1
|
Zhang J, Wang S, Liu Z, Zhong C, Lei Y, Zheng Q, Xu Y, Shan S, He H, Ren T. Connexin 25 maintains self-renewal and functions of airway basal cells for airway regeneration. Stem Cell Res Ther 2024; 15:286. [PMID: 39256871 PMCID: PMC11389295 DOI: 10.1186/s13287-024-03908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The formation of stem cell clones enables close contact of stem cells inside. The gap junctions in such clone spheres establish a microenvironment that allows frequent intercellular communication to maintain self-renewal and functions of stem cells. Nevertheless, the essential gap junction protein for molecular signaling in clones is poorly known. METHODS Primary human airway basal cells (hBCs) were isolated from brushing samples through bronchoscopy and then cultured. A tightly focused femtosecond laser was used to excite the local Ca2+ in an individual cell to initiate an internal Ca2+ wave in a clone to screen gap junction proteins. Immunoflourescence staining and clonogenicity assay were used to evaluate self-renewal and functions. RNA and protein levels were assessed by PCR and Western blot. Air-liquid interface assay was conducted to evaluate the differentiation potential. A Naphthalene injury mouse model was used to assess the regeneration potential. RESULTS Herein, we identify Connexin 25 (Cx25) dominates intercellular Ca2+ communications in clones of hBCs in vitro to maintain the self-renewal and pluripotency of them. The self-renewal and in vitro differentiation functions and in vivo regeneration potential of hBCs in an airway damage model are both regulated by Cx25. The abnormal expression of Cx25 is validated in several diseases including IPF, Covid-19 and bronchiectasis. CONCLUSION Cx25 is essential for hBC clones in maintaining self-renewal and functions of hBCs via gap junctions.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Mizdrak M, Ticinovic Kurir T, Mizdrak I, Kumric M, Krnic M, Bozic J. The Role of the Gap Junction Protein Connexin in Adrenal Gland Tumorigenesis. Int J Mol Sci 2024; 25:5399. [PMID: 38791437 PMCID: PMC11121959 DOI: 10.3390/ijms25105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Gap junctions (GJs) are important in the regulation of cell growth, morphology, differentiation and migration. However, recently, more attention has been paid to their role in the pathogenesis of different diseases as well as tumorigenesis, invasion and metastases. The expression pattern and possible role of connexins (Cxs), as major GJ proteins, under both physiological and pathological conditions in the adrenal gland, were evaluated in this review. The databases Web of Science, PubMed and Scopus were searched. Studies were evaluated if they provided data regarding the connexin expression pattern in the adrenal gland, despite current knowledge of this topic not being widely investigated. Connexin expression in the adrenal gland differs according to different parts of the gland and depends on ACTH release. Cx43 is the most studied connexin expressed in the adrenal gland cortex. In addition, Cx26, Cx32 and Cx50 were also investigated in the human adrenal gland. Cx50 as the most widespread connexin, along with Cx26, Cx29, Cx32, Cx36 and Cx43, has been expressed in the adrenal medulla with distinct cellular distribution. Considerable effort has recently been directed toward connexins as therapeutically targeted molecules. At present, there exist several viable strategies in the development of potential connexin-based therapeutics. The differential and hormone-dependent distribution of gap junctions within adrenal glands, the relatively large gap junction within this gland and the increase in the gap junction size and number following hormonal treatment would indicate that gap junctions play a pivotal role in cell functioning in the adrenal gland.
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Tina Ticinovic Kurir
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ivan Mizdrak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia;
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Mladen Krnic
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
3
|
Tossetta G, Fantone S, Senzacqua M, Galosi AB, Marzioni D, Morroni M. ZO-1 expression in normal human macula densa: Immunohistochemical and immunofluorescence investigations. J Anat 2023; 242:1184-1188. [PMID: 36719664 PMCID: PMC10184539 DOI: 10.1111/joa.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
The macula densa (MD) is an anatomical structure having a plaque shape, placed in the distal end of thick ascending limb of each nephron and belonging to juxtaglomerular apparatus (JGA). The aim of the present investigation is to investigate the presence of ZO-1, a specific marker of tight juncions (TJs), in MD cells. Six samples of normal human renal tissue were embedded in paraffin for ZO-1 expression analysis by immunohistochemical and immunofluorescence techniques. We detected ZO-1 expression in the apical part of cell membrane in MD cells by immunohistochemistry. In addition, ZO-1 and nNOS expressions (a specific marker of MD) were colocalized in MD cells providing clear evidence of TJs presence in normal human MD. Since ZO-1 is responsible for diffusion barrier formation, its presence in the MD supports the existence of a tubulomesangial barrier that ensures a regulated exchange between MD and JGA effectors in renal and glomerular haemodynamic homeostasis.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Benedetto Galosi
- Division of Urology, Department of Clinical and Specialist Sciences, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
4
|
Broeker KAE, Schrankl J, Fuchs MAA, Kurtz A. Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Arch 2022; 474:799-812. [PMID: 35511367 PMCID: PMC9338909 DOI: 10.1007/s00424-022-02694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
The protease renin, the key enzyme of the renin–angiotensin–aldosterone system, is mainly produced and secreted by juxtaglomerular cells in the kidney, which are located in the walls of the afferent arterioles at their entrance into the glomeruli. When the body’s demand for renin rises, the renin production capacity of the kidneys commonly increases by induction of renin expression in vascular smooth muscle cells and in extraglomerular mesangial cells. These cells undergo a reversible metaplastic cellular transformation in order to produce renin. Juxtaglomerular cells of the renin lineage have also been described to migrate into the glomerulus and differentiate into podocytes, epithelial cells or mesangial cells to restore damaged cells in states of glomerular disease. More recently, it could be shown that renin cells can also undergo an endocrine and metaplastic switch to erythropoietin-producing cells. This review aims to describe the high degree of plasticity of renin-producing cells of the kidneys and to analyze the underlying mechanisms.
Collapse
Affiliation(s)
- Katharina A E Broeker
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany.
