1
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
2
|
Gutsol AA, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative Analysis of Hypertensive Tubulopathy in Animal Models of Hypertension and Its Relevance to Human Pathology. Toxicol Pathol 2023; 51:160-175. [PMID: 37632371 DOI: 10.1177/01926233231191128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.
Collapse
Affiliation(s)
- Alex A Gutsol
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taben M Hale
- The University of Arizona, Phoenix, Arizona, USA
| | | | | | | | | | | | - Chris R J Kennedy
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Smith D, Layton A. The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling. J Math Biol 2023; 86:58. [PMID: 36952058 DOI: 10.1007/s00285-023-01891-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the maintenance of volume homeostasis and blood pressure. In addition to the well-studied systemic RAS, local RAS have been documented in various tissues, including the kidney. Given the role of the intrarenal RAS in the pathogenesis of hypertension, a role established via various pharmacologic and genetic studies, substantial efforts have been made to unravel the processes that govern intrarenal RAS activity. In particular, several mechanisms have been proposed to explain the rise in intrarenal angiotensin II (Ang II) that accompanies Ang II infusion, including increased angiotensin type 1 receptor (AT1R)-mediated uptake of Ang II and enhanced intrarenal Ang II production. However, experimentally isolating their contribution to the intrarenal accumulation of Ang II in Ang II-induced hypertension is challenging, given that they are fundamentally connected. Computational modelling is advantageous because the feedback underlying each mechanism can be removed and the effect on intrarenal Ang II can be studied. In this work, the mechanisms governing the intrarenal accumulation of Ang II during Ang II infusion experiments are delineated and the role of the intrarenal RAS in Ang II-induced hypertension is studied. To accomplish this, a compartmental ODE model of the systemic and intrarenal RAS is developed and Ang II infusion experiments are simulated. Simulations indicate that AT1R-mediated uptake of Ang II is the primary mechanism by which Ang II accumulates in the kidney during Ang II infusion. Enhanced local Ang II production is unnecessary. The results demonstrate the role of the intrarenal RAS in the pathogenesis of Ang II-induced hypertension and consequently, clinical hypertension associated with an overactive RAS.
Collapse
Affiliation(s)
- Delaney Smith
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- School of Pharmacy, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Sci Rep 2021; 11:13815. [PMID: 34226610 PMCID: PMC8257763 DOI: 10.1038/s41598-021-93296-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-β (TGF-β) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-β, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague–Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-β, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-β, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.
Collapse
|
5
|
Augmented transcripts of kidney injury markers and renin angiotensin system in urine samples of overweight young adults. Sci Rep 2020; 10:21154. [PMID: 33273645 PMCID: PMC7713175 DOI: 10.1038/s41598-020-78382-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity has been firmly established as a major risk factor for common disease states including hypertension, type 2 diabetes mellitus, and chronic kidney disease. Increased body mass index (BMI) contributes to the activation of both the systemic and intra-tubular renin angiotensin systems (RAS), which are in turn associated with increased blood pressure (BP) and kidney damage. In this cross-sectional study, 43 subjects of normal or increased body weight were examined in order to determine the correlation of BMI or body fat mass (BFM) with blood pressure, fasting blood glucose (FBG), and urinary kidney injury markers such as interleukin-18 (IL-18), connective tissue growth factor (CTGF), neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 (KIM-1). Our results showed that: (1) subjects with increased body weight showed significantly higher BP, BFM, total body water and metabolic age; (2) BMI was positively correlated to both systolic (R2 = 0.1384, P = 0.01) and diastolic BP (R2 = 0.2437, P = 0.0008); (3) BFM was positively correlated to DBP (R2 = 0.1232, P = 0.02) and partially correlated to urine protein (R2 = 0.047, P = 0.12) and FBG (R2 = 0.07, P = 0.06); (4) overweight young adults had higher urinary mRNA levels of renin, angiotensinogen, IL-18 and CTGF. These suggest that BMI directly affects BP, kidney injury markers, and the activation of the intra-tubular RAS even in normotensive young adults. Given that BMI measurements and urine analyses are non-invasive, our findings may pave the way to developing a new and simple method of screening for the risk of chronic kidney disease in adults.
Collapse
|
6
|
The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin II-induced Hypertension. Int J Mol Sci 2020; 21:ijms21114041. [PMID: 32516946 PMCID: PMC7312644 DOI: 10.3390/ijms21114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1β, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.
Collapse
|
7
|
Franco M, Pérez-Méndez O, Kulthinee S, Navar LG. Integration of purinergic and angiotensin II receptor function in renal vascular responses and renal injury in angiotensin II-dependent hypertension. Purinergic Signal 2019; 15:277-285. [PMID: 31183668 PMCID: PMC6635571 DOI: 10.1007/s11302-019-09662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Glomerular arteriolar vasoconstriction and tubulointerstitial injury are observed before glomerular damage occurs in models of hypertension. High interstitial ATP concentrations, caused by the increase in arterial pressure, alter renal mechanisms involved in the long-term control of blood pressure, autoregulation of glomerular filtration rate and blood flow, tubuloglomerular feedback (TGF) responses, and sodium excretion. Elevated ATP concentrations and augmented expression of P2X receptors have been demonstrated under a genetic background or induction of hypertension with vasoconstrictor peptides. In addition to the alterations of the microcirculation in the hypertensive kidney, the vascular actions of elevated intrarenal angiotensin II levels may be mitigated by the administration of broad purinergic P2 antagonists or specific P2Y12, P2X1, and P2X7 receptor antagonists. Furthermore, the prevention of tubulointerstitial infiltration with immunosuppressor compounds reduces the development of salt-sensitive hypertension, indicating that tubulointerstitial inflammation is essential for the development and maintenance of hypertension. Inflammatory cells also express abundant purinergic receptors, and their activation by ATP induces cytokine and growth factor release that in turn contributes to augment tubulointerstitial inflammation. Collectively, the evidence suggests a pathophysiological activation of purinergic P2 receptors in angiotensin-dependent hypertension. Coexistent increases in intrarenal angiotensin II and activates Ang II AT1 receptors, which interacts with over-activated purinergic receptors in a complex manner, suggesting convergence of their post-receptor signaling processes.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Renal Pathophysiology Laboratory, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No.1, 14080 Mexico City, DF Mexico
| | - Oscar Pérez-Méndez
- Department Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Supaporn Kulthinee
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
- Department of Cardiovascular and Thoracic Technology, Chulabhorn International College of Medicine, Thammasat University, Rangsit, Pathum Thani Thailand
| | - L. Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
| |
Collapse
|
8
|
Cao XJ, Lei FF, Liu H, Luo WY, Xiao XH, Li Y, Lu JF, Dong ZB, Chen QZ. Effects of Dust Storm Fine Particle-Inhalation on the Respiratory, Cardiovascular, Endocrine, Hematological, and Digestive Systems of Rats. Chin Med J (Engl) 2019; 131:2482-2485. [PMID: 30334534 PMCID: PMC6202606 DOI: 10.4103/0366-6999.243571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Xiao-Jun Cao
- Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Feng-Feng Lei
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Hua Liu
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Wan-Yin Luo
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Xiao-Hui Xiao
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Yi Li
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Jun-Feng Lu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Zhi-Bao Dong
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Qi-Zhang Chen
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Lumbers ER, Delforce SJ, Arthurs AL, Pringle KG. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front Endocrinol (Lausanne) 2019; 10:563. [PMID: 31551925 PMCID: PMC6746881 DOI: 10.3389/fendo.2019.00563] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
