetic nerve activity (RSNA). However, agents that are supposed to reduce sympathetic tone, such as rilmenidine and captopril, influence RBF also by direct arteriolar effects. The present study was designed to test to what extent the renal nerves contribute to the renal hemodynamic response to rilmenidine and captopril. We used a technique that allows simultaneous recording of RBF and RSNA to the same kidney in conscious rabbits. We compared the dose-dependent effects of rilmenidine (0.01-1 mg/kg) and captopril (0.03-3 mg/kg) on RBF and RSNA in intact and renal denervated (RNX) rabbits. Because rilmenidine and captopril lower blood pressure, studies were also performed in sinoaortically denervated (SAD) rabbits to determine the role of the baroreflex in the renal hemodynamic response. Rilmenidine reduced arterial pressure, RBF, and RSNA dose dependently. In intact rabbits (n = 10), renal conductance (RC) remained unaltered (3 +/- 5%), even after the 1-mg/kg dose, which completely abolished RSNA. In RNX rabbits (n = 6), RC fell by 18 +/- 5%, whereas in SAD rabbits (n = 7) RC increased by 30 +/- 20% after rilmenidine. In intact rabbits, captopril increased RSNA maximally by 64 +/- 8%. RSNA did not rise in SAD rabbits. Despite the differential response or absence of RSNA, captopril increased RC to a comparable degree (maximally 40-50%) in all three groups. Using spectral analysis techniques, we found that in all groups, independently of ongoing RSNA, captopril, but not rilmenidine, attenuated both myogenic (0.07-0.25 Hz) and tubuloglomerular feedback (0.01-0.07 Hz) related fluctuations in RC. We conclude that, in conscious rabbits, the renal vasodilator effect of rilmenidine depends on the level of ongoing RSNA. Its sympatholytic effect is, however, blunted by a direct arteriolar vasoconstrictor effect. In contrast, the renal vasodilator effect of captopril is not modulated by ongoing RSNA and is associated with impairment of autoregulation of RBF.
Collapse
Affiliation(s)
- Ben J A Janssen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
33
|
Wåhlin N, Stenberg A, Persson AE. Effect of thromboxane and nitric oxide blockade on renal blood flow increase during volume expansion in hydronephrotic rats. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY 2001; 35:84-91. [PMID: 11411664 DOI: 10.1080/003655901750170362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE It has recently been found that hydronephrotic rats, despite low diuresis, show a significant increase in renal blood flow (RBF) during volume expansion. The present experiments were designed to evaluate the mechanisms underlying this phenomenon. MATERIAL AND METHODS Three-week-old Sprague-Dawley rats underwent partial obstruction of the left ureter using the Ulm-Miller psoas groove technique. The effects on RBF were studied 3 weeks later under general anesthesia using real-time ultrasound flowmetry, first during normohydration and then during extracellular volume expansion, in both untreated animals, and after prior blockade of either thromboxane or nitric oxide. RESULTS Significant hydronephrosis developed in all cases. RBF was normal under control conditions. During volume expansion RBF increased significantly in untreated experimental animals (mean 7.5%). In contrast to this finding, RBF remained unchanged during volume expansion in both the thromboxane and nitric oxide blockade groups. CONCLUSION It is concluded that a thromboxane- and/or nitric oxide-dependent RBF redistribution takes place in hydronephrotic kidneys during volume expansion.
Collapse
Affiliation(s)
- N Wåhlin
- Department of Pediatric Surgery, University Children's Hospital, Uppsala, Sweden.
| | | | | |
Collapse
|
34
|
Walker M, Harrison-Bernard LM, Cook AK, Navar LG. Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation. Am J Physiol Renal Physiol 2000; 279:F858-65. [PMID: 11053046 DOI: 10.1152/ajprenal.2000.279.5.f858] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamic activity of afferent arteriolar diameter (AAD) and blood flow (AABF) responses to a rapid step increase in renal arterial pressure (100-148 mmHg) was examined in the kidneys of normal Sprague-Dawley rats (n = 11) before [tubuloglomerular feedback (TGF)-intact] and after interruption of distal tubular flow (TGF-independent). Utilizing the in vitro blood-perfused juxtamedullary nephron preparation, fluctuations in AAD and erythrocyte velocity were sampled by using analog-to-digital computerized conversion, video microscopy, image shearing, and fast-frame, slow-frame techniques. These assessments enabled dynamic characterization of the autonomous actions and collective interactions between the myogenic and TGF mechanisms at the level of the afferent arteriole. The TGF-intact and TGF-independent systems exhibited common initial (0-24 vs. 0-13 s, respectively) response slope kinetics (-0.53 vs. -0.47% DeltaAAD/s; respectively) yet different maximum vasoconstrictive magnitude (-11.28 +/- 0.1 vs. -7. 02 +/- 0.9% DeltaAAD; P < 0.05, respectively). The initial AABF responses similarly exhibited similar kinetics but differing magnitudes. In contrast, during the sustained pressure input (13-97 s), the maximum vasoconstrictor magnitude (-7.02 +/- 0.9% DeltaAAD) and kinetics (-0.01% DeltaAAD/s) of the TGF-independent system were markedly blunted whereas the TGF-intact system exhibited continued vasoconstriction with slower kinetics (-0.20% DeltaAAD/s) until a steady-state plateau was reached (-25.9 +/- 0.4% DeltaAAD). Thus the TGF mechanism plays a role in both direct mediation of vasoconstriction and in modulation of the myogenic response.
