1
|
Forbes SC. Insights into neuromuscular fatigue using 31 P-MRS. J Physiol 2022; 600:3011-3012. [PMID: 35687052 DOI: 10.1113/jp283331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Bartlett MF, Fitzgerald LF, Kent JA. Rates of oxidative ATP synthesis are not augmented beyond the pH threshold in human vastus lateralis muscles during a stepwise contraction protocol. J Physiol 2021; 599:1997-2013. [PMID: 33576028 DOI: 10.1113/jp280851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The oxygen cost of high-intensity exercise at power outputs above an individual's lactate threshold (LT) is greater than would be predicted by the linear oxygen consumption-power relationship observed below the LT. However, whether these augmentations are caused by an increased ATP cost of force generation (ATPCOST ) or an increased oxygen cost of ATP synthesis is unclear. We used 31 P-MRS to measure changes in cytosolic [ADP] (intramyocellular marker of oxidative metabolism), oxidative ATP synthesis (ATPOX ) and ATPCOST during a 6-stage, stepwise knee extension protocol. ATPCOST was unchanged across stages. The relationship between [ADP] and muscle power output was augmented at workloads above the pH threshold (pHT ; proxy for LT), whereas increases in ATPOX were attenuated. These results suggest the greater oxygen cost of contractions at workloads beyond the pHT is not caused by mechanisms that increase ATPCOST , but rather mechanisms that alter intrinsic mitochondrial function or capacity. ABSTRACT Increases in skeletal muscle metabolism and oxygen consumption are linearly related to muscle power output for workloads below the lactate threshold (LT), but are augmented (i.e. greater rate of increase relative to workload) thereafter. Presently, it is unclear whether these metabolic augmentations are caused by increases in the ATP cost of force generation (ATPCOST ) or changes in the efficiency of mitochondrial oxygen consumption and oxidative ATP synthesis (ATPOX ). To partition these two hypotheses in vivo, we used 31 P-MRS to calculate slopes relating step-changes in muscle work to concurrent changes in cytosolic phosphates and ATPOX before and after the pH threshold (pHT ; used here as a proxy for LT) within the vastus lateralis muscle of eight young adults during a stepwise knee extension test. Changes in muscle phosphates and ATPOX were linearly related to workload below the pHT . However, slopes above the pHT were greater for muscle phosphates (P < 0.05) and lower for ATPOX (P < 0.05) than were the slopes observed below the pHT . The maximal capacity for ATPOX ( V ̇ max ) and ADP-specific ATPOX also declined beyond the pHT (P < 0.05), whereas ATPCOST was unchanged (P = 0.10). These results oppose the hypothesis that high-intensity contractions increase ATPCOST and suggest that greater oxidative metabolism at workloads beyond the pHT is caused by mechanisms that affect intrinsic mitochondrial function or capacity, such as alterations in substrate selection or electron entry into the electron transport chain, temperature-mediated changes in mitochondrial permeability to protons, or stimulation of mitochondrial uncoupling by reactive oxygen species generation.
Collapse
Affiliation(s)
- Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JA, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovič L, Kemp GJ. 31 P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4246. [PMID: 32037688 PMCID: PMC8243949 DOI: 10.1002/nbm.4246] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Chris Boesch
- DBMR and DIPRUniversity and InselspitalBernSwitzerland
| | - Donnie Cameron
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
| | - Monika Dezortová
- MR‐Unit, Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Sean C. Forbes
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of RadiologyAmsterdam University Medical Center|site AMCAmsterdamthe Netherlands
- Cognitive Neuroscience CenterUniversity Medical Center GroningenGroningenthe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
- Duchenne CenterThe Netherlands
| | - Jane Kent
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
| | - Gwenaël Layec
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of Myology AIM‐CEAParisFrance
| | - Alison Sleigh
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- NIHR/Wellcome Trust Clinical Research FacilityCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| | - Graham J. Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | | |
Collapse
|
4
|
Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 2018; 596:2301-2314. [PMID: 29644702 DOI: 10.1113/jp275817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Belfry GR, Raymer GH, Marsh GD, Paterson DH, Thompson RT, Thomas SG. Muscle metabolic status and acid-base balance during 10-s work:5-s recovery intermittent and continuous exercise. J Appl Physiol (1985) 2012; 113:410-7. [PMID: 22604889 DOI: 10.1152/japplphysiol.01059.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.