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Michaela A A Fuchs
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| |
Collapse
|
5
|
Marshall JL, Noel T, Wang QS, Chen H, Murray E, Subramanian A, Vernon KA, Bazua-Valenti S, Liguori K, Keller K, Stickels RR, McBean B, Heneghan RM, Weins A, Macosko EZ, Chen F, Greka A. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 2022; 25:104097. [PMID: 35372810 PMCID: PMC8971939 DOI: 10.1016/j.isci.2022.104097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
High-resolution spatial transcriptomics enables mapping of RNA expression directly from intact tissue sections; however, its utility for the elucidation of disease processes and therapeutically actionable pathways remains unexplored. We applied Slide-seqV2 to mouse and human kidneys, in healthy and distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in tissue from nine distinct human kidneys, which revealed a cell neighborhood centered around a population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we detected changes in the cellular organization of the spatially restricted kidney filter and blood-flow-regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified previously unknown, disease-specific cell neighborhoods centered around macrophages. In a spatially restricted subpopulation of epithelial cells, we discovered perturbations in 77 genes associated with the unfolded protein response. Our studies illustrate and experimentally validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods.
Collapse
Affiliation(s)
- Jamie L. Marshall
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Teia Noel
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qingbo S. Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA 02115, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Haiqi Chen
- Program in Cell Circuits and Epigenetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Murray
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine A. Vernon
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Silvana Bazua-Valenti
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katie Liguori
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith Keller
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Robert R. Stickels
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02115, USA
- Division of Medical Science, Harvard University, Boston, MA 02115, USA
| | - Breanna McBean
- Broad Summer Research Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rowan M. Heneghan
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Astrid Weins
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Chen
- Program in Cell Circuits and Epigenetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anna Greka
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Gyarmati G, Shroff UN, Riquier-Brison A, Kriz W, Kaissling B, Neal CR, Arkill KP, Ahmadi N, Gill IS, Moon JY, Desposito D, Peti-Peterdi J. A new view of macula densa cell microanatomy. Am J Physiol Renal Physiol 2021; 320:F492-F504. [PMID: 33491562 DOI: 10.1152/ajprenal.00546.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Urvi Nikhil Shroff
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Anne Riquier-Brison
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim, Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christopher R Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kenton P Arkill
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, United Kingdom
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ju-Young Moon
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Dorinne Desposito
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Kosovic I, Filipovic N, Benzon B, Bocina I, Glavina Durdov M, Vukojevic K, Saraga M, Saraga-Babic M. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys. Int J Mol Sci 2020; 21:E8349. [PMID: 33172216 PMCID: PMC7664435 DOI: 10.3390/ijms21218349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control.
Collapse
Affiliation(s)
- Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Marijan Saraga
- Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| |
Collapse
|
8
|
Møller S, Jacobsen JCB, Holstein-Rathlou NH, Sorensen CM. Lack of Connexins 40 and 45 Reduces Local and Conducted Vasoconstrictor Responses in the Murine Afferent Arterioles. Front Physiol 2020; 11:961. [PMID: 32848881 PMCID: PMC7431600 DOI: 10.3389/fphys.2020.00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
The juxtaglomerular apparatus (JGA) is an essential structure in the regulation of renal function. The JGA embodies two major functions: tubuloglomerular feedback (TGF) and renin secretion. TGF is one of the mechanisms mediating renal autoregulation. It is initiated by an increase in tubular NaCl concentration at the macula densa cells. This induces a local afferent arteriolar vasoconstriction and a conducted response that can be measured several 100 μm upstream from the juxtaglomerular segment. This spread of the vasomotor response into the surrounding vasculature likely plays a key role in renal autoregulation, and it requires the presence of gap junctions, intercellular pores based on connexin (Cx) proteins. Several Cx isoforms are expressed in the JGA and in the arteriolar wall. Disruption of this communication pathway is associated with reduced TGF, dysregulation of renin secretion, and hypertension. We examine if the absence of Cx40 or Cx45, expressed in the endothelial and vascular smooth muscle cells respectively, attenuates afferent arteriolar local and conducted vasoconstriction. Afferent arterioles from wildtype and Cx-deficient mice (Cx40 and Cx45) were studied using the isolated perfused juxtamedullary nephron preparation. Vasoconstriction was induced via electrical pulse stimulation at the glomerular entrance. Inner afferent arteriolar diameter was measured locally and upstream to evaluate conducted vasoconstriction. Electrical stimulation induced local vasoconstriction in all groups. The local vasoconstriction was significantly smaller when Cx40 was absent. The vasoconstriction decreased in magnitude with increasing distance from the stimulation site. In both Cx40 and Cx45 deficient mice, the vasoconstriction conducted a shorter distance along the vessel compared to wild-type mice. In Cx40 deficient arterioles, this may be caused by a smaller local vasoconstriction. Collectively, these findings imply that Cx40 and Cx45 are central for normal vascular reactivity and, therefore, likely play a key role in TGF-induced regulation of afferent arteriolar resistance.
Collapse
Affiliation(s)
- Sophie Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels-Henrik Holstein-Rathlou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Zhang X, Mao Z, Huang Y, Zhang Z, Yao J. Gap junctions amplify TRPV4 activation-initiated cell injury via modification of intracellular Ca 2+ and Ca 2+-dependent regulation of TXNIP. Channels (Austin) 2020; 14:246-256. [PMID: 32752916 PMCID: PMC7515575 DOI: 10.1080/19336950.2020.1803552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The elevated intracellular Ca2+ and oxidative stress are well-reported mechanisms behind renal tubular epithelial injury initiated by various insults. Given that TRPV4 and connexin43 (Cx43) channels are activated by a wide range of stimuli and regulate both intracellular Ca2+ and redox status, we speculated an involvement of these channels in renal tubular cell injury. Here, we tested this possibility and explored the potential underlying mechanisms. Our results demonstrated that exposure of renal tubular epithelial cells to aminoglycoside G418 led to cell death, which was attenuated by both TRPV4 and gap junction (Gj) inhibitor. Activation of TRPV4 caused cell damage, which was associated with an early increase in Cx43 expression and function. Inhibition of Cx43 with chemical inhibitor or siRNA largely prevented TRPV4 activation-induced cell damage. Further analysis revealed that TRPV4 agonists elicited a rise in intracellular Ca2+ and caused a Ca2+-dependent elevation in TXNIP (a negative regulator of the antioxidant thioredoxin). In the presence of Gj inhibitor, however, these effects of TRPV4 were largely prevented. The depletion of intracellular Ca2+ with Ca2+ chelator BAPTA-AM or downregulation of TXNIP with siRNA significantly alleviated TRPV4 activation-initiated cell injury. Collectively, our results point to a critical involvement of TRPV4/Cx43 channel interaction in renal tubular cell injury through mechanisms involving a synergetic induction of intracellular Ca2+ and oxidative stress. Channel interactions could be an important mechanism underlying cell injury. Targeting channels could have therapeutic potential for the treatment of acute tubular cell injury.
