1
|
Yagi F, Yamada Y, Yamada M, Yokoyama Y, Kozuka A, Hashimoto M, Otake Y, Sato Y, Chubachi S, Nozaki T, Hatabu H, Fukunaga K, Jinzaki M. Differences in lung attenuation gradients between supine and standing positions in healthy participants on conventional/supine and upright computed tomography. Sci Rep 2024; 14:21493. [PMID: 39277695 PMCID: PMC11401888 DOI: 10.1038/s41598-024-72786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The effect of gravity on the lungs has been evaluated using computed tomography (CT) in the supine and prone positions but not the standing position. However, as humans spend most of the daytime in the standing position, we aimed to compare lung attenuation gradients between the supine and standing positions, and to assess the correlations between the lung attenuation gradients and participant characteristics, including pulmonary function test results. Overall, 100 healthy participants underwent conventional/supine and upright CT, and lung attenuation gradients were measured. Lung attenuation gradients in anteroposterior direction were greater in the supine position than in standing position (all p values < 0.0001) in both upper lobes at the level of the aortic arch (right: standing/supine, -0.02 ± 0.19/0.53 ± 0.21; left: standing/supine, -0.06 ± 0.20/0.51 ± 0.21); in the right middle (standing/supine, -0.26 ± 0.41/0.53 ± 0.39), left upper (standing/supine, -0.35 ± 0.50/0.66 ± 0.54), and lower lobes at the level of the inferior pulmonary vein (right: standing/supine, -0.22 ± 0.30/0.65 ± 0.41; left: standing/supine, -0.16 ± 0.25/0.73 ± 0.54); and in both lower lobes just above the diaphragm (right: standing/supine, -0.13 ± 0.22/0.52 ± 0.32; left: standing/supine, -0.30 ± 0.57/0.55 ± 0.37). Craniocaudal gradients were greater in the standing position (right: standing/supine, 0.41 ± 0.30/0.00 ± 0.16; left: standing/supine, 0.35 ± 0.30/-0.02 ± 0.16, all p values < 0.0001). No moderate to very high correlations were observed between age, sex, height, weight, body index mass, or pulmonary function test results and each lung attenuation gradient. Lung attenuation gradients in anteroposterior direction, which was observed in the supine position, disappeared in the standing position. However, the craniocaudal lung attenuation gradient, which was not present in the supine position, appeared in the standing position.
Collapse
Affiliation(s)
- Fumiko Yagi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Atsunori Kozuka
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshito Otake
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinobu Sato
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Duclos G, Marecal L, Resseguier N, Postzich M, Taguet C, Hraiech S, Leone M, Müller L, Zieleskiewicz L. Pleural lung sliding quantification using a speckle tracking technology: A feasibility study on 30 healthy volunteers. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108316. [PMID: 38968827 DOI: 10.1016/j.cmpb.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION Speckle tracking technology quantifies lung sliding and detects lung sliding abolition in case of pneumothorax on selected ultrasound loops through the analysis of acoustic markers. OBJECTIVES We aimed to test the ability of speckle tracking technology to quantify lung sliding using a pleural strain value (PS). METHODS We performed a prospective study in 30 healthy volunteers in whom we assessed the pleural speckle tracking using ultrasound loops. Seven breathing conditions with and without non-invasive ventilation were tested. Two observers analyzed the ultrasound loops in four lung areas (anterior and posterior, left and right) and compared the obtained PS values. The first endpoint was to determine the feasibility of the PS measurement in different breathing conditions. The secondary endpoints were to assess the intra- and inter-observer's reliability of the measurement to compare PS values between anterior and posterior lung areas and to explore their correlations with the measured tidal volume. RESULTS We analyzed 1624 ultrasound loops from 29 patients after one volunteer's exclusion. Feasibility of this method was rated at 90.8 [95%CI: 89.6 - 92.4]%. The intra-observer reliability measured through Intraclass Correlation Coefficients was 0.96 [95%CI: 0.91-0.98] and 0.93 [95%CI: 0.86-0.97] depending on the operator. The inter-observer reliability was 0.89 [95%CI: 0.78-0.95]. The PS values were significantly lower in the anterior lung areas compared with the posterior areas in all breathing conditions. A weak positive correlation was found in all the lung areas when a positive end expiratory pressure was applied with r = 0.26 [95%CI: 0.12;0.39]; p < 0.01. CONCLUSION Speckle tracking lung sliding quantification with PS was applicable in most conditions with an excellent intra- and inter-observer reliability. More studies in patients under invasive mechanical ventilation are needed to explore the correlation between PS values of pleural sliding and tidal volumes. CLINICAL REGISTRATION NCT05415605.
Collapse
Affiliation(s)
- Gary Duclos
- Service d'anesthésie Réanimation, Hôpital Nord, Marseille, France, Aix-Marseille Université.
| | - Ludivine Marecal
- Service d'anesthésie Réanimation, Hôpital Nord, Marseille, France, Aix-Marseille Université
| | - Noemie Resseguier
- Service d'Épidémiologie et d'Économie de la Santé, AP-HM, Marseille, France, Aix-Marseille Université; CEReSS-Health Services and Quality of Research, Aix-Marseille University, Marseille, France
| | - Martin Postzich
- Service d'Épidémiologie et d'Économie de la Santé, AP-HM, Marseille, France, Aix-Marseille Université
| | - Chloe Taguet
- Service d'assistance Médicale d'urgence (SAMU), AP-HM, Hôpital de la Timone, Marseille, France, Aix-Marseille Université
| | - Sami Hraiech
- Service de Médecine Intensive - Réanimation, AP-HM, Hôpital Nord, Aix-Marseille Université, Health Service Research and Quality of Life Center (CEReSS), Marseille, France
| | - Marc Leone
- Service d'anesthésie Réanimation, Hôpital Nord, Marseille, France, Aix-Marseille Université
| | - Laurent Müller
- Service de Réanimation et Surveillance Continue, Pôle Anesthésie Réanimation Douleur Urgences, CHU Nîmes Caremeau, Montpellier, France
| | - Laurent Zieleskiewicz
- Service d'anesthésie Réanimation, Hôpital Nord, Marseille, France, Aix-Marseille Université
| |
Collapse
|
3
|
Bjarnadóttir KJ, Perchiazzi G, Sidenbladh CL, Larina A, Wallin E, Larsson IM, Franzén S, Larsson AO, Sousa MLA, Segelsjö M, Hansen T, Frithiof R, Hultström M, Lipcsey M, Pellegrini M. Body mass index is associated with pulmonary gas and blood distribution mismatch in COVID-19 acute respiratory failure. A physiological study. Front Physiol 2024; 15:1399407. [PMID: 39050483 PMCID: PMC11266150 DOI: 10.3389/fphys.2024.1399407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Background The effects of obesity on pulmonary gas and blood distribution in patients with acute respiratory failure remain unknown. Dual-energy computed tomography (DECT) is a X-ray-based method used to study regional distribution of gas and blood within the lung. We hypothesized that 1) regional gas/blood mismatch can be quantified by DECT; 2) obesity influences the global and regional distribution of pulmonary gas and blood; 3) regardless of ventilation modality (invasive vs. non-invasive ventilation), patients' body mass index (BMI) has an impact on pulmonary gas/blood mismatch. Methods This single-centre prospective observational study enrolled 118 hypoxic COVID-19 patients (92 male) in need of respiratory support and intensive care who underwent DECT. The cohort was divided into three groups according to BMI: 1. BMI<25 kg/m2 (non-obese), 2. BMI = 25-40 kg/m2 (overweight to obese), and 3. BMI>40 kg/m2 (morbidly obese). Gravitational analysis of Hounsfield unit distribution of gas and blood was derived from DECT and used to calculate regional gas/blood mismatch. A sensitivity analysis was performed to investigate the influence of the chosen ventilatory modality and BMI on gas/blood mismatch and adjust for other possible confounders (i.e., age and sex). Results 1) Regional pulmonary distribution of gas and blood and their mismatch were quantified using DECT imaging. 2) The BMI>40 kg/m2 group had less hyperinflation in the non-dependent regions and more lung collapse in the dependent regions compared to the other BMI groups. In morbidly obese patients, gas and blood were more evenly distributed; therefore, the mismatch was lower than in other patients (30% vs. 36%, p < 0.05). 3) An increase in BMI of 5 kg/m2 was associated with a decrease in mismatch of 3.3% (CI: 3.67% to -2.93%, p < 0.05). Neither the ventilatory modality nor age and sex affected the gas/blood mismatch (p > 0.05). Conclusion 1) In a hypoxic COVID-19 population needing intensive care, pulmonary gas/blood mismatch can be quantified at a global and regional level using DECT. 2) Obesity influences the global and regional distribution of gas and blood within the lung, and BMI>40 kg/m2 improves pulmonary gas/blood mismatch. 3) This is true regardless of the ventilatory mode and other possible confounders, i.e., age and sex. Trial Registration Clinicaltrials.gov, identifier NCT04316884, NCT04474249.
Collapse
Affiliation(s)
- Kristín J. Bjarnadóttir
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Aleksandra Larina
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ewa Wallin
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ing-Marie Larsson
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders O. Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mayson L. A. Sousa
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Monica Segelsjö
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tomas Hansen
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mariangela Pellegrini
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Kawamura T, Sekine Y, Sugai K, Yanagihara T, Saeki Y, Kitazawa S, Kobayashi N, Goto Y, Ichimura H, Ohigashi T, Maruo K, Sato Y. Three-dimensional analysis reveals a high incidence of lung adenocarcinoma in the upper region. Surg Today 2024; 54:634-641. [PMID: 38055104 DOI: 10.1007/s00595-023-02776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE The lung is a unique organ with a ventilation-perfusion mismatch, which can cause inhomogeneous incidence rates of lung cancer depending on the location in the lung. We aimed to evaluate the incidence of lung adenocarcinoma in each lobe by analyzing the incidence per unit volume, to evaluate the incidence without being affected by differences in the size of each lobe or in the size of the lungs between individuals. METHODS The number of adenocarcinomas in each lobe was counted. Lung volumes were measured using a three-dimensional computer workstation. The tumor incidence per unit volume was analyzed based on the number of tumors in each lobe. RESULTS The number of tumors per unit volume was 0.467 in the right upper lobe (RUL), 0.182 in the right middle lobe, 0.209 in the right lower lobe, 0.306 in the left upper segment (LUS), 0.083 in the left lingular segment, and 0.169 in the left lower lobe. The tumor incidence rate of RUL + LUS was 2.269 times that of the other lobes, a value that was significantly higher when using the bootstrap method (p < 0.001). CONCLUSIONS The incidence of adenocarcinoma per unit volume in both upper lobes was higher than that in other lobes.