Collapse
Affiliation(s)
- Glen R Belfry
- University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Layec G, Haseler LJ, Richardson RS. The effect of higher ATP cost of contraction on the metabolic response to graded exercise in patients with chronic obstructive pulmonary disease. J Appl Physiol (1985) 2011; 112:1041-8. [PMID: 22174392 DOI: 10.1152/japplphysiol.00986.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah, USA.
| | | | | |
Collapse
|
7
|
Davies RC, Eston RG, Fulford J, Rowlands AV, Jones AM. Muscle damage alters the metabolic response to dynamic exercise in humans: a31P-MRS study. J Appl Physiol (1985) 2011; 111:782-90. [DOI: 10.1152/japplphysiol.01021.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used31P-magnetic resonance spectroscopy to test the hypothesis that exercise-induced muscle damage (EIMD) alters the muscle metabolic response to dynamic exercise, and that this contributes to the observed reduction in exercise tolerance following EIMD in humans. Ten healthy, physically active men performed incremental knee extensor exercise inside the bore of a whole body 1.5-T superconducting magnet before (pre) and 48 h after (post) performing 100 squats with a load corresponding to 70% of body mass. There were significant changes in all markers of muscle damage [perceived muscle soreness, creatine kinase activity (434% increase at 24 h), and isokinetic peak torque (16% decrease at 24 h)] following eccentric exercise. Muscle phosphocreatine concentration ([PCr]) and pH values during incremental exercise were not different pre- and post-EIMD ( P > 0.05). However, resting inorganic phosphate concentration ([Pi]; pre: 4.7 ± 0.8; post: 6.7 ± 1.7 mM; P < 0.01) and, consequently, [Pi]/[PCr] values (pre: 0.12 ± 0.02; post: 0.18 ± 0.05; P < 0.01) were significantly elevated following EIMD. These mean differences were maintained during incremental exercise ( P < 0.05). Time to exhaustion was significantly reduced following EIMD (519 ± 56 and 459 ± 63 s, pre- and post-EIMD, respectively, P < 0.001). End-exercise pH (pre: 6.75 ± 0.04; post: 6.83 ± 0.04; P < 0.05) and [PCr] (pre: 7.2 ± 1.7; post: 14.5 ± 2.1 mM; P < 0.01) were higher, but end-exercise [Pi] was not significantly different (pre: 19.7 ± 1.9; post: 21.1 ± 2.6 mM, P > 0.05) following EIMD. The results indicate that alterations in phosphate metabolism, specifically the elevated [Pi] at rest and throughout exercise, may contribute to the reduced exercise tolerance observed following EIMD.