A healthy pregnancy outcome depends on the activation of the renin-angiotensin-aldosterone system (RAAS) as a regulated, integrated response to the growing demands of the conceptus. Both the circulating RAAS and the intrarenal renin-angiotensin system (iRAS) play major roles in cardiovascular function and fluid and electrolyte homeostasis. The circulating RAAS becomes dysfunctional in preeclampsia and we propose that dysregulation of the iRAS plays a role in development of the clinical syndrome known as preeclampsia. Experimental studies in animals have shown that placental renin, when released into the maternal circulation, can cause hypertension. We postulate that abnormal placental development is associated with over-secretion of renin and other RAS proteins/angiotensin (Ang) peptides by the placenta/decidua into the maternal circulation. We hypothesise that this is because of increased shedding of exosomes and other placental particles into the maternal circulation that not only contain RAS proteins and peptides but also microRNAs (miRNAs) that target RAS mRNAs, and Ang II type 1 receptor autoantibodies (AT1R-AAs), that are agonists for, and have the same actions as, Ang II. As a result, there is both suppression of the circulating RAAS that is responsible for maintaining maternal homeostasis and activation of the iRAS. Together with altered vascular reactivity to Ang peptides, the iRAS causes hypertension, renal damage and secondary changes in the neurohumoral control of the maternal circulation and fluid and electrolyte balance, which contribute to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
- *Correspondence: Eugenie R. Lumbers
| | - Sarah J. Delforce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| | - Anya L. Arthurs
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| |
Collapse
|
10
|
Gonzalez AA, Lara LS, Prieto MC. Role of Collecting Duct Renin in the Pathogenesis of Hypertension. Curr Hypertens Rep 2018; 19:62. [PMID: 28695400 PMCID: PMC10114930 DOI: 10.1007/s11906-017-0763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of renin production by the principal cells of the collecting duct has opened new perspectives for the regulation of intrarenal angiotensin II (Ang II). Angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) are present in the tubular fluid coming from the proximal tubule and collecting duct. All the components needed for Ang II formation are present along the nephron, and much is known about the mechanisms regulating renin in juxtaglomerular cells (JG); however, those in the collecting duct remain unclear. Ang II suppresses renin via protein kinase C (PKC) and calcium (Ca2+) in JG cells, but in the principal cells, Ang II increases renin synthesis and release through a pathophysiological mechanism that increases further intratubular Ang II de novo formation to enhance distal Na + reabsorption. Transgenic mice overexpressing renin in the collecting duct demonstrate the role of collecting duct renin in the development of hypertension. The story became even more interesting after the discovery of a specific receptor for renin and prorenin: the prorenin receptor ((P)RR), which enhances renin activity and fully activates prorenin. The interactions between (P)RR and prorenin/renin may further increase intratubular Ang II levels. In addition to Ang II, other mechanisms have been described in the regulation of renin in the collecting duct, including vasopressin (AVP), bradykinin (BK), and prostaglandins. Current active investigations are aimed at elucidating the mechanisms regulating renin in the distal nephron segments and understand its role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C Prieto
- Department of Physiology, Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H, Yang T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 2017; 35:1899-1908. [PMID: 28509726 PMCID: PMC11157961 DOI: 10.1097/hjh.0000000000001378] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. METHODS Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. RESULTS Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P < 0.01). This corresponded with an improvement in Ang II-induced renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. CONCLUSION These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiaofen Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Haobo Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
13
|
Yang T, Xu C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J Am Soc Nephrol 2017; 28:1040-1049. [PMID: 28255001 DOI: 10.1681/asn.2016070734] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The renin-angiotensin system (RAS) has a pivotal role in the maintenance of extracellular volume homeostasis and blood pressure through complex mechanisms. Apart from the well known systemic RAS, occurrence of a local RAS has been documented in multiple tissues, including the kidney. A large body of recent evidence from pharmacologic and genetic studies, particularly those using various transgenic approaches to manipulate intrarenal levels of RAS components, has established the important role of intrarenal RAS in hypertension. Recent studies have also begun to unravel the molecular mechanisms that govern intrarenal RAS activity. This local system is under the control of complex regulatory networks consisting of positive regulators of (pro)renin receptor, Wnt/β-catenin signaling, and PGE2/PGE2 receptor EP4 subtype, and negative regulators of Klotho, vitamin D receptor, and liver X receptors. This review highlights recent advances in defining the regulation and function of intrarenal RAS as a unique entity separate from systemic angiotensin II generation.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and .,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
14
|
Gao J, Kerut EK, Smart F, Katsurada A, Seth D, Navar LG, Kapusta DR. Sympathoinhibitory Effect of Radiofrequency Renal Denervation in Spontaneously Hypertensive Rats With Established Hypertension. Am J Hypertens 2016; 29:1394-1401. [PMID: 27538721 DOI: 10.1093/ajh/hpw089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiofrequency ablation of the renal arteries (RF-ABL) has been shown to decrease blood pressure (BP) in drug-resistant hypertensive patients who receive antihypertensive drug therapy. However, there remain questions regarding how RF-ABL influences BP independent of drug therapy and whether complete renal denervation is necessary to maximally lower BP. To study these questions, we examined the cardiovascular, sympathetic, and renal effects produced by RF-ABL of the proximal renal arteries in spontaneously hypertensive rats (SHR) with established hypertension. METHODS SHR were instrumented (telemetry) for measurement of systolic/diastolic BP (SBP/DBP). Rats then underwent Sham-ABL or RF-ABL adjacent to the renal ostium and BP was recorded for 8 weeks. Changes in sympathetic activity, 24-hour water/sodium excretion, and levels of urinary angiotensinogen (AGT), plasma renin activity, and kidney renin content (KRC) were measured in SHR. RESULTS Compared with Sham-ABL, RF-ABL produced a sustained decrease in BP. At 8 weeks, SBP/DBP was 171±6/115±3 and 183±4/129±3mm Hg for RF-ABL and Sham-ABL SHR, respectively. Correlating with the reduction in BP, RF-ABL significantly decreased the low frequency/total and low frequency/high frequency of BP variability and attenuated the hypotensive response to chlorisondamine. Kidney norepinephrine levels were markedly decreased at 8 weeks in RF-ABL vs. Sham-ABL SHR. There were no group differences in 24-hour sodium/water excretion or urinary AGT excretion rate (6 weeks) or plasma renin activity or KRC (8 weeks). In other studies, concurrent RF-ABL plus surgical denervation initially decreased BP to a greater level than RF-ABL alone, but thereafter the reduction in BP between groups was not different. CONCLUSIONS In hypertensive SHR, bilateral RF-ABL of the proximal renal arteries produced a sustained decease in sympathetic activity and BP without changes in sodium/water excretion or activity of the systemic/renal renin-angiotensin system.
Collapse
Affiliation(s)
- Juan Gao
- The Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | - Frank Smart
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Cardiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Akemi Katsurada
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Dale Seth
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - L Gabriel Navar
- The Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | - Daniel R Kapusta
- The Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- The Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
15
|
Zimmerman MA, Hutson DD, Trimmer EH, Kashyap SN, Duong JL, Murphy B, Grissom EM, Daniel JM, Lindsey SH. Long- but not short-term estradiol treatment induces renal damage in midlife ovariectomized Long-Evans rats. Am J Physiol Renal Physiol 2016; 312:F305-F311. [PMID: 28153915 DOI: 10.1152/ajprenal.00411.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023] Open
Abstract
Clinical recommendations limit menopausal hormone therapy to a few years, yet the impact of a shorter treatment duration on cardiovascular health is unknown. We hypothesized that both short- and long-term estradiol (E2) treatment exerts positive and lasting effects on blood pressure, vascular reactivity, and renal health. This study was designed to mimic midlife menopause, followed by E2 treatment, that either followed or exceeded the current clinical recommendations. Female Long-Evans retired breeders were ovariectomized (OVX) at 11 mo of age and randomized into three groups: 80-day (80d) vehicle (Veh>Veh), 40-day (40d) E2 + 40d vehicle (E2>Veh), and 80d E2 (E2>E2). In comparison to Veh>Veh, both the E2>Veh and E2>E2 groups had lower systolic blood pressure and enhanced mesenteric relaxation in response to estrogen receptor-α stimulation. Despite the reduced blood pressure, E2>E2 induced renal and cardiac hypertrophy, reduced glomerular filtration, and increased proteinuria. Interestingly, kidneys from E2>Veh rats had significantly fewer tubular casts than both of the other groups. In conclusion, long-term E2 lowered blood pressure but exerted detrimental effects on kidney health in midlife OVX Long-Evans rats, whereas short-term E2 lowered blood pressure and reduced renal damage. These findings highlight that the duration of hormone therapy may be an important factor for renal health in aging postmenopausal women.