Collapse
Affiliation(s)
- Tomoyuki Kawamura
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yasuharu Sekine
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Kazuto Sugai
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Takahiro Yanagihara
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yusuke Saeki
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Shinsuke Kitazawa
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Naohiro Kobayashi
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Yukinobu Goto
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Hideo Ichimura
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan
| | - Tomohiro Ohigashi
- Department of Biostatistics, Tsukuba Clinical Research and Development Organization, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki, 305‑8575, Japan.
| |
Collapse
|
5
|
Nilssen Y, Brustugun OT, Fjellbirkeland L, Helland Å, Møller B, Wahl SGF, Solberg S. Distribution and characteristics of malignant tumours by lung lobe. BMC Pulm Med 2024; 24:106. [PMID: 38439038 PMCID: PMC10910834 DOI: 10.1186/s12890-024-02918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The main focus on the characteristics of malignant lung tumours has been the size, position within the lobe, and infiltration into neighbouring structures. The aim of this study was to investigate the distribution and characteristics of malignant tumours between the lung lobes and whether the diagnosis, treatment, and outcome differed based on location. METHODS This study is based on 10,849 lung cancer patients diagnosed in 2018-2022 with complete data on the location and characteristics of the tumours. The proportions of tumours in each lobe divided by its volume were termed the relative proportion. RESULTS The right upper lobe comprised 31.2% of the tumours and 17.6% of the lung volume. The relative proportion of 1.77 was higher than in the other lobes (p < 0.001). The right middle lobe had a relative proportion of 0.64 but the highest proportion of neuroendocrine tumours (26.1% vs. 15.3 on average). Surgical resection was more often performed in patients with tumours in the lower lobes, and curative radiotherapy was more often performed in the upper lobes. After adjusting for age, sex, stage, and histology, the location of the tumour was found to be a significant independent predictor for resection but not for survival. CONCLUSION The main finding of the right upper lobe as a site of predilection for lung cancer is similar to tuberculosis and pneumoconiosis. This may be explained that most of the inhaled air, containing bacilli, inorganic particles or tobacco smoke goes to the upper and right parts of the lung.
Collapse
Affiliation(s)
- Yngvar Nilssen
- Department of Registration, Cancer Registry of Norway, Box 5313 Majorstuen, Oslo, 0304, Norway
| | - Odd Terje Brustugun
- Section of Oncology, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Fjellbirkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Åslaug Helland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Bjørn Møller
- Department of Registration, Cancer Registry of Norway, Box 5313 Majorstuen, Oslo, 0304, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Steinar Solberg
- Department of Registration, Cancer Registry of Norway, Box 5313 Majorstuen, Oslo, 0304, Norway.
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
6
|
Briganti DN, Choi CE, Nguyen J, Lanks CW. Determinants of point-of-care ultrasound lung sliding amplitude in mechanically ventilated patients. Ultrasound J 2023; 15:25. [PMID: 37219721 DOI: 10.1186/s13089-023-00326-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Although lung sliding seen by point-of-care ultrasound (POCUS) is known to be affected to varying degrees by different physiologic and pathologic processes, it is typically only reported qualitatively in the critical care setting. Lung sliding amplitude quantitatively expresses the amount of pleural movement seen by POCUS but its determinants in mechanically ventilated patients are largely unknown. METHODS This was a single-center, prospective, observational pilot study examining 40 hemithoraces in 20 adult patients receiving mechanical ventilation. Each subject had lung sliding amplitude measured in both B-mode and by pulsed wave Doppler at their bilateral lung apices and bases. Differences in lung sliding amplitude were correlated with anatomical location (apex vs base) as well as physiologic parameters including positive end expiratory pressure (PEEP), driving pressure, tidal volume and the ratio of arterial partial pressure of oxygen (PaO2) to fraction of inspired oxygen (FiO2). RESULTS POCUS lung sliding amplitude was significantly lower at the lung apex compared to the lung base in both B-mode (3.6 ± 2.0 mm vs 8.6 ± 4.3 mm; p < 0.001) and the pulsed wave Doppler mode (10.3 ± 4.6 cm/s vs 13.9 ± 5.5 cm/s; p < 0.001) corresponding to expected distribution of ventilation to the lung bases. Inter-rater reliability of B-mode measurements was excellent (ICC = 0.91) and distance traversed in B-mode had a significant positive correlation with pleural line velocity (r2 = 0.32; p < 0.001). There was a non-statistically significant trend towards lower lung sliding amplitude for PEEP ≥ 10 cmH2O, as well as for driving pressure ≥ 15 cmH2O in both ultrasound modes. CONCLUSION POCUS lung sliding amplitude was significantly lower at the lung apex than the lung base in mechanically ventilated patients. This was true when using both B-mode and pulsed wave Doppler. Lung sliding amplitude did not correlate with PEEP, driving pressure, tidal volume or PaO2:FiO2 ratio. Our findings suggest that lung sliding amplitude can be quantified in mechanically ventilated patients in a physiologically predictable way and with high inter-rater reliability. A better understanding of POCUS derived lung sliding amplitude and its determinants may aid in the more accurate diagnosis of lung pathologies, including pneumothorax, and could serve as a means of further reducing radiation exposure and improving outcomes in critically ill patients.
Collapse
Affiliation(s)
- David N Briganti
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christine E Choi
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julien Nguyen
- Division of Pulmonary and Critical Care Physiology and Medicine, Harbor-UCLA Medical Center, 1000 W. Carson Street, Box 405, Torrance, CA, 90509, USA
| | - Charles W Lanks
- Division of Pulmonary and Critical Care Physiology and Medicine, Harbor-UCLA Medical Center, 1000 W. Carson Street, Box 405, Torrance, CA, 90509, USA.
- Lundquist Institute for Biomedical Innovation, Torrance, CA, USA.
| |
Collapse
|
7
|
Cuocolo A, Petretta M. Ventilation/perfusion SPECT: One more promising resource to fight the medical Hydra. J Nucl Cardiol 2022; 29:2984-2987. [PMID: 34820772 DOI: 10.1007/s12350-021-02846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | | |
Collapse
|
8
|
Joseph Milic-Emili and his contribution to respiratory physiology. Eur J Appl Physiol 2022; 122:1313-1316. [PMID: 35384515 DOI: 10.1007/s00421-022-04943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
|
9
|
Ranieri VM, Guérin C. The physiological foundations of critical care medicine: the contribution of Joseph Milic-Emili, a physiologist "by hook or by crook". CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2022. [PMID: 35135611 PMCID: PMC8822682 DOI: 10.1186/s13054-022-03919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- V Marco Ranieri
- Department of Emergency and Intensive Care Medicine, Alma Mater Studiorum University of Bologna, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Claude Guérin
- Service de Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France. .,Université de Lyon, Lyon, France. .,Institut Mondor de Recherche Biomédicales INSERM 955, Créteil, France.
| |
Collapse
|
10
|
David M, Raison M, Paul S, Cartiaux O, Detrembleur C, Mahaudens P. Locoregional lung ventilation distribution in girls with adolescent idiopathic scoliosis and healthy adolescents. The immediate effect of Schroth 'derotational breathing' exercise in a controlled-trial. Physiother Theory Pract 2022; 39:938-953. [PMID: 35105251 DOI: 10.1080/09593985.2022.2033896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Scoliosis curves present transverse plane deviations due to vertebral rotation. The Schroth method supports thoracic derotation by training patients to exert "derotational" breathing based on assumed enhanced ventilation in areas called "humps" in scoliosis and a patient's ability to voluntarily direct ventilation in less ventilated areas called "flats." OBJECTIVE To assess the asymmetric ventilation distribution and the ability of patients to direct their ventilation to perform derotational breathing. METHODS Twelve girls with adolescent idiopathic scoliosis and 12 healthy girls performed 3 × 3 min of rest, maximal, and derotational breathing. Electrical impedance tomography was used to record locoregional lung ventilation distribution (LLVD) within 4 thoracic regions of interest: anterior right (ROI 1), anterior left (ROI 2), posterior right (ROI 3), and posterior left (ROI 4) quadrants. Humps and flats were the sums of ROI '2 + 3' and ROI '1 + 4,' respectively. RESULTS Overall, no difference in LLVD was observed in the flats and humps between groups. At rest, the LLVD in the humps was more elevated than that in the flats (51.5 ± 8.1% versus 43.6 ± 7.9%; p = .021) when considering both groups. Maximal and derotational breathing led to a more homogeneous LLVD between the humps and flats. CONCLUSION The postulated derotational breathing effect was not confirmed.