Collapse
Affiliation(s)
- Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University , Shenyang, China.,Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| |
Collapse
|
10
|
Connexin Hemichannels Contribute to the Activation of cAMP Signaling Pathway and Renin Production. Int J Mol Sci 2020; 21:ijms21124462. [PMID: 32585970 PMCID: PMC7353028 DOI: 10.3390/ijms21124462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023] Open
Abstract
Connexin hemichannels play an important role in the control of cellular signaling and behaviors. Given that lowering extracellular Ca2+, a condition that activates hemichannels, is a well-characterized stimulator of renin in juxtaglomerular cells, we, therefore, tested a potential implication of hemichannels in the regulation of renin in As4.1 renin-secreting cells. Lowering extracellular Ca2+ induced hemichannel opening, which was associated with cAMP signaling pathway activation and increased renin production. Blockade of hemichannels with inhibitors or downregulation of Cxs with siRNAs abrogated the activation of cAMP pathway and the elevation of renin. Further analysis revealed that cAMP pathway activation was blocked by adenylyl cyclase inhibitor SQ 22536, suggesting an implication of adenyl cyclase. Furthermore, the participation of hemichannels in the activation of the cAMP signaling pathway was also observed in a renal tubular epithelial cell line NRK. Collectively, our results characterized the hemichannel opening as a presently unrecognized molecular event involved in low Ca2+-elicited activation of cAMP pathway and renin production. Our findings thus provide novel mechanistic insights into the low Ca2+-initiated cell responses. Given the importance of cAMP signaling pathway in the control of multiple cellular functions, our findings also highlight the importance of Cx-forming channels in various pathophysiological situations.
Collapse
|
11
|
Møller S, Jacobsen JCB, Braunstein TH, Holstein-Rathlou NH, Sorensen CM. Influence of connexin45 on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F732-F740. [DOI: 10.1152/ajprenal.00185.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal autoregulation is mediated by the myogenic response and tubuloglomerular feedback (TGF) working in concert to maintain renal blood flow and glomerular filtration rate despite fluctuations in renal perfusion pressure. Intercellular communication through gap junctions may play a role in renal autoregulation. We examine if one of the building blocks in gap junctions, connexin45 (Cx45), which is expressed in vascular smooth muscle cells, has an influence on renal autoregulatory efficiency. The isolated perfused juxtamedullary nephron preparation was used to measure afferent arteriolar diameter changes in response to acute changes in renal perfusion pressure. In segmental arteries, pressure myography was used to study diameter changes in response to pressure changes. Wire myography was used to study vasoconstrictor and vasodilator responses. A mathematical model of the vascular wall was applied to interpret experimental data. We found a significant reduction in the afferent arteriolar constriction in response to acute pressure increases in Cx45 knockout (KO) mice compared with wild-type (WT) mice. Abolition of TGF caused a parallel upward shift in the autoregulation curve of WT animals but had no effect in KO animals, which is compatible with TGF providing a basal tonic contribution in afferent arterioles whereas Cx45 KO animals were functionally papillectomized. Analysis showed a shift toward lower stress sensitivity in afferent arterioles from Cx45 KO animals, indicating that the absence of Cx45 may also affect myogenic properties. Finally, loss of Cx45 in vascular smooth muscle cells appeared to associate with a change in both structure and passive properties of the vascular wall.
Collapse
Affiliation(s)
- Sophie Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H. Braunstein
- Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels-Henrik Holstein-Rathlou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sorensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Huang Y, Mao Z, Zhang Z, Obata F, Yang X, Zhang X, Huang Y, Mitsui T, Fan J, Takeda M, Yao J. Connexin43 Contributes to Inflammasome Activation and Lipopolysaccharide-Initiated Acute Renal Injury via Modulation of Intracellular Oxidative Status. Antioxid Redox Signal 2019; 31:1194-1212. [PMID: 31319679 DOI: 10.1089/ars.2018.7636] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Inflammasome activation plays a pivotal role in many inflammatory diseases. Given that connexin (Cx) channels regulate numerous cellular events leading to inflammasome activation, we determined whether and how connexin affected inflammasome activation and inflammatory cell injury. Results: Exposure of mouse peritoneal macrophages (PMs) to lipopolysaccharide (LPS) plus ATP caused NLRP3 inflammasome activation, together with an increased connexin43 (Cx43). Inhibition of Cx43 blunted inflammasome activation. Consistently, PMs from the Cx43 heterozygous mouse (Cx43+/-) exhibited weak inflammasome activation, in comparison with those from the Cx43+/+ mouse. Further analysis revealed that inflammasome activation was preceded by an increased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 2 (NOX2), protein carbonylation, and mitogen-activated protein kinase (MAPK) activation. Suppression of ROS with antioxidant, downregulation of NOX2 with small interfering RNA (siRNA), or inhibition of NADPH oxidase or MAPKs with inhibitors blocked Cx43 elevation and inflammasome activation. Intriguingly, suppression of Cx43 also blunted NOX2 expression, protein carbonylation, p38 phosphorylation, and inflammasome activation. In a model of acute renal injury induced by LPS, the Cx43+/- mouse exhibited a significantly lower level of blood interleukin-1β (IL-1β), blood urea nitrogen, and urinary protein, together with milder renal pathological changes and renal expression of NLRP3 and NOX4, as compared with the Cx43+/+ mouse. Moreover, inhibition of gap junctions suppressed IL-1β- and tumor necrosis factor-α-induced expression of NOX4 in glomerular podocytes and tubular epithelial cells. Innovation and Conclusion: Our study indicates that Cx43 contributes to inflammasome activation and the progression of renal inflammatory cell injury through modulation of intracellular redox status. Cx43 could be a novel target for the treatment of certain inflammatory diseases.