Collapse
Affiliation(s)
| | - Roger G. Eston
- School of Sport and Health Sciences and
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jonathan Fulford
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom; and
| | | | | |
Collapse
|
8
|
BARKER ALANR, WELSMAN JOANNER, FULFORD JONATHAN, WELFORD DEBORAH, ARMSTRONG NEIL. Quadriceps Muscle Energetics during Incremental Exercise in Children and Adults. Med Sci Sports Exerc 2010; 42:1303-13. [DOI: 10.1249/mss.0b013e3181cabaeb] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Effects of ammonium chloride ingestion on phosphocreatine metabolism during moderate- and heavy-intensity plantar-flexion exercise. Eur J Appl Physiol 2009; 108:1189-200. [PMID: 20033204 DOI: 10.1007/s00421-009-1327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
This study examined the effects of NH(4)Cl ingestion on phosphocreatine (PCr) metabolism during 9 min of moderate- (MOD) and heavy- (HVY) intensity constant-load isotonic plantar-flexion exercise. Healthy young adult male subjects (n = 8) completed both a control (CON) and NH(4)Cl ingestion (ACID) trial. Phosphorus-31 magnetic resonance spectroscopy was used to monitor changes in intracellular pH (pHi), [Pi], [PCr], and [ATP]. During the Middle (3-6 min) and Late (6-9 min) stages of HVY, ACID was associated with a higher (P < 0.05) intracellular hydrogen-ion concentration ([H(+)]i) [Middle: 246 (SD 36) vs. 202 (SD 36) mmol/l]; [Late: 236 (SD 35) vs. 200 (SD 39) mmol/l]. In addition, ACID was associated with a lower (P < 0.05) [PCr] relative to CON during the Early (0-3 min) [18.1 (SD 5.1) vs. 20.4 (SD 5.4) mmol/l] and Middle stages [14.1 (SD 5.4) vs. 16.7 (SD 6.0) mmol/l] of HVY. The amplitude of the primary component of PCr breakdown during the transition to HVY was greater in ACID than CON [14.5 (SD 5.8 vs. 11.3 (SD 4.8) mmol/l], however, the PCr slow component (continued slow decline in [PCr]) showed no difference (P > 0.05). The time constant for PCr breakdown (tauPCr) was greater in HVY than MOD for both conditions [58 (SD 22) vs. 28 (SD 15) s ACID; 51 (SD 20) vs. 29 (SD 14) s CON] (P < 0.05). In summary, ACID increased PCr breakdown during the transition from MOD to HVY, but did not increase the magnitude of the PCr slow component.
Collapse
|
10
|
Raymer GH, Green HJ, Ranney DA, Marsh GD, Thompson RT. Muscle metabolism and acid-base status during exercise in forearm work-related myalgia measured with31P-MRS. J Appl Physiol (1985) 2009; 106:1198-206. [PMID: 19112160 DOI: 10.1152/japplphysiol.90925.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined muscle metabolic and acid-base status during incremental wrist extension exercise in the forearm of individuals with work-related myalgia (WRM). Eighteen women employed in full-time occupations involving repetitive forearm labor were recruited in this cross-sectional study. Nine of these women were diagnosed with WRM, while the other nine had no previous WRM history and were used as age-matched controls (Con). Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) was used to noninvasively monitor the intracellular concentrations of phosphocreatine ([PCr]) and inorganic phosphate ([Pi]) as well as intracellular pH (pHi) status during exercise in WRM and Con. We observed a 38% decreased work capacity in WRM compared with Con [0.18 W (SD 0.03) vs. 0.28 W (SD 0.10); P = 0.007]. Piecewise linear regression of the incremental exercise data revealed that the onset of a faster decrease in pHi(i.e., the pH threshold, pHT) and the onset of a faster increase in log([Pi]/[PCr]) (i.e., the phosphorylation threshold, PT) occurred at a 14% relatively lower power output in WRM [pHT: 45.2% (SD 5.3) vs. 59.0% (SD 4.6), P < 0.001; PT: 44.8% (SD 4.3) vs. 57.8% (SD 3.1), P < 0.001; % of peak power output, Con vs. WRM, respectively]. Monoexponential modeling of the kinetics of [PCr] and pHirecovery following exercise demonstrated a slower ( P = 0.005) time constant (τ) for [PCr] in WRM [113 s (SD 25)] vs. Con [77 s (SD 23)] and a slower ( P = 0.007) τ for pHiin WRM [370 s (SD 178)] vs. Con [179 s (SD 52)]. In conclusion, our results suggest that WRM is associated with an increased reliance on nonoxidative metabolism. Possible mechanisms include a reduction in local muscle blood flow and perfusion, an increased ATP cost of force production, or both.