Collapse
Affiliation(s)
- Mercedes David
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Université Catholique de Louvain, Brussels, Belgium.,Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Maxime Raison
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Department of Rehabilitation, Centre de Readaptation Marie-Enfant du CHU Ste-Justine, Montréal, Canada
| | - Stéphanie Paul
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Université Catholique de Louvain, Brussels, Belgium.,Service d'Orthopédie et de Traumatologie de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Service de Médecine Physique et Réadaptation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Olivier Cartiaux
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Université Catholique de Louvain, Brussels, Belgium
| | - Christine Detrembleur
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Mahaudens
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Université Catholique de Louvain, Brussels, Belgium.,Service d'Orthopédie et de Traumatologie de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
11
|
Yuan S, Chi Y, Long Y, He H, Zhao Z. Effect of Position Change From the Bed to a Wheelchair on the Regional Ventilation Distribution Assessed by Electrical Impedance Tomography in Patients With Respiratory Failure. Front Med (Lausanne) 2021; 8:744958. [PMID: 34805212 PMCID: PMC8600076 DOI: 10.3389/fmed.2021.744958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background: There is limited knowledge about the effect of position change on regional lung ventilation in patients with respiratory failure. This study aimed to examine the physiological alteration of regional lung ventilation during the position change from lying in bed to sitting on a wheelchair. Methods: In this study, 41 patients with respiratory failure who were weaned from the ventilators were prospectively enrolled. The electrical impedance tomography (EIT) was used to assess the regional lung ventilation distribution at four time points (Tbase: baseline, supine position in the bed, T30min: sitting position in the wheelchair after 30 min, T60min: sitting position in the wheelchair after 60 min, Treturn: the same supine position in the bed after position changing). The EIT-based global inhomogeneity (GI) and center of ventilation (CoV) indices were calculated. The EIT images were equally divided into four ventral-to-dorsal horizontal regions of interest (ROIs 1–4). Depending on the improvement in ventilation distribution in the dependent regions at T60min (threshold set to 15%), the patients were divided into the dorsal ventilation improved (DVI) and not improved (non-DVI) groups. Results: When the patients moved from the bed to a wheelchair, there was a significant and continuous increase in ventilation in the dorsal regions (ROI 3 + 4: 45.9 ± 12.1, 48.7 ± 11.6, 49.9 ± 12.6, 48.8 ± 10.6 for Tbase, T30min, T60min, and Treturn, respectively; p = 0.015) and CoV (48.2 ± 10.1, 50.1 ± 9.2, 50.5 ± 9.6, and 49.5 ± 8.6, p = 0.047). In addition, there was a significant decrease in GI at T60min compared with Tbase. The DVI group (n = 18) had significantly higher oxygenation levels than the non-DVI group (n = 23) after position changing. ROI4Tbase was significantly negatively correlated with the ΔSpO2 (R = 0.72, p < 0.001). Using a cutoff value of 6.5%, ROI4Tbase had 79.2% specificity and 58.8% sensitivity in indicating the increase in the dorsal region related to the position change. The corresponding area under the curve (AUC) was 0.806 (95% CI, 0.677–0.936). Conclusions: Position change may improve the ventilation distribution in the study patients. The EIT can visualize real-time changes of the regional lung ventilation at the bedside to guide the body position change of the patients in the intensive care unit (ICU) and measure the effect of clinical practice. Trial Registration: Effect of Early Mobilization on Regional Lung Ventilation Assessed by EIT, NCT04081129. Registered 9 June 2019—Retrospectively registered. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S00096WT&selectaction=Edit&uid=U00020D9&ts=2&cx=v2cwij.
Collapse
Affiliation(s)
- Siyi Yuan
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
12
|
Hamedani H, Kadlecek S, Ruppert K, Xin Y, Duncan I, Rizi RR. Ventilation heterogeneity imaged by multibreath wash-ins of hyperpolarized 3 He and 129 Xe in healthy rabbits. J Physiol 2021; 599:4197-4223. [PMID: 34256417 DOI: 10.1113/jp281584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Multibreath imaging to estimate regional gas mixing efficiency is superior to intensity-based single-breath ventilation markers, as it is capable of revealing minute but essential measures of ventilation heterogeneity which may be sensitive to subclinical alterations in the early stages of both obstructive and restrictive respiratory disorders. Large-scale convective stratification of ventilation in central-to-peripheral directions is the dominant feature of observed ventilation heterogeneity when imaging a heavy/less diffusive xenon gas mixture; smaller-scale patchiness, probably originating from asymmetric lung function at bronchial airway branching due to the interaction of convective and diffusive flows, is the dominant feature when imaging a lighter/more diffusive helium gas mixture. Since detecting low regional ventilation is crucial for characterizing diseased lungs, our results suggest that dilution with natural abundance helium and imaging at higher lung volumes seem advisable when imaging with hyperpolarized 129 Xe; this will allow the imaging gas to reach slow-filling and/or non-dependent lung regions, which might otherwise be impossible to distinguish from total ventilation shunt regions. The ability to differentiate these regions from those of total shunt is worse with typical single-breath imaging techniques. ABSTRACT The mixing of freshly inhaled gas with gas already present in the lung can be directly assessed with heretofore unachievable precision via magnetic resonance imaging of signal build-up resulting from multiple wash-ins of a hyperpolarized (HP) gas. Here, we used normoxic HP 3 He and 129 Xe mixtures to study regional ventilation at different spatial scales in five healthy mechanically ventilated supine rabbits at two different inspired volumes. To decouple the respective effects of density and diffusion rates on ventilation heterogeneity, two additional studies were performed: one in which 3 He was diluted with an equal fraction of natural abundance xenon, and one in which 129 Xe was diluted with an equal fraction of 4 He. We observed systematic differences in the spatial scale of specific ventilation heterogeneity between HP 3 He and 129 Xe. We found that large-scale, central-to-peripheral convective ventilation inhomogeneity is the dominant cause of observed heterogeneity when breathing a normoxic xenon gas mixture. In contrast, small-scale ventilation heterogeneity in the form of patchiness, probably originating from asymmetric lung function at bronchial airway branching due to interactions between convective and diffusive flows, is the dominant feature when breathing a normoxic helium gas mixture, for which the critical zone occurs more proximally and at an imageable spatial scale. We also showed that the existence of particular underventilated non-dependent lung regions when breathing a heavy gas mixture is the result of the density of that mixture - rather than, for example, its diffusion rate or viscosity. Finally, we showed that gravity-dependent ventilation heterogeneity becomes substantially more uniform at higher inspired volumes for xenon gas mixtures compared to helium mixtures.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Duncan
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Veneroni C, Van Muylem A, Malinovschi A, Michils A, Dellaca' RL. Closing volume detection by single-breath gas washout and forced oscillation technique. J Appl Physiol (1985) 2021; 130:903-913. [PMID: 33475458 DOI: 10.1152/japplphysiol.00440.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Closing volume (CV) is commonly measured by single-breath nitrogen washout (CVSBW). A method based on the forced oscillation technique was recently introduced to detect a surrogate CV (CVFOT). As the two approaches are based on different physiological mechanisms, we aim to investigate CVFOT and CVSBW relationship at different degrees and patterns of airway obstruction. A mathematical model was developed to evaluate the CVSBW and CVFOT sensitivity to different patterns of airway obstruction, either located in a specific lung region or equally distributed throughout the lung. The two CVs were also assessed during slow vital capacity (VC) maneuvers in triplicate in 13 healthy subjects and pre- and postmethacholine challenge (Mch) in 12 subjects with mild-moderate asthma. Model simulations suggest that CVSBW is more sensitive than CVFOT to the presence of few flow-limited or closed airways that modify the contribution of tracer-poor and tracer-rich lung regions to the overall exhaled gas. Conversely, CVFOT occurs only when at least ∼65% of lung units are flow limited or closed, regardless of their regional distribution. CVSBW did not differ between healthy subjects and those with asthma (17 ± 9% VC vs. 22 ± 10% VC), whereas CVFOT did (16 ± 5% VC vs. 23 ± 6% VC, P < 0.01). In patients with asthma, both CVSBW and CVFOT increased post-Mch (33 ± 7% VC P < 0.001 and 43 ± 12% VC P < 0.001, respectively). CVSBW weakly correlated with CVFOT (r = 0.45, P < 0.01). The closing capacities (CV + residual volume) were correlated (r = 0.74, P < 0.001), but the changes with Mch in both CVs and closing capacities did not correlate. CVFOT is easy to measure and provides a reproducible parameter useful for describing airway impairment in obstructive respiratory diseases.NEW & NOTEWORTHY The forced oscillation technique can identify a surrogate of closing volume (CVFOT). We investigated its relationship with the one measured by single-breath washout (CVSBW). CVFOT weakly correlates with CVSBW. The respective closing capacities were correlated, but their increases after methacholine challenge in asthmatics did not. Our results suggest that CVFOT is less sensitive than CVSBW to few flow-limited/closed airways but more specific in detecting increases in flow-limited/closed airways involving the majority of the lung.
Collapse
Affiliation(s)
- Chiara Veneroni
- TechRes Lab, Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano University, Milan, Italy
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital/Université Libre de Bruxelles, Brussels, Belgium
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alain Michils
- Chest Department, Erasme University Hospital/Université Libre de Bruxelles, Brussels, Belgium
| | - Raffaele L Dellaca'
- TechRes Lab, Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano University, Milan, Italy
| |
Collapse
|
14
|
Rauseo M, Mirabella L, Caporusso RR, Cantatore LP, Perrini MP, Vetuschi P, La Bella D, Tullo L, Cinnella G. SARS-CoV-2 pneumonia succesfully treated with cpap and cycles of tripod position: a case report. BMC Anesthesiol 2021; 21:9. [PMID: 33419396 PMCID: PMC7791159 DOI: 10.1186/s12871-020-01221-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pneumonia induced by 2019 Coronavirus (COVID-19) is characterized by hypoxemic respiratory failure that may present with a broad spectrum of clinical phenotypes. At the beginning, patients may have normal lung compliance and be responsive to noninvasive ventilatory support, such as CPAP. However, the transition to more severe respiratory failure - Severe Acute Respiratory Syndrome (SARS-CoV-2), necessitating invasive ventilation is often abrupt and characterized by a severe V/Q mismatch that require cycles of prone positioning. The aim of this case is to report the effect on gas exchange, respiratory mechanics and hemodynamics of tripod (or orthopneic sitting position) used as an alternative to prone position in a patient with mild SARS-CoV-2 pneumonia ventilated with helmet CPAP. CASE PRESENTATION A 77-year-old awake and collaborating male patient with mild SARS-CoV-2 pneumonia and ventilated with Helmet CPAP, showed sudden worsening of gas exchange without dyspnea. After an unsuccessful attempt of prone positioning, we alternated three-hours cycles of semi-recumbent and tripod position, still keeping him in CPAP. Arterial blood gases (PaO2/FiO2, PaO2, SaO2, PaCO2 and A/a gradient), respiratory (VE, VT, RR) and hemodynamic parameters (HR, MAP) were collected in the supine and tripod position. Cycles of tripod position were continued for 3 days. The patient had a clinically important improvement in arterial blood gases and respiratory parameters, with stable hemodynamic and was successfully weaned and discharged to ward 10 days after pneumonia onset. CONCLUSIONS Tripod position during Helmet CPAP can be applied safely in patients with mild SARS-CoV-2 pneumonia, with improvement of oxygenation and V/Q matching, thus reducing the need for intubation.