Collapse
Affiliation(s)
- Yanru Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhimin Mao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhen Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Fumiko Obata
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiawen Yang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiling Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yong Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jian Yao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
13
|
Huang Y, Mao Z, Zhang X, Yang X, Sawada N, Takeda M, Yao J. Connexin43 Is Required for the Effective Activation of Spleen Cells and Immunoglobulin Production. Int J Mol Sci 2019; 20:ijms20225789. [PMID: 31752090 PMCID: PMC6888161 DOI: 10.3390/ijms20225789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Gap junctions (Gjs), formed by specific protein termed connexins (Cxs), regulate many important cellular processes in cellular immunity. However, little is known about their effects on humoral immunity. Here we tested whether and how Gj protein connexin43 (Cx43) affected antibody production in spleen cells. Detection of IgG in mouse tissues and serum revealed that wild-type (Cx43+/+) mouse had a significantly higher level of IgG than Cx43 heterozygous (Cx43+/−) mouse. Consistently, spleen cells from Cx43+/+ mouse produced more IgG under both basal and lipopolysaccharide (LPS)-stimulated conditions. Further analysis showed that LPS induced a more dramatic activation of ERK and cell proliferation in Cx43+/+ spleen cells, which was associated with a higher pro-oxidative state, as indicated by the increased NADPH oxidase 2 (NOX2), TXNIP, p38 activation and protein carbonylation. In support of a role of the oxidative state in the control of lymphocyte activation, exposure of spleen cells to exogenous superoxide induced Cx43 expression, p38 activation and IgG production. On the contrary, inhibition of NOX attenuated the effects of LPS. Collectively, our study characterized Cx43 as a novel molecule involved in the control of spleen cell activation and IgG production. Targeting Cx43 could be developed to treat certain antibody-related immune diseases.
Collapse
Affiliation(s)
- Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Xiling Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (N.S.); (M.T.)
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (N.S.); (M.T.)
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
- Correspondence: ; Tel.: +81-55-273-8074
| |
Collapse
|
14
|
Baig MS, Kolasa-Wołosiuk A, Pilutin A, Safranow K, Baranowska-Bosiacka I, Kabat-Koperska J, Wiszniewska B. Finasteride-Induced Inhibition of 5α-Reductase Type 2 Could Lead to Kidney Damage-Animal, Experimental Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101726. [PMID: 31100850 PMCID: PMC6572442 DOI: 10.3390/ijerph16101726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
In the pharmacological treatment of prostate cancer, benign prostatic hyperplasia and androgenetic alopecia finasteride is commonly used. This drug inhibits 5α-reductase type 2, which is why finasteride affects androgen homeostasis, since testosterone (T) cannot be reduced to dihydrotestosterone (DHT). As studies on sex-related renal injuries suggest a high probability of androgen-induced renal dysfunction, the aim of this study was to determine the potential harmful effects of finasteride on the kidneys of rats. The study was performed on sexually mature male Wistar rats given finasteride. Histological sections of the kidneys were used for immunohistochemical visualization of the androgen receptor (AR), junctional proteins (occluding (Occ); E-cad, N-cad, E-/N-cadherin; β-cat, β-catenin; connexin 43 (Cx43)), proliferating cell nuclear antigen (PCNA), IL-6, and lymphocyte markers (CD3 for T cell, CD19 for B cell). The TUNEL method was used for cell apoptosis identification, and picro sirius red staining was used to assess collagen fibers thickness. The levels of T, DHT and estradiol (E2) were determined in blood serum. It was shown that finasteride treatment affected steroid hormone homeostasis, altered the expression of AR and intracellular junction proteins, changed the ratio between cell apoptosis and proliferation, and caused lymphocyte infiltration and an increase of IL-6. The thickening of collagen fibers was observed as tubular fibrosis and glomerulosclerosis. Summarizing, finasteride-induced hormonal imbalance impaired the morphology (i.e., dysplastic glomeruli, swollen proximal convoluted tubules) and physiology (changed level of detected proteins/markers expression) of the kidneys. Therefore, it is suggested that patients with renal dysfunction or following renal transplantation, with androgen or antiandrogen supplementation, should be under special control and covered by extended diagnostics, because the adverse negative effect of DHT deficiency on the progression of kidney disease cannot be ignored.
Collapse
Affiliation(s)
- Mirza Saim Baig
- Department of Histology and Embryology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Agnieszka Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Joanna Kabat-Koperska
- Department of Nephrology, Transplantology and Internal Medicine Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
15
|
Nishiyama N, Yamaguchi T, Yoneyama M, Onaka Y, Ogita K. Disruption of Gap Junction-Mediated Intercellular Communication in the Spiral Ligament Causes Hearing and Outer Hair Cell Loss in the Cochlea of Mice. Biol Pharm Bull 2019; 42:73-80. [PMID: 30606991 DOI: 10.1248/bpb.b18-00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well-known that outer hair cell (OHC) loss occurs in the cochlea of animal models of permanent hearing loss induced by intense noise exposure. Our earlier studies demonstrated the production of hydroxynonenal and peroxynitrite, as well as the disruption of gap junction-mediated intercellular communication (GJIC), in the cochlear spiral ligament prior to noise-induced sudden hearing loss. The goal of the present study was to evaluate the mechanism underlying cochlear OHC loss after sudden hearing loss induced by intense noise exposure. In organ of Corti explant cultures from mice, no significant OHC loss was observed after in vitro exposure to 4-hydroxynonenal (a product of lipid peroxidation), H2O2, SIN-1 (peroxynitrite generator), and carbenoxolone (a gap junction inhibitor). Interestingly, in vivo intracochlear carbenoxolone injection through the posterior semicircular canal caused marked OHC and hearing loss, as well as the disruption of gap junction-mediated intercellular communication in the cochlear spiral ligament. However, no significant OHC loss was observed in vivo in animals treated with 4-hydroxynonenal and SIN-1. Taken together, our data suggest that disruption of GJIC in the cochlear lateral wall structures is an important cause of cochlear OHC loss in models of hearing loss, including those induced by noise.