Collapse
Affiliation(s)
| | - Dillion D Hutson
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Emma H Trimmer
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Shreya N Kashyap
- Department of Pharmacology, Tulane University, New Orleans, Louisiana.,Tulane Brain Institute, New Orleans, Louisiana
| | - Jennifer L Duong
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Brennah Murphy
- Department of Pharmacology, Tulane University, New Orleans, Louisiana.,Tulane Brain Institute, New Orleans, Louisiana
| | - Elin M Grissom
- Department of Psychology, Tulane University, New Orleans, Louisiana; and.,Tulane Brain Institute, New Orleans, Louisiana
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, Louisiana; and.,Tulane Brain Institute, New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, Louisiana; .,Tulane Brain Institute, New Orleans, Louisiana
| |
Collapse
|
16
|
Zhuo JL, Kobori H, Li XC, Satou R, Katsurada A, Navar LG. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways. Am J Physiol Renal Physiol 2016; 310:F1103-12. [PMID: 26864937 PMCID: PMC4889322 DOI: 10.1152/ajprenal.00350.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Long-term angiotensin II (ANG II) infusion significantly increases ANG II levels in the kidney through two major mechanisms: AT1 receptor-mediated augmentation of angiotensinogen (AGT) expression and uptake of circulating ANG II by the proximal tubules. However, it is not known whether intracellular ANG II stimulates AGT expression in the proximal tubule. In the present study, we overexpressed an intracellular cyan fluorescent ANG II fusion protein (Ad-sglt2-ECFP/ANG II) selectively in the proximal tubule of rats and mice using the sodium and glucose cotransporter 2 (sglt2) promoter. AGT mRNA and protein expression in the renal cortex and 24-h urinary AGT excretion were determined 4 wk following overexpression of ECFP/ANG II in the proximal tubule. Systolic blood pressure was significantly increased with a small antinatriuretic effect in rats and mice with proximal tubule-selective expression of ECFP/ANG II (P < 0.01). AGT mRNA and protein expression in the cortex were increased by >1.5-fold and 61 ± 16% (P < 0.05), whereas urinary AGT excretion was increased from 48.7 ± 5.7 (n = 13) to 102 ± 13.5 (n = 13) ng/24 h (P < 0.05). However, plasma AGT, renin activity, and ANG II levels remained unaltered by ECFP/ANG II. The increased AGT mRNA and protein expressions in the cortex by ECFP/ANG II were blocked in AT1a-knockout (KO) mice. Studies in cultured mouse proximal tubule cells demonstrated involvement of AT1a receptor/MAP kinases/NF-кB signaling pathways. These results indicate that intracellular ANG II stimulates AGT expression in the proximal tubules, leading to increased AGT formation and secretion into the tubular fluid, which contributes to ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - H Kobori
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - R Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - A Katsurada
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
17
|
Gonzalez AA, Cifuentes-Araneda F, Ibaceta-Gonzalez C, Gonzalez-Vergara A, Zamora L, Henriquez R, Rosales CB, Navar LG, Prieto MC. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. Am J Physiol Renal Physiol 2015; 310:F284-93. [PMID: 26608789 DOI: 10.1152/ajprenal.00360.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | | | | | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ricardo Henriquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla B Rosales
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
18
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
19
|
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42:14-21. [PMID: 25371190 DOI: 10.1111/1440-1681.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Abstract
The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
20
|
Gonzalez AA, Prieto MC. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis 2015; 9:191-200. [PMID: 25780059 PMCID: PMC4560657 DOI: 10.1177/1753944715574817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In angiotensin (Ang)-II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by Ang II type 1 (AT1) receptor independent of blood pressure. Although the regulation of JG renin is known, the mechanisms by which renin is regulated in the collecting duct are not completely understood. The presence of renin activity in the collecting duct may provide a pathway for intratubular Ang II formation since angiotensinogen substrate and angiotensin converting enzyme are present in the distal nephron. The recently named new member of the renin-angiotensin system (RAS), the (pro)renin receptor [(P)RR], is able to bind renin and the inactive prorenin, thus enhancing renin activity and fully activating prorenin. We have demonstrated that renin and (P)RR are augmented in renal tissues from rats infused with Ang II and during sodium depletion, suggesting a physiological role in intrarenal RAS activation. Importantly, (P)RR activation also causes activation of intracellular pathways associated with increased cyclooxygenase 2 expression and induction of profibrotic genes. In addition, renin and (P)RR are upregulated by Ang II in collecting duct cells. Although the mechanisms involved in their regulation are still under study, they seem to be dependent on the intrarenal RAS activation. The complexities of the mechanisms of stimulation also depend on cyclooxygenase 2 and sodium depletion. Our data suggest that renin and (P)RR can interact to increase intratubular Ang II formation and the activation of profibrotic genes in renal collecting duct cells. Both pathways may have a critical role in the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Minolfa C Prieto
- Department of Physiology, Rm 4061, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Abstract
Experimental models of hypertension and patients with inappropriately increased renin formation due to a stenotic kidney, arteriosclerotic narrowing of the renal arterioles or a rare juxtaglomerular cell tumor have shown a progressive augmentation of the intrarenal/intratubular renin-angiotensin system (RAS). The increased intrarenal angiotensin II (Ang II) elicits renal vasoconstriction and enhanced tubular sodium reabsorption in proximal and distal nephron segments. The enhanced intrarenal Ang II levels are due to both increased Ang II type 1 (AT1) receptor mediated Ang II uptake and AT1 receptor dependent stimulation of renal angiotensinogen (AGT) mRNA and augmented AGT production. The increased AGT formation and secretion into the proximal tubular lumen leads to local formation of Ang II, which stimulates proximal transporters such as the sodium/hydrogen exchanger. Enhanced AGT production also leads to spillover of AGT into the distal nephron segments as reflected by AGT in the urine, which provides an index of intrarenal RAS activity. There is also increased Ang II concentration in distal nephron with stimulation of distal sodium transport. Increased urinary excretion of AGT has been demonstrated in patients with hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases indicating an upregulation of intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weijian Shao
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane University Health Sciences Center, SL39, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Yang T. Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharmacol 2015; 21:89-94. [PMID: 25681793 DOI: 10.1016/j.coph.2014.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/13/2023]
Abstract
Angiotensin II (AngII) is an octapeptide hormone that plays a central role in regulation of sodium balance, plasma volume, and blood pressure. Its role in the pathogenesis of hypertension is highlighted by the wide use of inhibitors of the renin-angiotensin system (RAS) as the first-line antihypertensive therapy. However, despite intensive investigation, the mechanism of AngII-induced hypertension is still incompletely understood. Although diverse pathways are likely involved, increasing evidence suggests that the activation of intrarenal RAS may represent a dominant mechanism of AngII-induced hypertension. (Pro)renin receptor (PRR), a potential regulator of intrarenal RAS, is expressed in the intercalated cells of the collecting duct (CD) and induced by AngII, in parallel with increased renin in the principal cells of the CD. Activation of PRR elevated PGE2 release and COX-2 expression in renal inner medullary cells whereas COX-2-derived PGE2via the EP4 receptor mediates the upregulation of PRR during AngII infusion, thus forming a vicious cycle. The mutually stimulatory relationship between PRR and COX-2 in the distal nephron may play an important role in mediating AngII-induced hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
23
|
Giani JF, Shah KH, Khan Z, Bernstein EA, Shen XZ, McDonough AA, Gonzalez-Villalobos RA, Bernstein KE. The intrarenal generation of angiotensin II is required for experimental hypertension. Curr Opin Pharmacol 2015; 21:73-81. [PMID: 25616034 DOI: 10.1016/j.coph.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease. While the cause of hypertension is multifactorial, renal dysregulation of salt and water excretion is a major factor. All components of the renin-angiotensin system are produced locally in the kidney, suggesting that intrarenal generation of angiotensin II plays a key role in blood pressure regulation. Here, we show that two mouse models lacking renal angiotensin converting enzyme (ACE) are protected against angiotensin II and l-NAME induced hypertension. In response to hypertensive stimuli, mice lacking renal ACE do not produce renal angiotensin II. These studies indicate that the intrarenal renin-angiotensin system works as an entity separate from systemic angiotensin II generation. Renal ACE appears necessary for experimental hypertension.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kandarp H Shah