Collapse
|
11
|
Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N. Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. J Appl Physiol (1985) 2008; 105:446-56. [PMID: 18499782 DOI: 10.1152/japplphysiol.00819.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The splitting of muscle phosphocreatine (PCr) plays an integral role in the regulation of muscle O2 utilization during a "step" change in metabolic rate. This study tested the hypothesis that the kinetics of muscle PCr would be faster in children compared with adults both at the onset and offset of moderate-intensity exercise, in concert with the previous demonstration of faster phase II pulmonary O2 uptake kinetics in children. Eighteen peri-pubertal children (8 boys, 10 girls) and 16 adults (8 men, 8 women) completed repeated constant work-rate exercise transitions corresponding to 80% of the Pi/PCr intracellular threshold. The changes in quadriceps [PCr], [Pi], [ADP], and pH were determined every 6 s using 31P-magnetic resonance spectroscopy. No significant (P>0.05) age- or sex-related differences were found in the PCr kinetic time constant at the onset (boys, 21+/-4 s; girls, 24+/-5 s; men, 26+/-9 s; women, 24+/-7 s) or offset (boys, 26+/-5 s; girls, 29+/-7 s; men, 23+/-9 s; women 29+/-7 s) of exercise. Likewise, the estimated theoretical maximal rate of oxidative phosphorylation (Qmax) was independent of age and sex (boys, 1.39+/-0.20 mM/s; girls, 1.32+/-0.32 mM/s; men, 2.36+/-1.18 mM/s; women, 1.51+/-0.53 mM/s). These results are consistent with the notion that the putative phosphate-linked regulation of muscle O2 utilization is fully mature in peri-pubertal children, which may be attributable to a comparable capacity for mitochondrial oxidative phosphorylation in child and adult muscle.
Collapse
Affiliation(s)
- Alan R Barker
- Children's Health and Exercise Research Centre, St. Luke's Campus University of Exeter, Exeter, EX1 2LU, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 21:227-35. [PMID: 18483819 DOI: 10.1007/s10334-008-0117-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/01/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Given that we have reached a point in the field of muscle energetics where absolute measurements are warranted to take the area forward, we designed an ergometer, including two force and two displacement transducers, allowing dynamic and isometric knee extension within a MR system and accurate measurements of power output. METHODS On the basis of repeated measurements, the force and displacement transducers accuracy was 1% for values ranging from 0 to 394 N and 4% for values ranging from 0 to 20 cm. In addition, measurements were not affected by magnetic field. MRS experiments in exercising muscle were conducted in eight subjects. They performed two standardized dynamic alternate leg extension exercises (25 and 35% of MVC) while the corresponding metabolic changes were measured using (31)P-MRS. RESULTS The mean power output produced during both exercises were 63 +/- 16 and 81 +/- 15 W while the eccentric work was reduced i.e. 12 +/- 14 and 21 +/- 6 W for the moderate and heavy exercise respectively. The corresponding metabolic changes were significant with a 20-40% PCr depletion and an end of exercise pH ranging from 0.02 to 0.70 pH units. CONCLUSION Overall, the present ergometer allows quadriceps exercise in a MR system and should be useful for future metabolic studies for which reliable and absolute quantification of power output is warranted.
Collapse
|
13
|
Effects of recovery time on phosphocreatine kinetics during repeated bouts of heavy-intensity exercise. Eur J Appl Physiol 2008; 103:665-75. [DOI: 10.1007/s00421-008-0762-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
|
14
|
Barker AR, Welsman JR, Fulford J, Welford D, Williams CA, Armstrong N. Muscle phosphocreatine and pulmonary oxygen uptake kinetics in children at the onset and offset of moderate intensity exercise. Eur J Appl Physiol 2008; 102:727-38. [PMID: 18172674 DOI: 10.1007/s00421-007-0650-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
To further understand the mechanism(s) explaining the faster pulmonary oxygen uptake (p(VO)(2)) kinetics found in children compared to adults, this study examined whether the phase II p(VO)(2) kinetics in children are mechanistically linked to the dynamics of intramuscular PCr, which is known to play a principal role in controlling mitochondrial oxidative phosphorylation during metabolic transitions. On separate days, 18 children completed repeated bouts of moderate intensity constant work-rate exercise for determination of (1) PCr changes every 6 s during prone quadriceps exercise using (31)P-magnetic resonance spectroscopy, and (2) breath by breath changes in p(VO)(2) during upright cycle ergometry. Only subjects (n = 12) with 95% confidence intervals <or=+/-7 s for all estimated time constants were considered for analysis. No differences were found between the PCr and phase II p(VO)(2) time constants at the onset (PCr 23 +/- 5 vs. p(VO)(2) 23 +/- 4 s, P = 1.000) or offset (PCr 28 +/- 5 vs. p(VO)(2) 29 +/- 5 s, P = 1.000) of exercise. The average difference between the PCr and phase II p(VO)(2) time constants was 4 +/- 4 s for the onset and offset responses. Pooling of the exercise onset and offset responses revealed a significant correlation between the PCr and p(VO)(2) time constants (r = 0.459, P = 0.024). The close kinetic coupling between the p(VO)(2) and PCr responses at the onset and offset of exercise in children is consistent with our current understanding of metabolic control and suggests that an age-related modulation of the putative phosphate linked controller(s) of mitochondrial oxidative phosphorylation may explain the faster p(VO)(2) kinetics found in children compared to adults.