Collapse
Affiliation(s)
- Norito Nishiyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yusuke Onaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
16
|
Cangiotti AM, Lorenzi T, Zingaretti MC, Fabri M, Morroni M. Polarized Ends of Human Macula Densa Cells: Ultrastructural Investigation and Morphofunctional Correlations. Anat Rec (Hoboken) 2018; 301:922-931. [PMID: 29266784 DOI: 10.1002/ar.23759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 11/07/2022]
Abstract
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela Maria Cangiotti
- Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| |
Collapse
|
17
|
The pivotal role of extracellular signal-regulated kinase in gap junction-mediated regulation of TXNIP. Cell Signal 2017; 38:116-126. [PMID: 28694028 DOI: 10.1016/j.cellsig.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
Gap junctions (GJs) play a major role in the control of cell structure, function, and metabolism. However, the molecular mechanisms involved are still poorly understood. Given that thioredoxin-interacting protein (TXNIP) regulates a broad range of cellular processes, we tested the possible involvement of TXNIP. Disruption of GJs with several chemical GJ inhibitors or connexin43 (Cx43) siRNA potently suppressed TXNIP, which was preceded by an activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK or its upstream kinase with chemical inhibitors prevented the reduction of TXNIP. On the contrary, activation of ERK with mitogens or phosphatase inhibitors reproduced the suppressive effects of GJs. Further analysis revealed that dysfunction of GJs promoted TXNIP phosphorylation, ubiquitination, and degradation, whereas inhibition of ERK exerted the opposite effects. Moreover, inhibition of GJs elevated Glut1 and enhanced cell resistance to ER stress in a similar way to TXNIP downregulation. Collectively, our study thus characterizes ERK-mediated suppression of TXNIP as a presently unreported mechanism by which GJs regulate cell behaviors.
Collapse
|
18
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
19
|
Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol 2016; 9:198-209. [PMID: 27567473 PMCID: PMC5007435 DOI: 10.1016/j.redox.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+), heterozygous (Cx43+/-) and knockout (Cx43-/-) littermates showed that Cx43-positive cells (Cx43+/+) exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-). Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH). Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status. The mechanisms about the coordinated regulation of cell junctions are obscure. Ca2+ depletion activates hemichannels and disrupts cell junctions. Hemichannel opening exaggerates oxidative stress via efflux of GSH. Blocking hemichannels attenuates oxidative stress and cell junction disassembly. Hemichannels regulate cell junctions via modulation of intracellular redox status.
Collapse
|
20
|
Zhang X, Yao J, Gao K, Chi Y, Mitsui T, Ihara T, Sawada N, Kamiyama M, Fan J, Takeda M. AMPK Suppresses Connexin43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis. Sci Rep 2016; 6:19708. [PMID: 26806558 PMCID: PMC4726257 DOI: 10.1038/srep19708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
Bladder voiding dysfunction is closely related to local oxidation, inflammation, and enhanced channel activities. Given that the AMP-activated protein kinase (AMPK) has anti-oxidative, anti-inflammatory and channel-inhibiting properties, we examined whether and how AMPK affected bladder activity. AMPK activation in rat bladder smooth muscle cells (BSMCs) using three different AMPK agonists resulted in a decrease in connexin43 (Cx43) expression and function, which was associated with reduced CREB phosphorylation, Cx43 promoter activity and mRNA expression, but not Cx43 degradation. Downregulation of CREB with siRNA increased Cx43 expression. A functional analysis revealed that AMPK weakened BSMC contraction and bladder capacity. AMPK also counteracted the IL-1β- and TNFα-induced increase in Cx43 in BSMCs. In vivo administration of the AMPK agonist AICAR attenuated cyclophosphamide-initiated bladder oxidation, inflammation, Cx43 expression and voiding dysfunction. Further analysis comparing the responses of the wild-type (Cx43(+/+)) and heterozygous (Cx43(+/-)) Cx43 mice to cyclophosphamide revealed that the Cx43(+/-) mice retained a relatively normal micturition pattern compared to the Cx43(+/+) mice. Taken together, our results indicate that AMPK inhibits Cx43 in BSMCs and improves bladder activity under pathological conditions. We propose that strategies that target AMPK can be developed as novel therapeutic approaches for treating bladder dysfunction.
Collapse
Affiliation(s)
- Xiling Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- Department of Urology, The 4th affiliated hospital of China Medical University, Shenyang, China
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Tatsuya Ihara
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Manabu Kamiyama
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
21
|
Upregulation of connexin43 contributes to PX-12-induced oxidative cell death. Tumour Biol 2015; 37:7535-46. [PMID: 26684802 DOI: 10.1007/s13277-015-4620-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/10/2015] [Indexed: 01/24/2023] Open
Abstract
Thioredoxin (Trx) is a small redox protein that underlies aggressive tumor growth and resistance to chemotherapy. Inhibition of Trx with the chemical inhibitor PX-12 suppresses tumor growth and induces cell apoptosis. Currently, the mechanism underlying the therapeutic actions of PX-12 and the molecules influencing cell susceptibility to PX-12 are incompletely understood. Given that connexin43 (Cx43), a tumor suppressor, regulates tumor cell susceptibility to chemotherapy, we examined the possible involvement of Cx43 in PX-12-induced cell death. Exposure of cells to PX-12 led to a loss of cell viability, which was associated with the activation of oxidative sensitive c-Jun N-terminal kinase (JNK). Inhibition of JNK or supplement of cells with anti-oxidants prevented the cell-killing action of PX-12. The forced expression of Cx43 in normal and tumor cells increased cell sensitivity to PX-12-induced JNK activation and cell death. In contrast, the downregulation of Cx43 with siRNA or the suppression of gap junctions with chemical inhibitors attenuated JNK activation and enhanced cell resistance to PX-12. Further analysis revealed that PX-12 at low concentrations induced a JNK-dependent elevation in the Cx43 protein, which was also preventable by supplementing the cells with anti-oxidants. Our results thus indicate that Cx43 is a determinant in the regulation of cell susceptibility to PX-12 and that the upregulation of Cx43 may be an additional mechanism by which PX-12 exerts its anti-tumor actions.