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am J Med Sci 2015; 348:416-22. [PMID: 25250989 DOI: 10.1097/maj.0000000000000335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence indicates that chronic angiotensin II (AngII) infusion increases (pro)renin receptor ((P)RR) expression in renal inner medullary collecting duct (IMCD) cells. Recently, it has been shown that renal (P)RR expression is augmented during a low-salt (LS) diet. However, the role of AngII in mediating the stimulation of (P)RR during LS conditions is unknown. We hypothesized that AngII mediates the increased expression of (P)RR during low-salt conditions in IMCDs. METHODS (P)RR expression and AngII levels were evaluated in Sprague-Dawley rats fed a LS diet (0.03% NaCl) and normal salt (NS; 0.4% NaCl) for 7 days. We examined the effects of sodium reduction (130 mM NaCl) and AngII on (P)RR expression in IMCDs isolated in hypertonic conditions (640 mOsmol/L with 280 mM NaCl). RESULTS Plasma renin activity in LS rats was significantly higher than rats fed with NS (28.1 ± 2.2 versus 6.7 ± 1.1 ng AngI·mL⁻¹·hr⁻¹; P < 0.05), as well as renin content in renal cortex and medulla. The (P)RR mRNA and protein levels were higher in medullary tissues from LS rats but did not change in the cortex. Intrarenal AngII was augmented in LS compared with NS rats (cortex: 710 ± 113 versus 277 ± 86 fmol/g, P < 0.05; medulla: 2093 ± 125 versus 1426 ± 126 fmol/g, P < 0.05). In cultured IMCDs, (P)RR expression was increased in response to LS or AngII treatment and potentiated by both treatments (both at 640 mOsmol/L). CONCLUSIONS These data indicate that (P)RR is augmented in medullary collecting ducts in response to LS and that this effect is further enhanced by the increased intrarenal AngII content.
Collapse
|
25
|
Wang F, Lu X, Peng K, Du Y, Zhou SF, Zhang A, Yang T. Prostaglandin E-prostanoid4 receptor mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Hypertension 2014; 64:369-77. [PMID: 24866147 DOI: 10.1161/hypertensionaha.114.03654] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin II (Ang II) stimulates (pro)renin receptor (PRR) expression in the renal collecting duct, triggering the local renin response in the distal nephron. Our recent study provided evidence for involvement of cyclooxygenase-2-prostaglandin E2 pathway in Ang II-dependent stimulation of PRR expression in the collecting duct. Here, we tested the role of E-prostanoid (EP) subtypes acting downstream of cyclooxygenase-2 in this phenomenon. In primary rat inner medullary collecting duct cells, Ang II treatment for 12 hours induced a 1.8-fold increase in the full-length PRR protein expression. To assess the contribution of EP receptor, the cell was pretreated with specific EP receptor antagonists: SC-51382 (for EP1), L-798106 (for EP3), L-161982 (for EP4), and ONO-AE3-208 (ONO, a structurally distinct EP4 antagonist). The upregulation of PRR expression by Ang II was consistently abolished by L-161982 and ONO and partially suppressed by SC-51382 but was unaffected by L-798106. The PRR expression was also significantly elevated by the EP4 agonist CAY10598 in the absence of Ang II. Sprague-Dawley rats were subsequently infused for 1 or 2 weeks with vehicle, Ang II alone, or in combination with ONO. Ang II infusion induced parallel increases in renal medullary PRR protein and renal medullary and urinary renin activity and total renin content, all of which were blunted by ONO. Both tail cuff plethysmography and telemetry demonstrated attenuation of Ang II hypertension by ONO. Overall, these results have established a crucial role of the EP4 receptor in mediating the upregulation of renal medullary PRR expression and renin activity during Ang II hypertension.
Collapse
Affiliation(s)
- Fei Wang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Xiaohan Lu
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Kexin Peng
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Yaomin Du
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Shu-Feng Zhou
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Aihua Zhang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Tianxin Yang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.).
| |
Collapse
|
26
|
Campbell DJ. Do intravenous and subcutaneous angiotensin II increase blood pressure by different mechanisms? Clin Exp Pharmacol Physiol 2014; 40:560-70. [PMID: 23551142 DOI: 10.1111/1440-1681.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023]
Abstract
Angiotensin (Ang) II plays a key role in blood pressure regulation. Mechanisms of the pressor effect of chronic intravenous AngII administration include vasoconstriction, stimulation of the sympathetic nervous system and aldosterone production, as well as direct effects on renal excretion of sodium and water. Chronic AngII administration by subcutaneous minipump at doses higher than required to increase blood pressure by the intravenous route has identified additional pressor mechanisms, including the immune system, cytokines and matrix metalloproteinases. However, pressor doses of subcutaneous AngII may exceed the angiotensinogen synthesis rate and produce inflammation, fibrosis and necrosis of skin overlying the minipump. Evidence that chronic subcutaneous and intravenous AngII increase blood pressure by different mechanisms includes the prevention of the pressor effects of subcutaneous, but not intravenous, AngII by angiotensin-converting enzyme inhibition. Furthermore, low doses of subcutaneous AngII reduce blood pressure of female, but not male, rodents and higher doses are less pressor in females than in males, whereas intravenous AngII is equally pressor in males and females. Pressor doses of chronic subcutaneous AngII produce greater weight loss, anorexia and reduced kidney weight and cause greater vascular, cardiac and renal pathology than equally pressor doses of chronic intravenous AngII. The different effects of chronic intravenous and subcutaneous AngII suggest that these two models of hypertension give different information and may differ in their relevance to blood pressure regulation in physiological and pathological states such as hypertension in humans.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Vic., Australia.
| |
Collapse
|
27
|
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne) 2014; 5:23. [PMID: 24592256 PMCID: PMC3938116 DOI: 10.3389/fendo.2014.00023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS) are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g., diabetes) and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans. Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations, we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unifies the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- *Correspondence: Jeppe Skov, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, Aarhus DK-8000, Denmark e-mail:
| | | | - Jørgen Frøkiær
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
28
|
Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, Padia SH, Carey RM. Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension 2012; 60:387-95. [PMID: 22689743 PMCID: PMC4011560 DOI: 10.1161/hypertensionaha.112.191403] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/16/2012] [Indexed: 12/15/2022]
Abstract
In angiotensin type 1 receptor-blocked rats, renal interstitial (RI) administration of des-aspartyl(1)-angiotensin II (Ang III) but not angiotensin II induces natriuresis via activation of angiotensin type 2 receptors. In the present study, renal function was documented during systemic angiotensin type 1 receptor blockade with candesartan in Sprague-Dawley rats receiving unilateral RI infusion of Ang III. Ang III increased urine sodium excretion, fractional sodium, and lithium excretion. RI coinfusion of specific angiotensin type 2 receptor antagonist PD-123319 abolished Ang III-induced natriuresis. The natriuretic response observed with RI Ang III was not reproducible with RI angiotensin (1-7) alone or together with angiotensin-converting enzyme inhibition. Similarly, neither RI angiotensin II alone or in the presence of aminopeptidase A inhibitor increased urine sodium excretion. In the absence of systemic angiotensin type 1 receptor blockade, Ang III alone did not increase urine sodium excretion, but natriuresis was enabled by the coinfusion of aminopeptidase N inhibitor and subsequently blocked by PD-123319. In angiotensin type 1 receptor-blocked rats, RI administration of aminopeptidase N inhibitor alone also induced natriuresis that was abolished by PD-123319. Ang III-induced natriuresis was accompanied by increased RI cGMP levels and was abolished by inhibition of soluble guanylyl cyclase. RI and renal tissue Ang III levels increased in response to Ang III infusion and were augmented by aminopeptidase N inhibition. These data demonstrate that endogenous intrarenal Ang III but not angiotensin II or angiotensin (1-7) induces natriuresis via activation of angiotensin type 2 receptors in the proximal tubule via a cGMP-dependent mechanism and suggest aminopeptidase N inhibition as a potential therapeutic target in hypertension.