Collapse
Affiliation(s)
- M Walker
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
35
|
Kramp RA, Fourmanoir P, Ladrière L, Joly E, Gerbaux C, El Hajjam A, Caron N. Effects of Ca(2+) channel activity on renal hemodynamics during acute attenuation of NO synthesis in the rat. Am J Physiol Renal Physiol 2000; 278:F561-9. [PMID: 10751216 DOI: 10.1152/ajprenal.2000.278.4.f561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cultured vascular muscle cells, nitric oxide (NO) has been shown to inhibit voltage-dependent Ca(2+) channels, which are involved in renal blood flow (RBF) autoregulation. Therefore, our purpose was to specify in vivo the effects of this interaction on RBF autoregulation. To do so, hemodynamics were investigated in anesthetized rats during Ca(2+) channel blockade before or after acute NO synthesis inhibition. Rats were treated intravenously with vehicle (n = 10), 0.3 mg/kg body wt N(G)-nitro-L-arginine-methyl ester (L-NAME; n = 7), 4.5 microg. kg body wt(-1). min(-1) nifedipine (n = 8) alone, or with nifedipine infused before (n = 8), after (n = 8), or coadministered with L-NAME (n = 10). Baseline renal vascular resistance (RVR) averaged 14.0 +/- 1.2 resistance units and did not change after vehicle. RVR increased or decreased significantly by 27 and 29% after L-NAME or nifedipine, respectively. Nifedipine reversed, but did not prevent, RVR increase after or coadministered with L-NAME. RBF autoregulation was maintained after L-NAME, but the autoregulatory pressure limit (P(A)) was significantly lowered by 15 mmHg. Nifedipine pretreatment or coadministration with L-NAME limited P(A) resetting or suppressed autoregulation at higher doses. Results were similar with verapamil. Intrarenal blockade of Ca(2+)-activated K(+) channels also prevented autoregulatory resetting by L-NAME (n = 8). These findings suggest NO inhibits voltage-dependent Ca(2+) channels and thereby modulates RBF autoregulatory efficiency.
Collapse
Affiliation(s)
- R A Kramp
- Service de Physiologie et Pharmacologie, Faculté de Médecine et de Pharmacie, Université de Mons-Hainaut, 7000 Mons, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Oyekan AO, Youseff T, Fulton D, Quilley J, McGiff JC. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest 1999; 104:1131-7. [PMID: 10525052 PMCID: PMC408575 DOI: 10.1172/jci6786] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.
Collapse
Affiliation(s)
- A O Oyekan
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
37
|
Scoble JE. Renal artery stenosis as a cause of renal impairment: implications for treatment of hypertension and congestive heart failure. J R Soc Med 1999; 92:505-10. [PMID: 10692901 PMCID: PMC1297389 DOI: 10.1177/014107689909201004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Choi KC, Lee SC, Kim SW, Kim NH, Lee JU, Kang YJ. Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats. Korean J Intern Med 1999; 14:32-41. [PMID: 10063312 PMCID: PMC4531905 DOI: 10.3904/kjim.1999.14.1.32] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Several reports suggest that enhanced generation or actions of nitric oxide (NO) have been implicated in the pathogenesis of glomerular hyperfiltration and hyperperfusion that occurs in early diabetes. However, the precise role of altered NO generation in the pathogenesis of diabetic nephropathy is unclear. The present study was aimed at investigating the role of nitric oxide in the pathogenesis of glomerular hyperfiltration and hyperperfusion in streptozotocin-induced diabetic rats. METHODS To evaluate the role of NO in diabetic hyperfiltration, we measured plasma and urine concentrations of NO2-/NO3-, stable metabolic products of NO and protein expressions of three isoforms of nitric oxide synthase (NOS) in streptozotocin-induced diabetic rats. We also investigated renal hemodynamic changes, such as glomerular filtration rate (GFR) and renal plasma flow (RPF), in responses to acute and chronic administration of NO synthesis inhibitor, nitro-L-arginine methyl ester (L-NAME), in diabetic and control rats. RESULTS Diabetic rats exhibited significantly elevated plasma and urinary NO2-/NO3- levels at 28 days after streptozotocin injection, and total excretion of NO2-/NO3- was approximately five-fold higher in diabetic rats than controls. Insulin and L-NAME treatment prevented the increases in plasma and urinary NO2-/NO3- concentrations in diabetic rats, respectively. The three isoforms of NOS (bNOS, iNOS, and ecNOS) were all increased in the renal cortex, whereas they remained unaltered in the renal medulla at day 28. GFR and RPF were significantly elevated in diabetic rats, and acute and chronic inhibition of NO synthesis by L-NAME attenuated the renal hemodynamic changes (increases in GFR and RPF) in diabetic rats, respectively. CONCLUSIONS NO synthesis was increased due to enhanced NOS expression in diabetic rats, and chronic NO blockade attenuated renal hyperfiltration and hyperperfusion in diabetic rats. In addition, diabetic rats exhibited enhanced renal hemodynamic responses to acute NO inhibition and excreted increased urinary NO2-/NO3-. These results suggest that excessive NO production may contribute to renal hyperfiltration and hyperperfusion in early diabetes.
Collapse
Affiliation(s)
- K C Choi
- Department of Internal Medicine, Chonnam University Medical School, Kwangju, Korea
| | | | | | | | | | | |
Collapse
|