Collapse
Affiliation(s)
- Michela Rauseo
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Lucia Mirabella
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Rosa Roberta Caporusso
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Leonarda Pia Cantatore
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Marco Paolo Perrini
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Paolo Vetuschi
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Daniela La Bella
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Livio Tullo
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria "Ospedali Riuniti di Foggia", Viale Pinto, 1, 71122, Foggia, Italy.
| |
Collapse
|
15
|
Gu W, Darquenne C. Heterogeneity in lobar and near-acini deposition of inhaled aerosol in the mouse lung. JOURNAL OF AEROSOL SCIENCE 2021; 151:105642. [PMID: 32921804 PMCID: PMC7480823 DOI: 10.1016/j.jaerosci.2020.105642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laboratory animals are often used to derive health risk from environmental exposure or to assess the therapeutic effect of a drug delivered by inhaled therapy. Knowledge of the in-situ distribution of deposited particles on airway and alveolar surfaces is essential in any assessment of these effects. A unique database including both high-resolution lung anatomy and deposition data in four strains of laboratory mice have been recently made publicly available to the research community (https://doi.org/10.25820/9arg-9w56). Using these data, we investigated the effect of particle size on the distribution of deposited particles at the lobar and near-acini level. Analysis was performed on a total of 33 mice where 3, 16 and 14 animals were exposed to 0.5μm, 1μm and 2μm particles, respectively. Ratio of normalized deposition to normalized volume was calculated for each lobe (DV lobe ). At the near-acini level, the skew and standard deviation of the frequency distribution of particle deposition were calculated. Significant deviation above 1 was found for DV ratio in the cranial lobe (DV Cranial ). DV Middle , DV Caudal and DV Accessory were all significantly <1 and lower than DV left (p<0.01). At the near-acini level, skew and standard deviation were positively correlated with particle size and the presence of hot spots (high deposition) were mainly found in the apical region of the lung. These results highlight the uneven distribution of deposited particles in the mouse lung. Thus, depending on the lung sample location, individual analysis to determine overall deposition may either underestimate or overestimate total lung burden, at least for micron-sized particles.
Collapse
Affiliation(s)
- W. Gu
- Department of Medicine, University of California, San Diego, USA
| | - C. Darquenne
- Department of Medicine, University of California, San Diego, USA
| |
Collapse
|
16
|
Kizhakke Puliyakote AS, Holverda S, Sá RC, Arai TJ, Theilmann RJ, Botros L, Bogaard HJ, Prisk GK, Hopkins SR. Prone positioning redistributes gravitational stress in the lung in normal conditions and in simulations of oedema. Exp Physiol 2020; 107:771-782. [PMID: 33347661 DOI: 10.1113/ep089037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does the interaction between posture and gravity affect the stresses on the lung, particularly in highly inflated gravitationally non-dependent regions, which are potentially vulnerable to increased mechanical stress and injury? What is the main finding and its importance? Changes in stress attributable to gravity are not well characterized between postures. Using a new metric of gravitational stress, we show that regions of the lung near maximal inflation have the greatest gravitational stresses while supine, but not while prone. In simulations of increased lung weight consistent with severe pulmonary oedema, the prone lung has lower gravitational stress in vulnerable, non-dependent regions, potentially protecting them from overinflation and injury. ABSTRACT Prone posture changes the gravitational vector, and potentially the stress induced by tissue deformation, because a larger lung volume is gravitationally dependent when supine, but non-dependent when prone. To evaluate this, 10 normal subjects (six male and four female; age, means ± SD = 27 ± 6 years; height, 171 ± 9 cm; weight, 69 ± 13 kg; forced expiratory volume in the first second/forced expiratory volume as a percentage of predicted, 93 ± 6%) were imaged at functional residual capacity, supine and prone, using magnetic resonance imaging, to quantify regional lung density. We defined regional gravitational stress as the cumulative weight, per unit area, of the column of lung tissue below each point. Gravitational stress was compared between regions of differing inflation to evaluate differences between highly stretched, and thus potentially vulnerable, regions and less stretched lung. Using reference density values for normal lungs at total lung capacity (0.10 ± 0.03 g/ml), regions were classified as highly inflated (density < 0.13 g/ml, i.e., close to total lung capacity), intermediate (0.13 ≤ density < 0.16 g/ml) or normally inflated (density ≥ 0.16 g/ml). Gravitational stress differed between inflation categories while supine (-1.6 ± 0.3 cmH2 O highly inflated; -1.4 ± 0.3 cmH2 O intermediate; -1.1 ± 0.1 cmH2 O normally inflated; P = 0.05) but not while prone (-1.4 ± 0.2 cmH2 O highly inflated; -1.3 ± 0.2 cmH2 O intermediate; -1.3 ± 0.1 cmH2 O normally inflated; P = 0.39), and increased more with height from dependent lung while supine (-0.24 ± 0.02 cmH2 O/cm supine; -0.18 ± 0.04 cmH2 O/cm prone; P = 0.05). In simulated severe pulmonary oedema, the gradient in gravitational stress increased in both postures (all P < 0.0001), was greater in the supine posture than when prone (-0.57 ± 0.21 cmH2 O/cm supine; -0.34 ± 0.16 cmH2 O/cm prone; P = 0.0004) and was similar to the gradient calculated from supine computed tomography images in a patient with acute respiratory distress syndrome (-0.51 cmH2 O/cm). The non-dependent lung has greater gravitational stress while supine and might be protected while prone, particularly in the presence of oedema.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.,The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Sebastiaan Holverda
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rui C Sá
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatsuya J Arai
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.,The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.,The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Liza Botros
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harm J Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.,The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Susan R Hopkins
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.,The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Mariano CA, Sattari S, Maghsoudi-Ganjeh M, Tartibi M, Lo DD, Eskandari M. Novel Mechanical Strain Characterization of Ventilated ex vivo Porcine and Murine Lung using Digital Image Correlation. Front Physiol 2020; 11:600492. [PMID: 33343395 PMCID: PMC7746832 DOI: 10.3389/fphys.2020.600492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Respiratory illnesses, such as bronchitis, emphysema, asthma, and COVID-19, substantially remodel lung tissue, deteriorate function, and culminate in a compromised breathing ability. Yet, the structural mechanics of the lung is significantly understudied. Classical pressure-volume air or saline inflation studies of the lung have attempted to characterize the organ’s elasticity and compliance, measuring deviatory responses in diseased states; however, these investigations are exclusively limited to the bulk composite or global response of the entire lung and disregard local expansion and stretch phenomena within the lung lobes, overlooking potentially valuable physiological insights, as particularly related to mechanical ventilation. Here, we present a method to collect the first non-contact, full-field deformation measures of ex vivo porcine and murine lungs and interface with a pressure-volume ventilation system to investigate lung behavior in real time. We share preliminary observations of heterogeneous and anisotropic strain distributions of the parenchymal surface, associative pressure-volume-strain loading dependencies during continuous loading, and consider the influence of inflation rate and maximum volume. This study serves as a crucial basis for future works to comprehensively characterize the regional response of the lung across various species, link local strains to global lung mechanics, examine the effect of breathing frequencies and volumes, investigate deformation gradients and evolutionary behaviors during breathing, and contrast healthy and pathological states. Measurements collected in this framework ultimately aim to inform predictive computational models and enable the effective development of ventilators and early diagnostic strategies.
Collapse
Affiliation(s)
- Crystal A Mariano
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Samaneh Sattari
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Mohammad Maghsoudi-Ganjeh
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | | | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,BREATHE Center, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States.,BREATHE Center, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Bioengineering, Riverside, CA, United States
| |
Collapse
|
18
|
Prisk GK, Petersen GM, Geier ET, Sá RC. Ventilatory heterogeneity in the normal human lung is unchanged by controlled breathing. J Appl Physiol (1985) 2020; 129:1152-1160. [PMID: 32853114 DOI: 10.1152/japplphysiol.00278.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Measurement of ventilation heterogeneity with the multiple-breath nitrogen washout (MBW) is usually performed using controlled breathing with a fixed tidal volume and breathing frequency. However, it is unclear whether controlled breathing alters the underlying ventilatory heterogeneity. We hypothesized that the width of the specific ventilation distribution (a measure of heterogeneity) would be greater in tests performed during free breathing compared with those performed using controlled breathing. Eight normal subjects (age range = 23-50 yr, 5 female/3 male) twice underwent MRI-based specific ventilation imaging consisting of five repeated cycles with the inspired gas switching between 21% and 100% O2 every ~2 min (total imaging time = ~20 min). In each session, tests were performed with free breathing (FB, no constraints) and controlled breathing (CB) at a respiratory rate of 12 breaths/min and no tidal volume control. The specific ventilation (SV) distribution in a mid-sagittal slice of the right lung was calculated, and the heterogeneity was calculated as the full width at half max of a Gaussian distribution fitted on a log scale (SV width). Free breathing resulted in a range of breathing frequencies from 8.7 to 15.9 breaths/min (mean = 11.5 ± 2.2, P = 0.62, compared with CB). Heterogeneity (SV width) was unchanged by controlled breathing (FB: 0.38 ± 0.12; CB: 0.34 ± 0.09, P = 0.18, repeated-measures ANOVA). The imposition of a controlled breathing frequency did not significantly affect the heterogeneity of ventilation in the normal lung, suggesting that MBW and specific ventilation imaging as typically performed provide an unperturbed measure of ventilatory heterogeneity.NEW & NOTEWORTHY By using MRI-based specific ventilation imaging (SVI), we showed that the heterogeneity of specific ventilation was not different comparing free breathing and breathing with the imposition of a fixed breathing frequency of 12 breaths/min. Thus, multiple-breath washout and SVI as typically performed provide an unperturbed measure of ventilatory heterogeneity.