Collapse
Affiliation(s)
- Brandon A. Kemp
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - John F. Bell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Daniele M. Rottkamp
- Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA
| | - Nancy L. Howell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Weijian Shao
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Shetal H. Padia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
29
|
Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. ACTA ACUST UNITED AC 2012; 9:207-18. [PMID: 22795463 DOI: 10.1016/j.genm.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system contributes to hypertension by regulating sodium and water reabsorption throughout the nephron. Sex differences in the intrarenal components of the renin-angiotensin system have been involved in the greater incidence of high blood pressure and progression to kidney damage in males than females. OBJECTIVE This study investigated whether there is a sex difference in the intrarenal gene expression and urinary excretion of angiotensinogen (AGT) during angiotensin II (Ang II)-dependent hypertension and high-salt (HS) diet. METHODS Male and female Sprague-Dawley rats were divided into 5 groups for each sex: Normal-salt control, HS diet (8% NaCl), Ang II-infused (80 ng/min), Ang II-infused plus HS diet, and Ang II-infused plus HS diet and treatment with the Ang II receptor blocker, candesartan (25 mg/L in the drinking water). Rats were evaluated for systolic blood pressure (SBP), kidney AGT mRNA expression, urinary AGT excretion, and proteinuria at different time points during a 14-day protocol. RESULTS Both male and female rats exhibited similar increases in urinary AGT, with increases in SBP during chronic Ang II infusion. HS diet greatly exacerbated the urinary AGT excretion in Ang II-infused rats; males had a 9-fold increase over Ang II alone and females had a 2.5-fold increase. Male rats displayed salt-sensitive SBP increases during Ang II infusion and HS diet, and female rats did not. In the kidney cortex, males displayed greater AGT gene expression than females during all treatments. During Ang II infusion, both sexes exhibited increases in AGT gene message compared with same-sex controls. In addition, HS diet combined with Ang II infusion exacerbated the proteinuria in both sexes. Concomitant Ang II receptor blocker treatment during Ang II infusion and HS diet decreased SBP and urinary AGT similarly in both sexes; however, the decrease in proteinuria was greater in the females. CONCLUSION During Ang II-dependent hypertension and HS diet, higher intrarenal renin-angiotensin system activation in males, as reflected by higher AGT gene expression and urinary excretion, indicates a mechanism for greater progression of high blood pressure and might explain the sex disparity in development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Vicky F Rands
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
30
|
Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nabi AHMN, Suzuki F, Nagai Y, Nakano D, Hitomi H, Kitada K, Urushihara M, Kobori H, Kohno M, Nishiyama A. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation 2012; 125:1402-13. [PMID: 22328542 DOI: 10.1161/circulationaha.111.064097] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The presence of chronic kidney disease is a significant independent risk factor for poor prognosis in patients with chronic heart failure. However, the mechanisms and mediators underlying this interaction are poorly understood. In this study, we tested our hypothesis that chronic cardiac volume overload leads to de novo renal dysfunction by coactivating the sympathetic nervous system and renin-angiotensin system in the kidney. We also examined the therapeutic potential of renal denervation and renin-angiotensin system inhibition to suppress renal injury in chronic heart failure. METHODS AND RESULTS Sprague-Dawley rats underwent aortic regurgitation and were treated for 6 months with vehicle, olmesartan (an angiotensin II receptor blocker), or hydralazine. At 6 months, albuminuria and glomerular podocyte injury were significantly increased in aortic regurgitation rats. These changes were associated with increased urinary angiotensinogen excretion, kidney angiotensin II and norepinephrine (NE) levels, and enhanced angiotensinogen and angiotensin type 1a receptor gene expression and oxidative stress in renal cortical tissues. Aortic regurgitation rats with renal denervation had decreased albuminuria and glomerular podocyte injury, which were associated with reduced kidney NE, angiotensinogen, angiotensin II, and oxidative stress. Renal denervation combined with olmesartan prevented podocyte injury and albuminuria induced by aortic regurgitation. CONCLUSIONS In this chronic cardiac volume-overload animal model, activation of the sympathetic nervous system augments kidney renin-angiotensin system and oxidative stress, which act as crucial cardiorenal mediators. Renal denervation and olmesartan prevent the onset and progression of renal injury, providing new insight into the treatment of cardiorenal syndrome.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Cardiorenal and Cerebrovascular Medicine Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ellis B, Li XC, Miguel-Qin E, Gu V, Zhuo JL. Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol 2011; 302:R494-509. [PMID: 22170616 DOI: 10.1152/ajpregu.00487.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ANG II is the most potent and important member of the classical renin-angiotensin system (RAS). ANG II, once considered to be an endocrine hormone, is now increasingly recognized to also play novel and important paracrine (cell-to-cell) and intracrine (intracellular) roles in cardiovascular and renal physiology and blood pressure regulation. Although an intracrine role of ANG II remains an issue of continuous debates and requires further confirmation, a great deal of research has recently been devoted to uncover the novel actions and elucidate underlying signaling mechanisms of the so-called intracellular ANG II in cardiovascular, neural, and renal systems. The purpose of this article is to provide a comprehensive review of the intracellular actions of ANG II, either administered directly into the cells or expressed as an intracellularly functional fusion protein, and its effects throughout a variety of target tissues susceptible to the impacts of an overactive ANG II, with a particular focus on the proximal tubules of the kidney. While continuously reaffirming the roles of extracellular or circulating ANG II in the proximal tubules, our review will focus on recent evidence obtained for the novel biological roles of intracellular ANG II in cultured proximal tubule cells in vitro and the potential physiological roles of intracellular ANG II in the regulation of proximal tubular reabsorption and blood pressure in rats and mice. It is our hope that the new knowledge on the roles of intracellular ANG II in proximal tubules will serve as a catalyst to stimulate further studies and debates in the field and to help us better understand how extracellular and intracellular ANG II acts independently or interacts with each other, to regulate proximal tubular transport and blood pressure in both physiological and diseased states.
Collapse
Affiliation(s)
- Brianne Ellis
- Laboratoory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
32
|
Howard CG, Mitchell KD. Renal functional responses to selective intrarenal renin inhibition in Cyp1a1-Ren2 transgenic rats with ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol 2011; 302:F52-9. [PMID: 21993885 DOI: 10.1152/ajprenal.00187.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin (ANG) II-dependent hypertension is characterized by increases in intrarenal ANG II levels, derangement in renal hemodynamics, and augmented tubular sodium reabsorptive capability. Increased nephron expression of renin-angiotensin system components, such as angiotensinogen by proximal tubule cells and renin by collecting duct principal cells, has been associated with an augmented ability of the kidney to form ANG II in hypertensive states. However, the contribution of de novo intrarenal ANG II production to the development and maintenance of ANG II-dependent hypertension remains unclear. The present study was performed to determine the effects of selective intrarenal renin inhibition on whole kidney hemodynamics and renal excretory function in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension in the absence of the confounding influence of associated reductions in mean arterial pressure (MAP). Male Cyp1a1-Ren2 transgenic rats were induced to develop malignant hypertension, anesthetized, and surgically prepared for intrarenal administration of the direct renin inhibitor aliskiren (0.01 mg/kg). Following acute aliskiren treatment, urine flow and sodium excretion increased (10.5 ± 1.1 to 15.9 ± 1.9 μl/min, P < 0.001; 550 ± 160 to 1,370 ± 320 neq/min, P < 0.001, respectively) and ANG II excretion decreased (120 ± 30 to 63 ± 17 fmol/h, P < 0.05). There were no significant changes in MAP, glomerular filtration rate, estimated renal plasma flow, plasma ANG II levels, or protein excretion. The present findings demonstrate that selective renal renin inhibition elicits diuretic and natriuretic responses in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension. Elevated intraluminal ANG II levels likely act to augment tubular reabsorptive function and, thereby, contribute to the elevated blood pressure in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension.