Collapse
Affiliation(s)
- Alan R Barker
- Children's Health and Exercise Research Centre, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
15
|
Jones AM, Wilkerson DP, Berger NJ, Fulford J. Influence of endurance training on muscle [PCr] kinetics during high-intensity exercise. Am J Physiol Regul Integr Comp Physiol 2007; 293:R392-401. [PMID: 17475681 DOI: 10.1152/ajpregu.00056.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.
Collapse
Affiliation(s)
- Andrew M Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK.
| | | | | | | |
Collapse
|
16
|
Forbes SC, Kowalchuk JM, Thompson RT, Marsh GD. Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. J Appl Physiol (1985) 2007; 102:1565-73. [PMID: 17218429 DOI: 10.1152/japplphysiol.00895.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of controlled voluntary hyperventilation (Hyp) on phosphocreatine (PCr) kinetics and muscle deoxygenation were examined during moderate-intensity plantar flexion exercise. Male subjects ( n = 7) performed trials consisting of 20-min rest, 6-min exercise, and 10-min recovery in control [Con; end-tidal Pco2(PetCO2) ∼ 33 mmHg] and Hyp (PetCO2∼17 mmHg) conditions. Phosphorus-31 magnetic resonance and near-infrared spectroscopy were used simultaneously to monitor intramuscular acid-base status, high-energy phosphates, and muscle oxygenation. Resting intracellular hydrogen ion concentration ([H+]i) was lower ( P < 0.05) in Hyp [90 nM (SD 3)] than Con [96 nM (SD 4)]; however, at end exercise, [H+]iwas greater ( P < 0.05) in Hyp [128 nM (SD 19)] than Con [120 nM (SD 17)]. At rest, [PCr] was not different between Con [36 mM (SD 2)] and Hyp [36 mM (SD 1)]. The time constant (τ) of PCr breakdown during transition from rest to exercise was greater ( P < 0.05) in Hyp [39 s (SD 22)] than Con [32 s (SD 22)], and the PCr amplitude was greater ( P < 0.05) in Hyp [26% (SD 4)] than Con [22% (SD 6)]. The deoxyhemoglobin and/or deoxymyoglobin (HHb) τ was similar between Hyp [13 s (SD 8)] and Con [10 s (SD 3)]; however, the amplitude was increased ( P < 0.05) in Hyp [40 arbitrary units (au) (SD 23)] compared with Con [26 au (SD 17)]. In conclusion, our results indicate that Hyp-induced hypocapnia enhanced substrate-level phosphorylation during moderate-intensity exercise. In addition, the increased amplitude of the HHb response suggests a reduced local muscle perfusion in Hyp compared with Con.