Collapse
|
22
|
Gao K, Chi Y, Zhang X, Zhang H, Li G, Sun W, Takeda M, Yao J. A novel TXNIP-based mechanism for Cx43-mediated regulation of oxidative drug injury. J Cell Mol Med 2015; 19:2469-80. [PMID: 26154105 PMCID: PMC4594688 DOI: 10.1111/jcmm.12641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/28/2015] [Indexed: 01/28/2023] Open
Abstract
Gap junctions (GJs) play an important role in the regulation of cell response to many drugs. However, little is known about their mechanisms. Using an in vitro model of cytotoxicity induced by geneticin (G418), we explored the potential signalling mechanisms involved. Incubation of cells with G418 resulted in cell death, as indicated by the change in cell morphology, loss of cell viability and activation of caspase-3. Before the onset of cell injury, G418 induced reactive oxygen species (ROS) generation, activated oxidative sensitive kinase P38 and caused a shift of connexin 43 (Cx43) from non-phosphorylated form to hyperphosphorylated form. These changes were largely prevented by antioxidants, suggesting an implication of oxidative stress. Downregulation of Cx43 with inhibitors or siRNA suppressed the expression of thioredoxin-interacting protein (TXNIP), activated Akt and protected cells against the toxicity of G418. Further analysis revealed that inhibition of TXNIP with siRNA activated Akt and reproduced the protective effect of Cx43-inhibiting agents, whereas suppression of Akt sensitized cells to the toxicity of G418. Furthermore, interference of TXNIP/Akt also affected puromycin- and adriamycin-induced cell injury. Our study thus characterized TXNIP as a presently unrecognized molecule implicated in the regulatory actions of Cx43 on oxidative drug injury. Targeting Cx43/TXNIP/Akt signalling cascade might be a promising approach to modulate cell response to drugs.
Collapse
Affiliation(s)
- Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiling Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hui Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Gang Li
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Urology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
23
|
Chi Y, Gao K, Li K, Nakajima S, Kira S, Takeda M, Yao J. Purinergic control of AMPK activation by ATP released through connexin 43 hemichannels - pivotal roles in hemichannel-mediated cell injury. J Cell Sci 2014; 127:1487-99. [PMID: 24496445 DOI: 10.1242/jcs.139089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Connexin hemichannels regulate many cell functions. However, the molecular mechanisms involved remain elusive. Hemichannel opening causes loss of ATP, we therefore speculated a potential role for AMPK in the biological actions of hemichannels. Activation of hemichannels by removal of extracellular Ca(2+) led to an efflux of ATP and a weak activation of AMPK. Unexpectedly, dysfunction of hemichannels markedly potentiated AMPK activation, which was reproduced by promotion of extracellular ATP degradation or inhibition of P2 purinoceptors but counteracted by exogenous ATP. Further analysis revealed that ATP induced a purinoceptor-dependent activation of Akt and mTOR. Suppression of Akt or mTOR augmented AMPK activation, whereas activation of Akt by transfection of cells with myristoylated Akt, a constitutively active form of Akt, abolished AMPK activation. In a pathological model of hemichannel opening triggered by Cd(2+), disclosure of hemichannels similarly enhanced AMPK activity, which protected cells from Cd(2+)-induced cell injury through suppression of mTOR. In summary, our data point to a channel-mediated mechanism for the regulation of AMPK through a purinergic signaling pathway. Furthermore, we define AMPK as a pivotal molecule that underlies the regulatory effects of hemichannels on cell survival.
Collapse
Affiliation(s)
- Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Li K, Chi Y, Gao K, Yan Q, Matsue H, Takeda M, Kitamura M, Yao J. Connexin43 hemichannel-mediated regulation of connexin43. PLoS One 2013; 8:e58057. [PMID: 23460926 PMCID: PMC3584027 DOI: 10.1371/journal.pone.0058057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 01/31/2013] [Indexed: 01/24/2023] Open
Abstract
Background Many signaling molecules and pathways that regulate gap junctions (GJs) protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43) hemichannels were activated by cadmium (Cd2+), we tested this hypothesis. Principal Findings Incubation of Cx43-transfected LLC-PK1 cells with Cd2+ led to an increased expression of Cx43. This effect of Cd2+ was tightly associated with JNK activation. Inhibition of JNK abolished the elevation of Cx43. Further analysis revealed that the changes of JNK and Cx43 were controlled by GSH. Supplement of a membrane-permeable GSH analogue GSH ethyl ester or GSH precursor N-acetyl-cystein abrogated the effects of Cd2+ on JNK activation and Cx43 expression. Indeed, Cd2+ induced extracellular release of GSH. Blockade of Cx43 hemichannels with heptanol or Cx43 mimetic peptide Gap26 to prevent the efflux of GSH significantly attenuated the Cx43-elevating effects of Cd2+. Conclusions Collectively, our results thus indicate that Cd2+-induced upregulation of Cx43 is through activation of nonjunctional Cx43 hemichannels. Our findings thus support the existence of a hemichannel-mediated self-regulation of Cx43 and provide novel insights into the molecular mechanisms of Cx43 expression and function.
Collapse
Affiliation(s)
- Kai Li
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
- * E-mail: (JY); (KL)
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Qiaojing Yan
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University School of Medicine, Chiba, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- * E-mail: (JY); (KL)
| |
Collapse
|
25
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
26
|
Yan Q, Gao K, Chi Y, Li K, Zhu Y, Wan Y, Sun W, Matsue H, Kitamura M, Yao J. NADPH oxidase-mediated upregulation of connexin43 contributes to podocyte injury. Free Radic Biol Med 2012; 53:1286-97. [PMID: 22824863 DOI: 10.1016/j.freeradbiomed.2012.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
The gap junction protein connexin43 (Cx43) was markedly increased in podocytes in a rat model of nephrosis induced by puromycin. However, the mechanisms and roles of the altered Cx43 in podocytes are still unclear. Given that oxidative stress mediates podocyte injury under a variety of pathological situations, we examined the possible involvement of an oxidative stress-related mechanism in the regulation of Cx43. Incubation of podocytes with puromycin led to a time- and concentration-dependent loss of cell viability, which was preceded by an elevation in Cx43 levels. Concomitantly, puromycin also induced NOX4 expression and promoted superoxide (O(2)(·-)) generation. Inhibition of NADPH oxidase with apocynin and diphenyleneiodonium chloride or addition of the superoxide dismutase mimetic tempol completely abrogated, whereas the O(2)(·-) donors menadione and 2,3-dimethoxy-1,4-naphthoquinone reproduced, the effects of puromycin on Cx43 expression and cell injury. Further analysis demonstrated that treatment of podocytes with several structurally different gap-junction inhibitors significantly attenuated the cytotoxicity of puromycin. Our results thus indicate that NADPH oxidase-mediated upregulation of Cx43 contributes to podocyte injury.