Collapse
Affiliation(s)
- Catherine G Howard
- Dept. of Physiology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA
| | | |
Collapse
|
33
|
Liu L, Gonzalez AA, McCormack M, Seth DM, Kobori H, Navar LG, Prieto MC. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol 2011; 301:F1195-201. [PMID: 21865264 DOI: 10.1152/ajprenal.00339.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renin expression in principal cells of collecting ducts (CD) is upregulated in angiotensin II (ANG II)-dependent hypertensive rats; however, it remains unclear whether increased CD-derived renin undergoes tubular secretion. Accordingly, urinary levels of renin (uRen), angiotensinogen (uAGT), and ANG II (uANG II) were measured in chronic ANG II-infused Sprague-Dawley rats (80 ng/min for 14 days, n = 10) and sham-operated rats (n = 10). Systolic blood pressure increased in the ANG II rats by day 5 and continued to increase throughout the study (day 13; ANG II: 175 ± 10 vs. sham: 116 ± 2 mmHg; P < 0.05). ANG II infusion increased renal cortical and medullary ANG II levels (cortical ANG II: 606 ± 72 vs. 247 ± 43 fmol/g; P < 0.05; medullary ANG II: 2,066 ± 116 vs. 646 ± 36 fmol/g; P < 0.05). Although plasma renin activity (PRA) was suppressed in the ANG II-infused rats (0.3 ± 0.2 vs. 5.5 ± 1.8 ng ANG I·ml(-1)·h(-1); P < 0.05), renin content in renal medulla was increased (12,605 ± 1,343 vs. 7,956 ± 765 ng ANG I·h(-1)·mg(-1); P < 0.05). Excretion of uAGT and uANG II increased in the ANG II rats [uAGT: 1,107 ± 106 vs. 60 ± 26 ng/day; P < 0.0001; uANG II: 3,813 ± 431 vs. 2,080 ± 361 fmol/day; P < 0.05]. By day 13, despite suppression of PRA, urinary prorenin content increased in ANG II rats [15.7 ± 3 vs. 2.6 ± 1 × 10(-3) enzyme units excreted (EUE)/day, P < 0.01] as was the excretion rate of renin (8.6 ± 2 × 10(-6) EUE/day) compared with sham (2.8 ± 1 × 10(-6) EUE/day; P < 0.05). Urinary renin and prorenin protein levels examined by Western blot were augmented ∼10-fold in the ANG II-infused rats. Concomitant AT(1) receptor blockade with candesartan prevented the increase. Thus, in ANG II-dependent hypertensive rats with marked PRA suppression, increased urinary levels of renin and prorenin reflect their augmented secretion by CD cells into the luminal fluid. The greater availability of renin and AGT in the urine reflects the capability for intratubular ANG II formation which stimulates sodium reabsorption in distal nephron segments.
Collapse
Affiliation(s)
- Liu Liu
- Dept. of Physiology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Mordwinkin NM, Russell JR, Burke AS, Dizerega GS, Louie SG, Rodgers KE. Toxicological and toxicokinetic analysis of angiotensin (1-7) in two species. J Pharm Sci 2011; 101:373-80. [PMID: 21858825 DOI: 10.1002/jps.22730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/12/2022]
Abstract
The objectives of this study were to determine the potential systemic and local toxicity, as well as evaluate the toxicokinetic (TK) profile of angiotensin (1-7) [A(1-7)] when administered daily via subcutaneous injection for 28 days to Sprague-Dawley rats and Beagle dogs. A(1-7) is a member of the renin-angiotensin system and has undergone clinical evaluation for the treatment of chemotherapy-induced myelosuppression. In this present study, A(1-7) was given at 10 mg/(kg day) for 28 days to rats and canines. At day 27, blood was harvested to evaluate the TK parameters. On day 28, systemic toxicology was evaluated. Following A(1-7) administration for 27 days, no plasma A(1-7) accumulation was detected in canines; however, increased A(1-7) plasma concentrations were detected in rats. Despite the accumulation observed in rats, no detectable toxicity was found following A(1-7) administration for 28 days. The TK analysis of A(1-7) revealed a plasma half-life of 20-30 min in both rats and canines. The time to maximum plasma concentration was found to be 15 and 26.25 min in rats and canines, respectively. This study shows that subcutaneous administration of A(1-7) at 10 mg/(kg day) for 28 days did not lead to any detectable toxicities in either rats or canines.
Collapse
|
35
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
36
|
Abstract
OBJECTIVE This study aimed to examine the effects of salt loading, with or without simultaneous angiotensin receptor blocker (ARB) treatment, on the systemic and tissue renin-angiotensin system (RAS) in spontaneously hypertensive rats (SHRs). METHOD Evaluation was performed early (4 weeks) in the course of salt loading in order to examine initial mediating events of cardiovascular and renal damage produced by salt excess. Four groups of rats were studied. Group 1 received regular rat chow (normal-salt diet); group 2 received normal-salt diet and an ARB (losartan, 30 mg/kg per day); group 3 received high-salt (8%) chow; and group 4 received high-salt diet and losartan. RESULTS High-salt diet increased systolic pressure to 193±1 mmHg compared to 180±2 in normal-salt diet group. Losartan reduced SBP in SHRs fed normal-salt diet but did not reduce SBP in the SHRs fed high-salt diet (192±2 mmHg). High-salt diet markedly increased urinary protein excretion from 27±4 to 64±13 mg/day and this increase was ameliorated by losartan (40±9 mg/day). In SHRs on high-salt diet, plasma angiotensin II concentration increased three to four-fold, whereas urinary angiotensinogen excretion increased 10-fold; and these changes were significantly reduced by losartan. High-salt diet accelerated glomerular injury and interstitial fibrosis in SHRs which were reduced by losartan. CONCLUSION These results demonstrate that the activity of RAS was either not suppressed or, even augmented, after 4 weeks of salt loading despite high salt intake and increased SBP. The data suggest that an augmented intrarenal RAS during high-salt diet may contribute to the development of renal injury in this experimental model.