Collapse
Affiliation(s)
- G Kim Prisk
- Department of Medicine, University of California, San Diego, California
| | | | - Eric T Geier
- Department of Medicine, University of California, San Diego, California
| | - Rui C Sá
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
19
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Boucneau T, Fernandez B, Larson P, Darrasse L, Maître X. 3D Magnetic Resonance Spirometry. Sci Rep 2020; 10:9649. [PMID: 32541799 PMCID: PMC7295793 DOI: 10.1038/s41598-020-66202-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/21/2020] [Indexed: 01/23/2023] Open
Abstract
Spirometry is today the gold standard technique for assessing pulmonary ventilatory function in humans. From the shape of a flow-volume loop measured while the patient is performing forced respiratory cycles, the Forced Vital Capacity (FVC) and the Forced Expiratory Volume in one second (FEV1) can be inferred, and the pulmonologist is able to detect and characterize common respiratory afflictions. This technique is non-invasive, simple, widely available, robust, repeatable and reproducible. Yet, its outcomes rely on the patient's cooperation and provide only global information over the lung. With 3D Magnetic Resonance (MR) Spirometry, local ventilation can be assessed by MRI anywhere in the lung while the patient is freely breathing. The larger dimensionality of 3D MR Spirometry advantageously allows the extraction of original metrics that characterize the anisotropic and hysteretic regional mechanical behavior of the lung. Here, we demonstrated the potential of this technique on a healthy human volunteer breathing along different respiratory patterns during the MR acquisition. These new results are discussed with lung physiology and recent pulmonary CT data. As respiratory mechanics inherently support lung ventilation, 3D MR Spirometry may open a new way to non-invasively explore lung function while providing improved diagnosis of localized pulmonary diseases.
Collapse
Affiliation(s)
- Tanguy Boucneau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | | | - Peder Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Luc Darrasse
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Xavier Maître
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.
| |
Collapse
|
21
|
Pollock RD, Gates SD, Storey JA, Radcliffe JJ, Stevenson AT. Indices of acceleration atelectasis and the effect of hypergravity duration on its development. Exp Physiol 2020; 106:18-27. [DOI: 10.1113/ep088495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ross D. Pollock
- Human Performance QinetiQ Ltd Farnborough UK
- Centre for Human and Applied Physiological Sciences King's College London London UK
| | | | | | | | | |
Collapse
|
22
|
Rutting S, Mahadev S, Tonga KO, Bailey DL, Dame Carroll JR, Farrow CE, Thamrin C, Chapman DG, King GG. Obesity alters the topographical distribution of ventilation and the regional response to bronchoconstriction. J Appl Physiol (1985) 2020; 128:168-177. [DOI: 10.1152/japplphysiol.00482.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with reduced operating lung volumes that may contribute to increased airway closure during tidal breathing and abnormalities in ventilation distribution. We investigated the effect of obesity on the topographical distribution of ventilation before and after methacholine-induced bronchoconstriction using single-photon emission computed tomography (SPECT)-computed tomography (CT) in healthy subjects. Subjects with obesity ( n = 9) and subjects without obesity ( n = 10) underwent baseline and postbronchoprovocation SPECT-CT imaging, in which Technegas was inhaled upright and followed by supine scanning. Lung regions that were nonventilated (Ventnon), low ventilated (Ventlow), or well ventilated (Ventwell) were calculated using an adaptive threshold method and were expressed as a percentage of total lung volume. To determine regional ventilation, lungs were divided into upper, middle, and lower thirds of axial length, derived from CT. At baseline, Ventnon and Ventlow for the entire lung were similar in subjects with and without obesity. However, in the upper lung zone, Ventnon (17.5 ± 10.6% vs. 34.7 ± 7.8%, P < 0.001) and Ventlow (25.7 ± 6.3% vs. 33.6 ± 5.1%, P < 0.05) were decreased in subjects with obesity, with a consequent increase in Ventwell (56.8 ± 9.2% vs. 31.7 ± 10.1%, P < 0.001). The greater diversion of ventilation to the upper zone was correlated with body mass index ( rs = 0.74, P < 0.001), respiratory system resistance ( rs = 0.72, P < 0.001), and respiratory system reactance ( rs = −0.64, P = 0.003) but not with lung volumes or basal airway closure. Following bronchoprovocation, overall Ventnon increased similarly in both groups; however, in subjects without obesity, Ventnon only increased in the lower zone, whereas in subjects with obesity, Ventnon increased more evenly across all lung zones. In conclusion, obesity is associated with altered ventilation distribution during baseline and following bronchoprovocation, independent of reduced lung volumes. NEW & NOTEWORTHY Using ventilation SPECT-computed tomography imaging in healthy subjects, we demonstrate that ventilation in obesity is diverted to the upper lung zone and that this is strongly correlated with body mass index but is independent of operating lung volumes and of airway closure. Furthermore, methacholine-induced bronchoconstriction only occurred in the lower lung zone in individuals who were not obese, whereas in subjects who were obese, it occurred more evenly across all lung zones. These findings show that obesity-associated factors alter the topographical distribution of ventilation.
Collapse
Affiliation(s)
- S. Rutting
- Department of Respiratory Medicine, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - S. Mahadev
- Department of Respiratory Medicine, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - K. O. Tonga
- Department of Respiratory Medicine, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
- Department of Thoracic and Transplant Medicine, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- Faculty of Medicine & Health, University of Sydney, NSW, Australia
| | - D. L. Bailey
- Faculty of Medicine & Health, University of Sydney, NSW, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - J. R. Dame Carroll
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - C. E. Farrow
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
- Faculty of Medicine & Health, University of Sydney, NSW, Australia
- Department of Respiratory Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - C. Thamrin
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - D. G. Chapman
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - G. G. King
- Department of Respiratory Medicine, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
- NHMRC Centre of Excellence in Severe Asthma, New Lambton Heights, NSW, Australia
| |
Collapse
|
23
|
Comparative Analysis of Lung Perfusion Scan and SPECT/CT for the Evaluation of Functional Lung Capacity. Nucl Med Mol Imaging 2019; 53:406-413. [PMID: 31867076 DOI: 10.1007/s13139-019-00617-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to compare lung perfusion scan with single photon emission computed tomography/computed tomography (SPECT/CT) for the evaluation of lung function and to elucidate the most appropriate modality for the prediction of postoperative lung function in patients with lung cancer. Methods A total of 181 patients underwent Tc-99m macroaggregated albumin lung perfusion scan and SPECT/CT to examine the ratio of diseased lung and diseased lobe. Forty-one patients with lung cancer underwent both preoperative and postoperative pulmonary function tests within 1 month to predict postoperative pulmonary function. Predicted postoperative forced expiratory volume in 1 s (ppoFEV1) was calculated by the % radioactivity of lung perfusion scan and SPECT, and the % volume of the residual lung, assessed on CT. Results The ratios of diseased lung as seen on lung perfusion scan and SPECT showed significant correlation, but neither modality correlated with CT. The ratios of the diseased lung and diseased lobe based on CT were higher than the ratios based on either perfusion scan or SPECT, because CT overestimated the function of the diseased area. The lobar ratio of both upper lobes was lower based on the perfusion scan than on SPECT but was higher for both lower lobes. Actual postoperative FEV1 showed significant correlation with ppoFEV1 based on lung perfusion SPECT and perfusion scan. Conclusions We suggest SPECT/CT as the primary modality of choice for the assessment of the ratio of diseased lung area. Both perfusion scan and SPECT/CT can be used for the prediction of postoperative lung function.
Collapse
|
24
|
Clark AR, Burrowes KS, Tawhai MH. Ventilation/Perfusion Matching: Of Myths, Mice, and Men. Physiology (Bethesda) 2019; 34:419-429. [PMID: 31577170 PMCID: PMC7002871 DOI: 10.1152/physiol.00016.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Despite a huge range in lung size between species, there is little measured difference in the ability of the lung to provide a well-matched air flow (ventilation) to blood flow (perfusion) at the gas exchange tissue. Here, we consider the remarkable similarities in ventilation/perfusion matching between species through a biophysical lens and consider evidence that matching in large animals is dominated by gravity but in small animals by structure.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Cieri RL. Pulmonary Smooth Muscle in Vertebrates: A Comparative Review of Structure and Function. Integr Comp Biol 2019; 59:10-28. [DOI: 10.1093/icb/icz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Although the airways of vertebrates are diverse in shape, complexity, and function, they all contain visceral smooth muscle. The morphology, function, and innervation of this tissue in airways is reviewed in actinopterygians, lungfish, amphibians, non-avian reptiles, birds, and mammals. Smooth muscle was likely involved in tension regulation ancestrally, and may serve to assist lung emptying in fishes and aquatic amphibians, as well as maintain internal lung structure. In certain non-avian reptiles and anurans antagonistic smooth muscle fibers may contribute to intrapulmonary gas mixing. In mammals and birds, smooth muscle regulates airway caliber, and may be important in controlling the distribution of ventilation at rest and exercise, or during thermoregulatory and vocal hyperventilation. Airway smooth muscle is controlled by the autonomic nervous system: cranial cholinergic innervation generally causes excitation, cranial non-adrenergic, non-cholinergic innervation causes inhibition, and spinal adrenergic (SA) input causes species-specific, often heterogeneous contractions and relaxations.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Biological Sciences, The University of Utah, 247 South 1400 East, 201 South Biology, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Tahir BA, Marshall H, Hughes PJC, Brightling CE, Collier G, Ireland RH, Wild JM. Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre. Phys Med Biol 2019; 64:055013. [PMID: 30673634 DOI: 10.1088/1361-6560/ab0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Image registration of lung CT images acquired at different inflation levels has been proposed as a surrogate method to map lung 'ventilation'. Prior to clinical use, it is important to understand how this technique compares with direct ventilation imaging modalities such as hyperpolarised gas MRI. However, variations in lung inflation level have been shown to affect regional ventilation distributions. Therefore, the aim of this study was to evaluate the impact of lung inflation levels when comparing CT ventilation imaging to ventilation from 3He-MRI. Seven asthma patients underwent breath-hold CT at total lung capacity (TLC) and functional residual capacity (FRC). 3He-MRI and a same-breath 1H-MRI were acquired at FRC+1L and TLC. Percentage ventilated volumes (%VVs) were calculated for FRC+1L and TLC 3He-MRI. TLC-CT and registered FRC-CT were used to compute a surrogate ventilation map from voxel-wise intensity differences in Hounsfield unit values, which was thresholded at the 10th and 20th percentiles. For direct comparison of CT and 3He-MRI ventilation, FRC+1L and TLC 3He-MRI were registered to TLC-CT indirectly via the corresponding same-breath 1H-MRI data. For 3He-MRI and CT ventilation comparison, Dice similarity coefficients (DSCs) between the binary segmentations were computed. The median (range) of %VVs for FRC+1L and TLC 3He-MRI were 90.5 (54.9-93.6) and 91.8 (67.8-96.2), respectively (p = 0.018). For MRI versus CT ventilation comparison, statistically significant improvements in DSCs were observed for TLC 3He MRI when compared with FRC+1L, with median (range) values of 0.93 (0.86-0.93) and 0.86 (0.68-0.92), respectively (p = 0.017), for the 10-100th percentile and 0.87 (0.83-0.88) and 0.81 (0.66-0.87), respectively (p = 0.027), for the 20-100th percentile. Correlation of CT ventilation imaging and hyperpolarised gas MRI is sensitive to lung inflation level. For ventilation maps derived from CT acquired at FRC and TLC, a higher correlation with gas ventilation MRI can be achieved if the MRI is acquired at TLC.