Collapse
Affiliation(s)
- Qiaojing Yan
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kurtz A. Renal connexins and blood pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1903-8. [PMID: 21683057 DOI: 10.1016/j.bbamem.2011.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/27/2022]
Abstract
The kidneys are centrally involved in the regulation of blood pressure. Kidney function requires the coordinated actions of a number of different vascular and tubular cell types in the renal vasculature and in the renal tubular system. The intrarenal coordination of these actions is not well understood. Since gap junctions have been identified in the kidneys, possible pathways involved in this context could be direct intercellular communication via gap junctions or via connexin hemichannels. In this context nine different connexins have been found to be expressed in the kidney, either localized to the vasculature or to the tubular system. Evidence is arising that malfunctions of certain connexins have an impact on the capability of the kidney to maintain blood pressure homeostasis. Findings reported in this context will be outlined and discussed in this review. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Armin Kurtz
- University of Regensburg, Regensburg, Germany.
| |
Collapse
|
28
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
30
|
Li K, Yao J, Shi L, Sawada N, Chi Y, Yan Q, Matsue H, Kitamura M, Takeda M. Reciprocal regulation between proinflammatory cytokine-induced inducible NO synthase (iNOS) and connexin43 in bladder smooth muscle cells. J Biol Chem 2011; 286:41552-41562. [PMID: 21965676 DOI: 10.1074/jbc.m111.274449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions (GJs) play an important role in the control of bladder contractile response and in the regulation of various immune inflammatory processes. Here, we investigated the possible interaction between inflammation and GJs in bladder smooth muscle cells (BSMCs). Stimulation of BSMCs with IL1β and TNFα increased connexin43 (Cx43) expression and function, which was associated with increased phosphorylation of vasodilator-stimulated phosphoprotein. Inhibition of PKA with H89 or down-regulation of CREB with specific siRNAs largely abolished the Cx43-elevating effect. Further analysis revealed that IL1β/TNFα induced NFκB-dependent inducible NO synthase (iNOS) expression. Inhibition of iNOS with G-nitro-l-arginine methyl ester abrogated and an exogenous NO donor mimicked the effect of the cytokines on Cx43. Intraperitoneal injection of LPS into mice also induced bladder Cx43 expression, which was largely blocked by an iNOS inhibitor. Finally, the elevated Cx43 was found to negatively regulate iNOS expression. Dysfunction of GJs with various blockers or down-regulation of Cx43 with siRNA significantly potentiated the expression of iNOS. Fibroblasts from Cx43 knock-out (Cx43(-/-)) mice also displayed a significantly higher response to the cytokine-induced iNOS expression than cells from Cx43 wild-type (Cx43(+/+)) littermates. Collectively, our study revealed a previously unrecognized reciprocal regulation loop between cytokine-induced NO and GJs. Our findings may provide an important molecular mechanism for the symptoms of bladder infection. In addition, it may further our understanding of the roles of GJs in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Li
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan; Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan; Department of Oncology, China Medical University, Shenyang 110001, China
| | - Jian Yao
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | - Liye Shi
- Department of Cardiology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yuan Chi
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Qiaojing Yan
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
31
|
Desforges B, Savarin P, Bounedjah O, Delga S, Hamon L, Curmi PA, Pastré D. Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity. Am J Physiol Cell Physiol 2011; 301:C705-16. [PMID: 21677260 DOI: 10.1152/ajpcell.00128.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.
Collapse
Affiliation(s)
- Bénédicte Desforges
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale U, Université Evry-Val d’Essonne, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 2011; 14:2427-39. [PMID: 21235398 PMCID: PMC3096519 DOI: 10.1089/ars.2010.3150] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the potential involvement of connexin hemichannels in cadmium ions (Cd(2+))-elicited cell injury. Transfection of LLC-PK1 cells with a wild-type connexin43 (Cx43) sensitized them to Cd(2+)-elicited cell injury. The cell susceptibility to Cd(2+) was increased by depletion of glutathione (GSH) with DL-buthionine-[S,R]-sulfoximine, and decreased by N-acetyl-cysteine or glutathione reduced ethyl ester. Fibroblasts derived from Cx43 wild-type (Cx43+/+) and knockout (Cx43-/-) fetal littermates displayed different susceptibility to Cd(2+). Cd(2+) induced a higher concentration of reactive oxygen species, a stronger activation c-Jun N-terminal kinase, and significantly more severe cell injury in Cx43+/+ fibroblasts, as compared with Cx43-/- fibroblasts. Cd(2+) caused a reduction in intracellular GSH, whereas it elevated extracellular GSH. This effect of Cd(2+) was more dramatic in Cx43+/+ than Cx43-/- fibroblasts. Treatment of Cx43+/+ fibroblasts with Cd(2+) caused a Cx43 hemichannel-dependent influx of Lucifer Yellow and efflux of ATP. Collectively, our study demonstrates that Cx43 sensitizes cells to Cd(2+)-initiated cytotoxicity, possibly through hemichannel-mediated effects on intracellular oxidative status.