Collapse
|
37
|
Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension 2011; 57:355-62. [PMID: 21282552 PMCID: PMC3073668 DOI: 10.1161/hypertensionaha.110.163519] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, SL39, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
38
|
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol 2011; 11:180-6. [PMID: 21339086 DOI: 10.1016/j.coph.2011.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/20/2022]
Abstract
The increased activity of intrarenal renin-angiotensin system (RAS) in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis and renal injury. Increases in intrarenal and interstitial angiotensin (Ang) II levels are due to increased AT(1) receptor mediated Ang II uptake and stimulation of renal angiotensinogen (AGT) mRNA and protein expression. Augmented proximal tubule AGT production increases tubular AGT secretion and spillover of AGT into the distal nephron and urine. Increased renin formation by principal cells of the collecting ducts forms Ang I from AGT thus increasing Ang II. The catalytic actions of renin and prorenin are enhanced by prorenin receptors (PRRs) on the intercalated cells. The resultant increased intrarenal Ang II levels contribute to the genesis of chronic hypertension.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
39
|
Gonzalez AA, Lara LS, Luffman C, Seth DM, Prieto MC. Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension 2011; 57:859-64. [PMID: 21321306 DOI: 10.1161/hypertensionaha.110.167957] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Renin synthesis and secretion by principal cells of the collecting duct are enhanced in angiotensin (Ang) II-dependent hypertension. The presence of renin/(pro)renin and its receptor, the (pro)renin receptor ([P]RR), in the collecting duct may provide a pathway for Ang I generation with further conversion to Ang II. To assess whether (P)RR activation occurs during Ang II-dependent hypertension, we examined renal (P)RR levels and soluble (P)RR excretion in the urine of chronic Ang II-infused rats (80 ng/min; for 2 weeks; n=10) and sham-operated rats (n=10). Systolic blood pressure and Ang II levels in the plasma and kidney were increased whereas plasma renin activity was suppressed in Ang II-infused rats. Renal (P)RR transcripts were upregulated in the cortex and medulla of Ang II-infused rats. (P)RR immunoreactivity in collecting duct cells and the protein levels of the full-length form (37-kDa band) were significantly decreased in the medulla of Ang II-infused rats. The soluble (P)RR (28-kDa band) was detected in the renal medulla and urine samples of Ang II-infused rats, which also showed increases in urinary renin content. To determine whether the soluble (P)RR could stimulate Ang I formation, urine samples were incubated with recombinant human (pro)renin. Urine samples of Ang II-infused rats exhibited increased Ang I formation compared with sham-operated rats. Thus, in chronic Ang II-infused rats, the catalytic activity of the augmented renin produced in the collecting duct may be enhanced by the intraluminal soluble (P)RR and cell-surface located (P)RR, thus contributing to enhanced intratubular Ang II formation.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Department of Physiology, Tulane University, School of Medicine, 1430 Tulane Ave, SL39, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
40
|
Prieto MC, González-Villalobos RA, Botros FT, Martin VL, Pagán J, Satou R, Lara LS, Feng Y, Fernandes FB, Kobori H, Casarini DE, Navar LG. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2011; 300:F749-55. [PMID: 21209009 DOI: 10.1152/ajprenal.00383.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alterations in the balance between ANG II/ACE and ANG 1-7/ACE2 in ANG II-dependent hypertension could reduce the generation of ANG 1-7 and contribute further to increased intrarenal ANG II. Upregulation of collecting duct (CD) renin may lead to increased ANG II formation during ANG II-dependent hypertension, thus contributing to this imbalance. We measured ANG I, ANG II, and ANG 1-7 contents, angiotensin-converting enzyme (ACE) and ACE2 gene expression, and renin activity in the renal cortex and medulla in the clipped kidneys (CK) and nonclipped kidneys (NCK) of 2K1C rats. After 3 wk of unilateral renal clipping, systolic blood pressure and plasma renin activity increased in 2K1C rats (n = 11) compared with sham rats (n = 9). Renal medullary angiotensin peptide levels were increased in 2K1C rats [ANG I: (CK = 171 ± 4; NCK = 251 ± 8 vs. sham = 55 ± 3 pg/g protein; P < 0.05); ANG II: (CK = 558 ± 79; NCK = 328 ± 18 vs. sham = 94 ± 7 pg/g protein; P < 0.001)]; and ANG 1-7 levels decreased (CK = 18 ± 2; NCK = 19 ± 2 pg/g vs. sham = 63 ± 10 pg/g; P < 0.001). In renal medullas of both kidneys of 2K1C rats, ACE mRNA levels and activity increased but ACE2 decreased. In further studies, we compared renal ACE and ACE2 mRNA levels and their activities from chronic ANG II-infused (n = 6) and sham-operated rats (n = 5). Although the ACE mRNA levels did not differ between ANG II rats and sham rats, the ANG II rats exhibited greater ACE activity and reduced ACE2 mRNA levels and activity. Renal medullary renin activity was similar in the CK and NCK of 2K1C rats but higher compared with sham. Thus, the differential regulation of ACE and ACE2 along with the upregulation of CD renin in both the CK and NCK in 2K1C hypertensive rats indicates that they are independent of perfusion pressure and contribute to the altered content of intrarenal ANG II and ANG 1-7.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
42
|
van den Heuvel M, van Esch JH, Danser AHJ. On the Origin of Urinary Angiotensin II. Hypertension 2010; 56:e45; author reply e46. [DOI: 10.1161/hypertensionaha.110.159798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mieke van den Heuvel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H.M. van Esch
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Shao W, Seth DM, Navar LG. Response to On the Origin of Urinary Angiotensin II. Hypertension 2010. [DOI: 10.1161/hypertensionaha.110.160036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weijian Shao
- Department of Physiology, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, La
| | - Dale M. Seth
- Department of Physiology, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, La
| | - L. Gabriel Navar
- Department of Physiology, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, La
| |
Collapse
|
44
|
Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am J Physiol Renal Physiol 2010; 299:F1040-7. [PMID: 20810610 DOI: 10.1152/ajprenal.00394.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The zebrafish is a valuable vertebrate model for kidney research. The majority of previous studies focused on the zebrafish pronephros, which comprises only two nephrons and is structurally simpler than the mesonephros of adult fish and the metanephros of mammals. To evaluate the zebrafish system for more complex studies of kidney development and regeneration, we investigated the development and postinjury regeneration of the mesonephros in adult zebrafish. Utilizing two transgenic zebrafish lines (wt1b::GFP and pod::NTR-mCherry), we characterized the developmental stages of individual mesonephric nephrons and the temporal-spatial pattern of mesonephrogenesis. We found that mesonephrogenesis continues throughout the life of zebrafish, with a rapid growth phase during the juvenile period and a slower phase in adulthood such that the total nephron number of juvenile and adult fish linearly correlates with body mass. Following gentamicin-induced renal injury, the zebrafish mesonephros can undergo de novo regeneration of mesonephric nephrons, a process known as neonephrogenesis. We found that wt1b expression was induced in individually dispersed cells in the mesonephric interstitium as early as 48 h following injury. These wt1b-expressing cells formed aggregates by 72-96 h following injury which proceeded to form nephrons. This suggests that wt1b may serve as an early marker of fated renal progenitor cells. The synchronous nature of regenerative neonephrogenesis suggests that this process may be useful for studies of nephron development.
Collapse
Affiliation(s)
- Weibin Zhou
- Univ. of Michigan Health System, 8220C MSRB III, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5646, USA
| | | | | | | | | |
Collapse
|
45
|
Ren Y, D'Ambrosio MA, Garvin JL, Carretero OA. Angiotensin II enhances connecting tubule glomerular feedback. Hypertension 2010; 56:636-42. [PMID: 20696981 DOI: 10.1161/hypertensionaha.110.153692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing Na delivery to epithelial Na channels (ENaCs) in the connecting tubule (CNT) causes dilation of the afferent arteriole (Af-Art), a process we call CNT glomerular feedback (CTGF). Angiotensin II (Ang II) stimulates ENaC in the collecting duct via Ang II type 1 receptors. We hypothesized that Ang II in the CNT lumen enhances CTGF by activation of Ang II type 1 receptors, protein kinase C and ENaC. Rabbit afferent arterioles and their adherent CNT were microperfused and preconstricted with norepinephrine. Each experiment involved generating 2 consecutive concentration-response curves by increasing NaCl in the CNT lumen. During the control period, the maximum dilation of the afferent arteriole was 7.9±0.4 μm, and the concentration of NaCl in the CNT needed to achieve half maximal response (EC(50)) was 34.7±5.2 mmol/L. After adding Ang II (10(-9) mol/L) to the CNT lumen, the maximal response was 9.5±0.7 μm and the EC(50) was 11.6±1.3 mmol/L (P=0.01 versus control). Losartan, an Ang II type 1 antagonist (10(-6) mol/L) blocked the stimulatory effect of Ang II; PD123319, an Ang II type 2 antagonist (10(-6) mol/L), did not. The protein kinase C inhibitor staurosporine (10(-8) mol/L) added to the CNT inhibited the stimulatory effect of Ang II. The ENaC inhibitor benzamil (10(-6) mol/L) prevented both CTGF and its stimulation by Ang II. We concluded that Ang II in the CNT lumen enhances CTGF via activation of Ang II type 1 and that this effect requires activation of protein kinase C and ENaC. Potentiation of CTGF by Ang II could help preserve glomerular filtration rate in the presence of renal vasoconstriction.