Collapse
Affiliation(s)
- Bilal A Tahir
- POLARIS, Academic Radiology, University of Sheffield, Sheffield, United Kingdom. Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
27
|
Tsubamoto M, Nishida T, Higaki N, Taniguchi S, Takeshima T, Sasaki Y, Kataoka T, Nishibayashi K, Ikeda T. Separation between the chest wall and subpleural lung lesions: A two-step method to preoperatively exclude invasion or focal pleural adhesion by multidetector computed tomography. Eur J Radiol 2019; 112:180-185. [DOI: 10.1016/j.ejrad.2019.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
28
|
Bake B, Larsson P, Ljungkvist G, Ljungström E, Olin AC. Exhaled particles and small airways. Respir Res 2019; 20:8. [PMID: 30634967 PMCID: PMC6330423 DOI: 10.1186/s12931-019-0970-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/01/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Originally, studies on exhaled droplets explored properties of airborne transmission of infectious diseases. More recently, the interest focuses on properties of exhaled droplets as biomarkers, enabled by the development of technical equipment and methods for chemical analysis. Because exhaled droplets contain nonvolatile substances, particles is the physical designation. This review aims to outline the development in the area of exhaled particles, particularly regarding biomarkers and the connection with small airways, i e airways with an internal diameter < 2 mm. MAIN BODY Generation mechanisms, sites of origin, number concentrations of exhaled particles and the content of nonvolatile substances are studied. Exhaled particles range in diameter from 0.01 and 1000 μm depending on generation mechanism and site of origin. Airway reopening is one scientifically substantiated particle generation mechanism. During deep expirations, small airways close and the reopening process produces minute particles. When exhaled, these particles have a diameter of < 4 μm. A size discriminating sampling of particles < 4 μm and determination of the size distribution, allows exhaled particle mass to be estimated. The median mass is represented by particles in the size range of 0.7 to 1.0 μm. Half an hour of repeated deep expirations result in samples in the order of nanogram to microgram. The source of these samples is the respiratory tract ling fluid of small airways and consists of lipids and proteins, similarly to surfactant. Early clinical studies of e g chronic obstructive pulmonary disease and asthma, reported altered particle formation and particle composition. CONCLUSION The physical properties and content of exhaled particles generated by the airway reopening mechanism offers an exciting noninvasive way to obtain samples from the respiratory tract lining fluid of small airways. The biomarker potential is only at the beginning to be explored.
Collapse
Affiliation(s)
- B. Bake
- Unit of Respiratory Medicine and Allergy, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - P. Larsson
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G. Ljungkvist
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E. Ljungström
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - A-C Olin
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Zhang C, Dai M, Liu W, Bai X, Wu J, Xu C, Xia J, Fu F, Shi X, Dong X, Jin F, You F. Global and regional degree of obstruction determined by electrical impedance tomography in patients with obstructive ventilatory defect. PLoS One 2018; 13:e0209473. [PMID: 30571739 PMCID: PMC6301672 DOI: 10.1371/journal.pone.0209473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022] Open
Abstract
Background Electrical impedance tomography is a continuous imaging method capable of measuring lung volume changes. The purpose of this study was to examine whether EIT was capable of evaluating the degree of obstructive ventilatory defect (OVD) on the global and regional level. Methods 41 healthy subjects with no lung diseases and 67 subjects suffering from obstructive lung diseases were examined using EIT and spirometry during forced vital capacity (FVC) maneuver. The subjects were divided into control group (n = 41), early airway obstruction group (n = 26), mild group (n = 17), moderate group (n = 16) and severe group (n = 8) according to the degree of obstruction. Forced expiratory volume in 1 second (FEV1) and FEV1/FVC were determined by EIT. The mode index (MI) was proposed to evaluate the degree of global and regional obstruction; the effectiveness of MI was validated by evaluating posture related change of lung emptying capacity in sitting and supine postures; the degree of regional obstruction was determined according to the cut-off values of MI obtained from receiver operating characteristic (ROC) analysis; regional obstruction was located in the four-quadrant region of interest (ROI) and the contour-map ROI with contour lines at the cut-off values of MI. Results Significant differences were found between different groups (P<0.05) and the global MI was 0.93±0.03, 0.86±0.05, 0.81±0.09, 0.73±0.09 and 0.60±0.11 (mean ±SD), respectively. The cut-off MI value was 0.90, 0.83, 0.77, and 0.65, respectively. Conclusion The results indicated the potential of EIT to evaluate the degree of obstruction in patients with obstructive ventilatory defect on the global and regional level.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.,Medical Engineering Section, General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Meng Dai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Liu
- Department of respiratory medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Bai
- The Fifth People's Hospital of Baoji City, Baoji, Shaanxi, China
| | - Jiaming Wu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Medical Technology, Bethune Military Medical NCO Academy of PLA, Shijiazhuang, Hebei, China
| | - Canhua Xu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junying Xia
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuzhen Dong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Faguang Jin
- Department of respiratory medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fusheng You
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Standard and viscoelastic mechanical properties of respiratory system compartments in dogs: Effect of volume, posture, and shape. Respir Physiol Neurobiol 2018; 261:31-39. [PMID: 30553944 DOI: 10.1016/j.resp.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022]
Abstract
In 9 anesthetized, paralyzed dogs lung and chest-wall standard (viscous resistance, Rint, and quasi-static elastance, Est) and viscoelastic parameters (resistance, Rvel, and time constant, τvel) were measured in the supine posture before and after rib-cage block, after application of an expiratory threshold load, and after 75° head-up tilting before and after wide chest opening. Lung and chest-wall τvel were the same under all conditions. Rvel was independent of volume and posture, and greater for the lung. Chest-wall Rint was independent of flow, volume, and posture. Lung Rint decreased with increasing volume. Chest-wall Rint, Est and Rvel increased with rib-cage block, allowing the assessment of both abdominal-wall and rib-cage characteristics. When chest opening did not elicit bronchoconstriction, the decrease of Rvel was ∼6%. Main conclusions: lung and chest-wall exhibit linear tissue viscoelasticity within the range studied; rib-cage and abdomen characteristics are similar, and asynchronous motion is not expected at physiological respiratory rates; in normal lungs, heterogeneity of parallel time constants plays a marginal role.
Collapse
|
31
|
Mezidi M, Guérin C. Effects of patient positioning on respiratory mechanics in mechanically ventilated ICU patients. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:384. [PMID: 30460258 DOI: 10.21037/atm.2018.05.50] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Changes in the body position of patients receiving mechanical ventilation in intensive care unit are frequent. Contrary to healthy humans, little data has explored the physiological impact of position on respiratory mechanics. The objective of present paper is to review the available data on the effect of changing body position on respiratory mechanics in ICU patients receiving mechanical ventilation. Supine position (lying flat) or lateral position do not seem beneficial for critically ill patients in terms of respiratory mechanics. The sitting position (with thorax angulation >30° from the horizontal plane) is associated with improvement of functional residual capacity (FRC), oxygenation and reduction of work of breathing. There is a critical angle of inclination in the seated position above which the increase in abdominal pressure contributes to increase chest wall elastance and offset the increase in FRC. The impact of prone position on respiratory mechanics is complex, but the increase in chest wall elastance is a central mechanism. To sum up, both sitting and prone positions provides beneficial impact on respiratory mechanics of mechanically ventilated patients as compared to supine position.
Collapse
Affiliation(s)
- Mehdi Mezidi
- Service de réanimation médicale, Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Claude Guérin
- Service de réanimation médicale, Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Institut Mondor de Recherche Biomédicale, INSERM 955, Créteil, France
| |
Collapse
|
32
|
Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique. Eur J Appl Physiol 2018; 118:2213-2224. [PMID: 30062516 DOI: 10.1007/s00421-018-3949-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Airway closure has proved to be important in a number of respiratory diseases and may be the primary functional defect in asthma. A surrogate measure of closing volume can be identified using the forced oscillation technique (FOT), by performing a deflation maneuver and examining the resultant reactance (Xrs) lung volume relationship. This study aims to determine if a slow vital capacity maneuver can be used instead of this deflation maneuver and compare it to existing more complex techniques. Three subject groups were included in the study; healthy (n = 29), asthmatic (n = 18), and COPD (n = 10) for a total of 57 subjects. Reactance lung volume curves were generated via FOT recordings during two different breathing manoeuvres (both pre and post bronchodilator). The correlation and agreement between surrogate closing volume (Volcrit) and reactance (Xrscrit) at this volume was analysed. The changes in Volcrit and Xrscrit pre and post bronchodilator were also analysed. Across all three subject groups, the two different measures of Volcrit were shown to be statistically equivalent (p > 0.05) and demonstrated a strong fit to the data (R2 = 0.49, 0.78, 0.59, for asthmatic, COPD and healthy subject groups, respectively). A bias was evident between the two measurements of Xrscrit with statistically different means (p < 0.05). However, the two measurements of Xrscrit displayed the same trends. In conclusion, we have developed an alternative technique for measuring airway closure from FOT recordings. The technique delivers equivalent and possibly more sensitive results to previous methods while being simple and easily performed by the patient.