Collapse
Affiliation(s)
- Xin Fang
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Piao H, Sato A, Nozawa Y, Sun W, Morioka T, Oite T. Effects of connexin-mimetic peptides on perfusion pressure in response to phenylephrine in isolated, perfused rat kidneys. Clin Exp Nephrol 2011; 15:203-11. [PMID: 21153751 DOI: 10.1007/s10157-010-0382-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Gap junction intercellular communication plays a fundamental role in various tissues and organs. Gap junctions transfer ions and molecules between adjacent cells and are formed by connexins (Cx). It is supposed that vascular conducted responses, which most likely spread through gap junctions in vascular beds, regulate microcirculatory blood flow and maintain vascular resistance. This study provides functional evidence supporting the critical role of gap junctions in a physiological setting and in phenylephrine (PE)-induced vasoconstriction using an ex vivo kidney perfusion technique. METHODS Using the isolated, perfused kidney model, infusion of gap junction inhibitors and PE, we examined the local effect of gap junction communication. Additionally, gap junction proteins Cx37, Cx40 and Cx43 were detected by immunofluorescence. RESULTS First, changes in the perfusion pressure were analyzed by infusing the nonselective gap junction uncoupler, 18α-glycyrrhetinic acid (18α-GA), and specific connexin-mimetic peptide inhibitors, (37,43)Gap27, (40)Gap27 and (43)Gap26. Administration of 18α-GA and (43)Gap26 significantly elevated perfusion pressure while infusion of (40)Gap27 and (37,43)Gap27 had no effect. Second, we examined the effect of infusing gap junction inhibitors on PE-induced vasoconstriction. Infusion of 18α-GA and (40)Gap27 significantly suppressed the increase in perfusion pressure induced by PE, while (43)Gap26 and (37,43)Gap27 had no effect. Third, we confirmed by immunofluorescence that Cx37, Cx40 and Cx43 were found in the endothelial cells of interstitial microvessels and that Cx40 was localized in glomerular mesangial cells as well as in smooth muscle cells of the juxtaglomerular area. CONCLUSIONS This study showed that Cx43 plays a pivotal role in regulating renal vascular resistance and that Cx40 attenuates PE-induced vasoconstriction. These results provide new evidence that gap junctions may control renal circulation and vascular responses.
Collapse
Affiliation(s)
- Honglan Piao
- Department of Cellular Physiology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Nakanishi K, Nagai Y, Honglan Piao, Akimoto T, Kato H, Yanakieva-Georgieva N, Ishikawa Y, Yoshihara K, Ito K, Yamanaka N, Oite T. Changes in renal vessels following the long-term administration of an angiotensin II receptor blocker in Zucker fatty rats. J Renin Angiotensin Aldosterone Syst 2011; 12:65-74. [PMID: 21385769 DOI: 10.1177/1470320310387844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The nephro-protective effects of angiotensin II receptor blockers (ARBs) are widely known; however, there are few reports of long-term effects focusing on the renal vessels. We studied afferent arteriolar changes induced by the long-term administration of an ARB. MATERIALS AND METHODS Thirty-two 6-week-old male Zucker fatty rats (ZFRs) were divided into following four groups (n = 8 in each): ZFR Group and ZFR+High Group fed a standard or high-salt diet, respectively; ZFR+ARB Group and ZFR+High+ARB Group fed a standard or high-salt diet with ARB (Olmesartan, 5 mg/kg/day), respectively. Blood pressure, proteinuria, morphological examinations and glomerular haemodynamics in vivo were studied. RESULTS Marked proliferative changes in the afferent arteriolar smooth muscle cells (SMCs) were frequently observed in the two groups given ARBs; in the ZFR+ARB group (77.3±10.3%) compared with the two groups without ARB (1.7%, p < 0.005; 1.2%, p < 0.0005) and 37.4±15.6% in the ZFR+High+ARB group. Proteinuria markedly decreased in the groups treated with ARBs, but the glomerular erythrocyte velocities showed no differences. CONCLUSIONS Our findings indicate that long-term ARB administration induced unusual proliferative changes in SMCs of afferent arterioles of ZFRs. These changes could narrow arteriolar lumens and reduce intraglomerular pressure, but they could cause also irreversible damage to the arterioles.
Collapse
Affiliation(s)
- Kazushige Nakanishi
- Department of General medicine and Emergency care, Faculty of Medicine, Toho University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yao J, Huang T, Fang X, Chi Y, Zhu Y, Wan Y, Matsue H, Kitamura M. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury. Br J Pharmacol 2010; 160:2055-68. [PMID: 20649601 DOI: 10.1111/j.1476-5381.2010.00860.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor alpha-glycyrrhetinic acid (alpha-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of alpha-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by alpha-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury.
Collapse
Affiliation(s)
- Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.
Collapse
|
37
|
Huang T, Zhu Y, Fang X, Chi Y, Kitamura M, Yao J. Gap junctions sensitize cancer cells to proteasome inhibitor MG132-induced apoptosis. Cancer Sci 2010; 101:713-21. [PMID: 19961488 PMCID: PMC11159102 DOI: 10.1111/j.1349-7006.2009.01421.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteasome inhibition is a promising approach for cancer therapy. However, the mechanisms involved have not been fully elucidated. Gap junctions play important roles in the regulation of tumor cell phenotypes and mediation of the bystander effect in cancer therapy. Because the degradation of gap junction proteins involves the proteasome, we speculated that altered gap junctions might contribute to the antitumor activities of proteasome inhibition. Incubation of Hepa-1c1c7 cells with the proteasome inhibitor MG132 elevated the levels of gap junction protein connexin 43 (Cx43) and promoted gap junctional intercellular communication. This was associated with a marked accumulation of ubiquitylated Cx43 and a significantly decreased rate of Cx43 degradation. The elevated Cx43 contributed to MG132-induced cell apoptosis. This is shown by the observations that: (i) overexpression of Cx43 in the gap junction-deficient LLC-PK1 cells rendered them vulnerable to MG132-elicited cell injury; (ii) fibroblasts derived from Cx43-null mice were more resistant to MG-132 compared with Cx43 wild-type control; and (iii) the gap junction inhibitor flufenamic acid significantly attenuated cell damage caused by MG132 in Hepa-1c1c7 cells. Further studies demonstrated that MG132 activates endoplasmic reticulum stress. Exposure of cells to the endoplasmic reticulum stress inducers thapsigargin and tunicamycin also led to cell apoptosis, which was modulated by Cx43 levels in a way similar to MG132. These results suggested that elevated Cx43 sensitizes cells to MG132-induced cell apoptosis. Regulation of gap junctions could be an important mechanism behind the antitumor activities of proteasome inhibitors.
Collapse
Affiliation(s)
- Tao Huang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Peti-Peterdi J, Toma I, Sipos A, Vargas SL. Multiphoton imaging of renal regulatory mechanisms. Physiology (Bethesda) 2009; 24:88-96. [PMID: 19364911 DOI: 10.1152/physiol.00001.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|