Collapse
Affiliation(s)
- Yilin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
46
|
Shao W, Seth DM, Navar LG. Angiotensin II type 1 receptor-mediated augmentation of urinary excretion of endogenous angiotensin II in Val5-angiotensin II-infused rats. Hypertension 2010; 56:378-83. [PMID: 20625079 DOI: 10.1161/hypertensionaha.110.153106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rats infused chronically with Val(5)-Angiotensin (Ang) II exhibit increased urinary excretion of endogenous Ile(5)-Ang II by the 12th day of infusion, suggesting the stimulation of endogenous Ang II formation by Val(5)-Ang II infusion. The present study determined the time course of increased urinary Ang II excretion and the effects of Ang II type 1 receptor blockade (candesartan, 2 mg/kg per day) on the urinary excretion rates of Ile(5)-Ang II in Val(5)-Ang II-infused (80 ng/min) rats. Ile(5)-Ang II was separated from Val(5)-Ang II by high-performance liquid chromatography and measured by radioimmunoassay. Systolic blood pressure increased progressively (215+/-2 mm Hg) in Val(5)-Ang II-infused rats (n=5), whereas the candesartan-treated group (n=6) remained normotensive (124+/-3 mm Hg). Candesartan treatment significantly increased the level of plasma Ile(5)-Ang II (24.0+/-7.6 versus 156.9+/-24.6 fmol/mL; P<0.01); in contrast, there was a markedly lower intrarenal Ile(5)-Ang II content (357.9+/-76.6 versus 21.1+/-2.8 fmol/g; P<0.01). Urinary Ile(5)-Ang II excretion rates were elevated by day 9 (2185.7+/-283.2 fmol/24 hours) in Val(5)-Ang II-infused rats but not in candesartan-treated rats (740.6+/-110.3 fmol/24 hours). Thus, Ang II type 1 receptor blockade prevents the increase in urinary excretion of endogenous Ang II in rats subjected to chronic Ang II infusion. These data indicate that the increased urinary excretion of endogenous Ang II in Val(5)-Ang II-infused rats is primarily attributed to Ang II type 1 receptor-dependent secretion into and/or de novo formation of Ang II within the tubular lumen.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, SL39, Tulane University Health Sciences Center, 1430 Tulane Ave, New Orleans, LA 70112.
| | | | | |
Collapse
|
47
|
Dagan A, Gattineni J, Habib S, Baum M. Effect of prenatal dexamethasone on postnatal serum and urinary angiotensin II levels. Am J Hypertens 2010; 23:420-4. [PMID: 20075846 DOI: 10.1038/ajh.2009.274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Prenatal programming of hypertension has been described in humans and in animal models that receive a prenatal insult, but the mechanism for the increase in blood pressure remains elusive. METHODS In male rats whose mothers received dexamethasone between days 15 and 18 of gestation systemic and urinary levels of angiotensin II were measured to determine whether angiotensin II was a potential factor for the generation (4 weeks of age) or maintenance (8 weeks of age) of hypertension. RESULTS A group 4- and 8-week-old male rats that were the product of a pregnancy where the mother received prenatal dexamethasone between days 15 and 18 of gestation had comparable plasma renin and angiotensin II levels to the offspring of vehicle-treated controls. Renal angiotensin II levels were not different at 4 and 8 weeks of age between the controls and the prenatal dexamethasone group. Urine angiotensin II/Creatinine levels, a reflection of filtered and renally generated and secreted angiotensin II, were higher at both 4 and 8 weeks of age in male rats that received prenatal dexamethasone compared to controls. CONCLUSIONS The high-urine angiotensin II levels in prehypertensive and hypertensive rats that were the product of mothers that received dexamethasone compared to vehicle suggest that luminal angiotensin II may play a role in the generation and maintenance of hypertension in this model of prenatal programming.
Collapse
|
48
|
Riquier-Brison ADM, Leong PKK, Pihakaski-Maunsbach K, McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. Am J Physiol Renal Physiol 2009; 298:F177-86. [PMID: 19864301 DOI: 10.1152/ajprenal.00464.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (ANG II) stimulates proximal tubule (PT) sodium and water reabsorption. We showed that treating rats acutely with the angiotensin-converting enzyme inhibitor captopril decreases PT salt and water reabsorption and provokes rapid redistribution of the Na(+)/H(+) exchanger isoform 3 (NHE3), Na(+)/Pi cotransporter 2 (NaPi2), and associated proteins out of the microvilli. The aim of the present study was to determine whether acute ANG II infusion increases the abundance of PT NHE3, NaPi2, and associated proteins in the microvilli available for reabsorbing NaCl. Male Sprague-Dawley rats were infused with a dose of captopril (12 microg/min for 20 min) that increased PT flow rate approximately 20% with no change in blood pressure (BP) or glomerular filtration rate (GFR). When ANG II (20 ng x kg(-1) x min(-1) for 20 min) was added to the captopril infusate, PT volume flow rate returned to baseline without changing BP or GFR. After captopril, NHE3 was localized to the base of the microvilli and NaPi2 to subapical cytoplasmic vesicles; after 20 min ANG II, both NHE3 and NaPi2 redistributed into the microvilli, assayed by confocal microscopy and density gradient fractionation. Additional PT proteins that redistributed into low-density microvilli-enriched membranes in response to ANG II included myosin VI, DPPIV, NHERF-1, ezrin, megalin, vacuolar H(+)-ATPase, aminopeptidase N, and clathrin. In summary, in response to 20 min ANG II in the absence of a change in BP or GFR, multiple proteins traffic into the PT brush-border microvilli where they likely contribute to the rapid increase in PT salt and water reabsorption.
Collapse
Affiliation(s)
- Anne D M Riquier-Brison
- Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
49
|
Alli AA, Gower WR. The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization. Am J Physiol Cell Physiol 2009; 297:C1157-67. [PMID: 19710363 DOI: 10.1152/ajpcell.00219.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arachidonic acid (AA) liberated from membrane phospholipids is known to activate phospholipase C gamma1 (PLCgamma1) concurrently with AHNAK in nonneuronal cells. The recruitment of AHNAK from the nucleus is required for it to activate PLCgamma1 at the plasma membrane. Here, we identify the C-type natriuretic peptide receptor (NPR-C), an atypical G protein-coupled receptor, as a protein binding partner for AHNAK1 in various cell types. Mass spectrometry and MASCOT analysis of excised bands from NPR-C immunoprecipitation studies revealed multiple signature peptides corresponding to AHNAK1. Glutathione S-transferase (GST) pulldown assays using GST- AHNAK1 fusion proteins corresponding to each of the distinct domains of AHNAK1 showed the C1 domain of AHNAK1 associates with NPR-C. The role of NPR-C in mediating AA-dependent AHNAK1 calcium signaling was explored in various cell types, including 3T3-L1 preadipocytes during the early stages of differentiation. Sucrose density gradient centrifugation studies showed AHNAK1 resides in the nucleus, cytoplasm, and at the plasma membrane, but small interfering RNA (siRNA)-mediated knockdown of NPR-C resulted in AHNAK1 accumulation in the nucleus. Overexpression of a portion of AHNAK1 resulted in augmentation of intracellular calcium mobilization, whereas siRNA-mediated knockdown of NPR-C or AHNAK1 protein resulted in attenuation of intracellular calcium mobilization in response to phorbol 12-myristate 13-acetate. We characterize the novel association between AHNAK1 and NPR-C and provide evidence that this association potentiates the AA-induced mobilization of intracellular calcium. We address the role of intracellular calcium in the various cell types that AHNAK1 and NPR-C were found to associate.
Collapse
Affiliation(s)
- Abdel A Alli
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, USA
| | | |
Collapse
|