Collapse
|
33
|
Gawlitza J, Haubenreisser H, Henzler T, Akin I, Schönberg S, Borggrefe M, Trinkmann F. Finding the right spot: Where to measure airway parameters in patients with COPD. Eur J Radiol 2018; 104:87-93. [PMID: 29857872 DOI: 10.1016/j.ejrad.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE The importance of spirometry for management of COPD was reduced in the 2017 revision of the GOLD report. CT derived airway measurements show strong correlations with lung function tests and symptoms. However, these correlations are specific to the airway localization, and currently there is no evidence for the ideal spot. Therefore, the aim of this prospective study was to systematically correlate CT derived airway measurements with extensive lung function testing. METHODS AND MATERIALS 65 patients with diagnosed COPD underwent body plethysmography, impulse oscillometry and dose optimized qCT examination (Somatom Force, Healthineers, Germany) in inspiration and expiration. Eight airway parameters (e.g. outer diameter, maximal wall thickness) were acquired for both scans in every lobe for the third to fifth generation bronchus and correlated with the lung function tests. RESULTS The most significant correlations between airway parameters were found for the third generation bronchus of the upper left lobe during expiration (25 out of 48 correlation pairs, mean r = -0.39) and for the third generation bronchus of the upper right lobe during inspiration (9 out of 48 correlation pairs, mean r = -0.25). No significant correlations were for example found for the upper right lobe in expiration. CONCLUSION Correlations between airway parameters and lung function tests vary widely between lobes, bronchus generations and breathing states. Our work suggests that the third generation bronchus of the upper left lobe in expiration could be the preferred localization for airway quantification in future studies.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ibrahim Akin
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Stefan Schönberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Martin Borggrefe
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Mannheim, Germany.
| | - Frederik Trinkmann
- 1st Department of Medicine (Cardiology, Angiology, Pulmonary and Intensive Care), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
34
|
Radovanovic D, Pecchiari M, Pirracchio F, Zilianti C, D’Angelo E, Santus P. Plethysmographic Loops: A Window on the Lung Pathophysiology of COPD Patients. Front Physiol 2018; 9:484. [PMID: 29765337 PMCID: PMC5938386 DOI: 10.3389/fphys.2018.00484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
Plethysmographic alveolar pressure-flow (Palv-F) loops contain potentially relevant information about the pathophysiology of chronic obstructive pulmonary disease (COPD), but no quantitative analysis of these loops during spontaneous breathing has ever been performed. The area of the loop's inspiratory (Ains) and expiratory portion (Aexp), and the difference between the end-expiratory and end-inspiratory alveolar pressure (ΔPalv) were measured in 20 young, 20 elderly healthy subjects, and 130 stable COPD patients. Ains and ΔPalv increased by 55 and 78% from young to elderly subjects, and by 107 and 122% from elderly subjects to COPD patients, reflecting changes in mechanical heterogeneity, lung-units recruitment/derecruitment, and possibly air trapping occurring with aging and/or obstructive disease. Aexp increased by 38% from young to elderly subjects, and by 198% from elderly subjects to COPD patients, consistent with the additional contribution of tidal expiratory flow-limitation, which occurs only in COPD patients and affects Aexp only. In COPD patients, Aexp and ΔPalv showed a significant negative correlation with VC, FEV1, IC, and a significant positive correlation with RV/TLC. The results suggest that the analysis of plethysmographic Palv-F loops provides an insight of the pathophysiological factors, especially tidal expiratory flow-limitation, that affect lung function in COPD patients.
Collapse
Affiliation(s)
- Dejan Radovanovic
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università degli Studi di Milano, Milan, Italy
| | - Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Fabio Pirracchio
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Camilla Zilianti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Edgardo D’Angelo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Pierachille Santus
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Kang W, Clark AR, Tawhai MH. Gravity outweighs the contribution of structure to passive ventilation-perfusion matching in the supine adult human lung. J Appl Physiol (1985) 2017; 124:23-33. [PMID: 29051337 DOI: 10.1152/japplphysiol.00791.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravity and matched airway/vascular tree geometries are both hypothesized to be key contributors to ventilation-perfusion (V̇/Q̇) matching in the lung, but their relative contributions are challenging to quantify experimentally. We used a structure-based model to conduct an analysis of the relative contributions of tissue deformation (the "Slinky" effect), other gravitational mechanisms (weight of blood and gravitational gradient in tissue elastic recoil), and matched airway and arterial tree geometry to V̇/Q̇ matching and therefore to total lung oxygen exchange. Our results showed that the heterogeneity in V̇ and Q̇ were lowest and the correlation between V̇ and Q̇ was highest when the only mechanism for V̇/Q̇ matching was either tissue deformation or matched geometry. Heterogeneity in V̇ and Q̇ was highest and their correlation was poorest when all mechanisms were active (that is, at baseline). Eliminating the contribution of matched geometry did not change the correlation between V̇ and Q̇ at baseline. Despite the much larger heterogeneities in V̇ and Q̇ at baseline, the contribution of in-common (to V̇ and Q̇) gravitational mechanisms provided sufficient compensatory V̇/Q̇ matching to minimize the impact on oxygen transfer. In summary, this model predicts that during supine normal breathing under gravitational loading, passive V̇/Q̇ matching is predominantly determined by shared gravitationally induced tissue deformation, compliance distribution, and the effect of the hydrostatic pressure gradient on vessel and capillary size and blood pressures. Contribution from the matching airway and arterial tree geometries in this model is minor under normal gravity in the supine adult human lung. NEW & NOTEWORTHY We use a computational model to systematically analyze contributors to ventilation-perfusion matching in the lung. The model predicts that the multiple effects of gravity are the predominant mechanism in providing passive ventilation-perfusion matching in the supine adult human lung under normal gravitational loads, while geometric matching of airway and arterial trees plays a minor role.
Collapse
Affiliation(s)
- W Kang
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - A R Clark
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - M H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| |
Collapse
|
36
|
Li HL, Chen L, Brochard L. Protecting lungs during spontaneous breathing: what can we do? J Thorac Dis 2017; 9:2777-2781. [PMID: 29221238 DOI: 10.21037/jtd.2017.08.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong-Liang Li
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, Department of Critical Care, St Michael's Hospital, Toronto, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, Department of Critical Care, St Michael's Hospital, Toronto, Canada
| |
Collapse
|
37
|
Spatial patterns and frequency distributions of regional deformation in the healthy human lung. Biomech Model Mechanobiol 2017; 16:1413-1423. [DOI: 10.1007/s10237-017-0895-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
|
38
|
Patz MD, Sá RC, Darquenne C, Elliott AR, Asadi AK, Theilmann RJ, Dubowitz DJ, Swenson ER, Prisk GK, Hopkins SR. Susceptibility to high-altitude pulmonary edema is associated with a more uniform distribution of regional specific ventilation. J Appl Physiol (1985) 2017; 122:844-852. [PMID: 28057815 DOI: 10.1152/japplphysiol.00494.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition affecting high-altitude sojourners. The biggest predictor of HAPE development is a history of prior HAPE. Magnetic resonance imaging (MRI) shows that HAPE-susceptible (with a history of HAPE), but not HAPE-resistant (with a history of repeated ascents without illness) individuals develop greater heterogeneity of regional pulmonary perfusion breathing hypoxic gas (O2 = 12.5%), consistent with uneven hypoxic pulmonary vasoconstriction (HPV). Why HPV is uneven in HAPE-susceptible individuals is unknown but may arise from regionally heterogeneous ventilation resulting in an uneven stimulus to HPV. We tested the hypothesis that ventilation is more heterogeneous in HAPE-susceptible subjects (n = 6) compared with HAPE-resistant controls (n = 7). MRI specific ventilation imaging (SVI) was used to measure regional specific ventilation and the relative dispersion (SD/mean) of SVI used to quantify baseline heterogeneity. Ventilation heterogeneity from conductive and respiratory airways was measured in normoxia and hypoxia (O2 = 12.5%) using multiple-breath washout and heterogeneity quantified from the indexes Scond and Sacin, respectively. Contrary to our hypothesis, HAPE-susceptible subjects had significantly lower relative dispersion of specific ventilation than the HAPE-resistant controls [susceptible = 1.33 ± 0.67 (SD), resistant = 2.36 ± 0.98, P = 0.05], and Sacin tended to be more uniform (susceptible = 0.085 ± 0.009, resistant = 0.113 ± 0.030, P = 0.07). Scond was not significantly different between groups (susceptible = 0.019 ± 0.007, resistant = 0.020 ± 0.004, P = 0.67). Sacin and Scond did not change significantly in hypoxia (P = 0.56 and 0.19, respectively). In conclusion, ventilation heterogeneity does not change with short-term hypoxia irrespective of HAPE susceptibility, and lesser rather than greater ventilation heterogeneity is observed in HAPE-susceptible subjects. This suggests that the basis for uneven HPV in HAPE involves vascular phenomena.NEW & NOTEWORTHY Uneven hypoxic pulmonary vasoconstriction (HPV) is thought to incite high-altitude pulmonary edema (HAPE). We evaluated whether greater heterogeneity of ventilation is also a feature of HAPE-susceptible subjects compared with HAPE-resistant subjects. Contrary to our hypothesis, ventilation heterogeneity was less in HAPE-susceptible subjects and unaffected by hypoxia, suggesting a vascular basis for uneven HPV.
Collapse
Affiliation(s)
- Michael D Patz
- Department of Anesthesiology, University of Washington, Seattle, Washington
| | - Rui C Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ann R Elliott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - David J Dubowitz
- Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - Erik R Swenson
- Medical Service, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California; .,Department of Radiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
39
|
Factors Associated with ICU Admission following Blunt Chest Trauma. Can Respir J 2016; 2016:3257846. [PMID: 28044070 PMCID: PMC5156815 DOI: 10.1155/2016/3257846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Blunt chest wall trauma accounts for over 10% of all trauma patients presenting to emergency departments worldwide. When the injury is not as severe, deciding which blunt chest wall trauma patients require a higher level of clinical input can be difficult. We hypothesized that patient factors, injury patterns, analgesia, postural condition, and positive airway pressure influence outcomes. Methods. The study population consisted of patients hospitalized with at least 3 rib fractures (RF) and at least one pulmonary contusion and/or at least one pneumothorax lower than 2 cm. Results. A total of 140 patients were retrospectively analyzed. Ten patients (7.1%) were admitted to intensive care unit (ICU) within the first 72 hours, because of deterioration of the clinical conditions and gas exchange with worsening of chest X-ray/thoracic ultrasound/chest computed tomography. On univariable analysis and multivariable analysis, obliged orthopnea (p = 0.0018) and the severity of trauma score (p < 0.0002) were associated with admission to ICU. Conclusions. Obliged orthopnea was an independent predictor of ICU admission among patients incurring non-life-threatening blunt chest wall trauma. The main therapeutic approach associated with improved outcome is the prevention of pulmonary infections due to reduced tidal volume, namely, upright postural condition and positive airway pressure.
Collapse
|
40
|
Cardona PJ. Reactivation or reinfection in adult tuberculosis: Is that the question? Int J Mycobacteriol 2016; 5:400-407. [PMID: 27931680 DOI: 10.1016/j.ijmyco.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 11/28/2022] Open
Abstract
Looking at the chapter on "natural history" in any tuberculosis (TB) reference book, there is a kind of certainty regarding TB in adults. That is the concept of "post-primary" TB described as the reactivation of dormant bacilli hidden in an old lesion developed during infancy due to a type of local immunosuppression. Intriguingly, this concept involves at least two major uncertainties: how can dormant bacilli remain for such a long period, almost a lifetime, in an old lesion, taking into account granuloma dynamism; and what sort of local immunosuppression is the one that facilitates reactivation? The controversy between reactivation and exogenous reinfection as the cause of active TB started very soon in TB research. Interestingly, this "balance" was disturbed in the 1960s when the "Unitary Concept" became very successful in supporting the reactivation dogma. The "Unitary Concept" was mainly based on the data of tuberculin surveillance during the pre-antibiotic era as well as the data obtained from experimental modelling in animals. At the same time, the "Three-risks model" appeared to explain the relationship between the risk of infection and TB incidence, granting reinfection a key role in adult TB together with primary infection. This role was reinforced by the studies of recurrence based on molecular epidemiology, and a better knowledge of the immune response, granuloma dynamics, and lung physiology. Now it is a matter of taking it into account when designing new prophylactic and therapeutic strategies and also reflecting it in text books to better illustrate to our students.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol, Badalona, Catalonia, Spain.
| |
Collapse
|
41
|
Akizuki M, Serizawa N, Ueno A, Adachi T, Hagiwara N. Effect of Balloon Pulmonary Angioplasty on Respiratory Function in Patients With Chronic Thromboembolic Pulmonary Hypertension. Chest 2016; 151:643-649. [PMID: 27746200 DOI: 10.1016/j.chest.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/10/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Balloon pulmonary angioplasty (BPA) in chronic thromboembolic pulmonary hypertension (CTEPH) improves hemodynamics and exercise capacity. However, its effect on respiratory function is unclear. Our objective was to investigate the effect of BPA on respiratory function. METHODS We enrolled patients with inoperable CTEPH who underwent BPA primarily in lower lobe arteries (first series) and upper and middle lobe arteries (second series). We compared changes in hemodynamics and respiratory function between different BPA fields. RESULTS Sixty-two BPA sessions were performed in 13 consecutive patients. Mean pulmonary arterial pressure and pulmonary vascular resistance significantly improved from 44 ± 8 to 23 ± 5 mm Hg and 818 ± 383 to 311 ± 117 dyne/s/cm-5. The percent predicted diffusion capacity of lung for carbon monoxide (Dlco) decreased after BPA in the lower lung field (from 60% ± 8% to 54% ± 8%) with no recovery. Percent Dlco increased after BPA in the upper middle lung field (from 53% ± 6% to 58% ± 6%) and continued to improve during the follow-up (from 58% ± 6% to 64% ± 11%). The ventilation/Co2 production (V˙e/V˙co2) slope significantly improved after BPA in the lower lung field (from 51 ± 13 to 41 ± 8) and continued to improve during the follow-up (from 41 ± 8 to 35 ± 7); however, the V˙e/V˙co2 slope remained unchanged after BPA in the upper/middle lung field. Changes in % Dlco and the V˙e/V˙co2 slope differed significantly between lower and upper/middle lung fields. CONCLUSIONS The effect of BPA on respiratory function in patients with CTEPH differed depending on the lung field.
Collapse
Affiliation(s)
- Mina Akizuki
- Department of Rehabilitation, Tokyo Women's Medical University, Tokyo, Japan; Department of Internal Medicine and Rehabilitation, Science Disability Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Naoki Serizawa
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuko Ueno
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Taku Adachi
- Department of Rehabilitation, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
42
|
|
43
|
Affiliation(s)
| | - J I Alexander
- University Department of Anæsthesia, Western Infirmary, Glasgow
| |
Collapse
|
44
|
Verbanck S, Paiva M. Last Word on Viewpoint: Could lobar flow sequencing account for convection-dependent ventilation heterogeneity in normal man? J Appl Physiol (1985) 2016; 121:593. [PMID: 27543660 DOI: 10.1152/japplphysiol.00513.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium; and
| | - Manuel Paiva
- Respiratory Division, University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
Verbanck S, Paiva M. Could lobar flow sequencing account for convection-dependent ventilation heterogeneity in normal humans? J Appl Physiol (1985) 2016; 121:589-91. [DOI: 10.1152/japplphysiol.01049.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium; and
| | - Manuel Paiva
- Respiratory Division, University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
46
|
Herranz SB, Misgeld B, Vollmer T, Leonhardt S. An object-oriented model of the cardiopulmonary system with emphasis on the gravity effect. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:2737-2740. [PMID: 28268885 DOI: 10.1109/embc.2016.7591296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.
Collapse
|
47
|
Collier G, Horn F, Wild J, Zuo L, Zhou T. Commentaries on Viewpoint: Could lobar flow sequencing account for convection-dependent ventilation heterogeneity in normal humans? J Appl Physiol (1985) 2016; 121:592. [PMID: 27543659 DOI: 10.1152/japplphysiol.00498.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Felix Horn
- University of SheffieldOhio State University
| | - Jim Wild
- University of SheffieldOhio State University
| | - Li Zuo
- University of SheffieldOhio State University
| | | |
Collapse
|
48
|
Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas 2016; 37:698-712. [PMID: 27203725 DOI: 10.1088/0967-3334/37/6/698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The measurement of rapid regional lung volume changes by electrical impedance tomography (EIT) could determine regional lung function in patients with obstructive lung diseases during pulmonary function testing (PFT). EIT examinations carried out before and after bronchodilator reversibility testing could detect the presence of spatial and temporal ventilation heterogeneities and analyse their changes in response to inhaled bronchodilator on the regional level. We examined seven patients suffering from chronic asthma (49 ± 19 years, mean age ± SD) using EIT at a scan rate of 33 images s(-1) during tidal breathing and PFT with forced full expiration. The patients were studied before and 5, 10 and 20 min after bronchodilator inhalation. Seven age- and sex-matched human subjects with no lung disease history served as a control study group. The spatial heterogeneity of lung function measures was quantified by the global inhomogeneity indices calculated from the pixel values of tidal volume, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak flow and forced expiratory flow between 25% and 75% of FVC as well as histograms of pixel FEV1/FVC values. Temporal heterogeneity was assessed using the pixel values of expiration times needed to exhale 75% and 90% of pixel FVC. Regional lung function was more homogeneous in the healthy subjects than in the patients with asthma. Spatial and temporal ventilation distribution improved in the patients with asthma after the bronchodilator administration as evidenced mainly by the histograms of pixel FEV1/FVC values and pixel expiration times. The examination of regional lung function using EIT enables the assessment of spatial and temporal heterogeneity of ventilation distribution during bronchodilator reversibility testing. EIT may become a new tool in PFT, allowing the estimation of the natural disease progression and therapy effects on the regional and not only global level.
Collapse
Affiliation(s)
- I Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Regional distribution of ventilation in patients with obstructive sleep apnea: the role of thoracic electrical impedance tomography (EIT) monitoring. Sleep Breath 2016; 20:1245-1253. [PMID: 27136936 DOI: 10.1007/s11325-016-1349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE The aim of our study was to apply the electrical impedance tomography (EIT) technique to the study of ventilation during wake and NREM and REM sleep in patients with obstructive sleep apneas (OSA). METHODS This is a prospective, observational, monocentric, pilot study in a neurology department with a sleep disorder center. Inclusion criteria were age ≥18 years, both gender, and diagnosis of OSA. Exclusion criteria were the contraindications to the thoracic EIT. All patients underwent laboratory-based polysomnography (PSG) alongside thoracic EIT. Primary endpoint was to compare the global impedance (GI) among the conditions: "Wake" vs "Sleep," "NREM" vs "REM," and "OSA" vs "Non-OSA." Secondary endpoint was to measure the regional distribution of impedance in the four regions of interest (ROIs), in each condition. RESULTS Of the 17 consecutive patients enrolled, two were excluded because of poor-quality EIT tracings. Fifteen were analyzed, 10 men and 5 women, mean age 51.6 ± 14.4 years. GI was higher in Wake vs Sleep (Wake 13.24 ± 11.23; Sleep 12.56 ± 13.36; p < 0.01), in NREM vs REM (NREM 13.48 ± 13.43; REM 0.59 ± 0.01; p < 0.01), and in Non-OSA vs OSA (Non-OSA 10.50 ± 12.99; OSA 18.98 ± 10.06; p < 0.01). No significant differences were observed in the regional distribution of impedance between Wake and Sleep (χ 2 = 3.66; p = 0.299) and between Non-OSA and OSA (χ 2 = 1.00; p = 0.799); conversely, a significant difference was observed between NREM and REM sleep (χ 2 = 62.94; p < 0.001). CONCLUSIONS To our knowledge, this is the first study that addresses the issue of regional ventilation in OSA patients during sleep. Thoracic electrical impedance changes through the sleep-wake cycle and during obstructive events. The application of thoracic EIT can prove a valuable additional strategy for the evaluation of OSA patients.
Collapse
|
50
|
Effects of superimposed tissue weight on regional compliance of injured lungs. Respir Physiol Neurobiol 2016; 228:16-24. [PMID: 26976688 DOI: 10.1016/j.resp.2016.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (VREG) and local transpulmonary pressure (PTP,REG) maps of the lung. Purpose of this study is to assess the distribution of VREG vs PTP,REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPs) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level VREG vs PTP,REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that VREG vs PTP,REG curves derived from different anatomical planes (p-values<1.4E-3), exposed to different PEEPs (p-values<1.5E-5) or subtending different lung status (p-values<3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury.
Collapse
|