Collapse
Affiliation(s)
- S C Forbes
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Barker A, Welsman J, Welford D, Fulford J, Williams C, Armstrong N. Reliability of 31P-magnetic resonance spectroscopy during an exhaustive incremental exercise test in children. Eur J Appl Physiol 2006; 98:556-65. [PMID: 17006712 DOI: 10.1007/s00421-006-0302-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2006] [Indexed: 12/23/2022]
Abstract
This study examined the reliability of (31)P-magnetic resonance spectroscopy (MRS) to measure parameters of muscle metabolic function in children. On separate days, 14 children (7 boys and 7 girls) completed three knee-extensor incremental tests to exhaustion inside a whole-body scanner (1.5 T, Phillips). The dynamic changes in the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) and intracellular muscle pH were resolved every 30 s. Using plots of Pi/PCr and pH against power output (W), intracellular thresholds (ITs) for each variable were determined using both subjective and objective procedures. The IT(Pi/PCr) and IT(pH) were observed subjectively in 93 and 81% of their respective plots, whereas the objective method identified the IT(Pi/PCr) in 88% of the plots. The IT(pH) was undetectable using the objective method. End exercise (END) END(Pi/PCr), END(pH), IT(Pi/PCr) and IT(pH) were examined using typical error statistics expressed as a % coefficient of variation (CV) across all three exercise tests. The CVs for the power output at the subjectively determined IT(Pi/PCr) and IT(pH) were 10.6 and 10.3%, respectively. Objective identification of the IT(Pi/PCr) had a CV of 16.3%. CVs for END(pH) and END(Pi/PCr) were 0.9 and 50.0%, respectively. MRS provides a valuable window into metabolic changes during exercise in children. During knee-extensor exercise to exhaustion, END(pH) and the subjectively determined IT(Pi/PCr) and IT(pH) demonstrate good reliability and thus stable measures for the future study of developmental metabolism. However, the objectively determined IT(Pi/PCr) and END(Pi/PCr) displayed poor reliability.
Collapse
Affiliation(s)
- Alan Barker
- Children's Health, Exercise Research Centre, St Luke's Campus, University of Exeter, Exeter, UK
| | | | | | | | | | | |
Collapse
|
18
|
Raja MK, Raymer GH, Moran GR, Marsh G, Thompson RT. Changes in tissue water content measured with multiple-frequency bioimpedance and metabolism measured with 31P-MRS during progressive forearm exercise. J Appl Physiol (1985) 2006; 101:1070-5. [PMID: 16794019 DOI: 10.1152/japplphysiol.01322.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple-frequency bioimpedance analysis (MFBIA) has been used to determine the cellular water composition in the human body. It is noninvasive and has demonstrated good correlations with other invasive measures of tissue water. However, the ability of this method to study transient changes in tissue water in specific muscle groups has not been explored. In this study, MFBIA was used to assess changes in forearm intracellular water (ICW), extracellular water (ECW), and total water (TW) in seven healthy volunteers during and after a progressive wrist flexion exercise protocol. In an identical trial, (31)P magnetic resonance spectroscopy ((31)P-MRS) was used to assess changes in intracellular pH and phosphocreatine (PCr). At the completion of exercise, forearm ICW increased 12.6% (SD 0.07, P = 0.003), TW increased 10.1% (SD 0.06, P = 0.005), and no significant changes were recorded for ECW. A significant correlation was found between the changes in intracellular pH and changes in ICW during exercise (r = -0.84, P = 0.018). With the use of regression analysis, average changes in P(i), PCr, and pH were found to predict changes in ICW (R(2) = 0.98, P = 0.005). In conclusion, MFBIA was sensitive enough to measure transient changes in the exercising forearm muscle. The changes seen were consistent with the hypothesis that intracellular acidification and PCr hydrolysis are important mediators of cellular osmolality and therefore may be responsible for the increased volume of water in the intracellular space that is often recorded after short-term high-intensity exercise.
Collapse
Affiliation(s)
- Mohan K Raja
- Department of Radiology, St. Joseph's Health Center, University of Western Ontario, 268 Grosvenor St., London, Ontario, Canada, N6A 4V2
| | | | | | | | | |
Collapse
|
19
|
Raymer GH, Allman BL, Rice CL, Marsh GD, Thompson RT. Characteristics of a MR-compatible ankle exercise ergometer for a 3.0 T head-only MR scanner. Med Eng Phys 2005; 28:489-94. [PMID: 16162418 DOI: 10.1016/j.medengphy.2005.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/26/2022]
Abstract
An exercise ergometer, for isometric or dynamic contraction of both dorsiflexion and/or plantarflexion exercise, was designed and constructed for a 3.0 T head-only MR scanner. The principal features of this MR-compatible ergometer include electronic devices for quantification of force (during isometric exercise) and angular displacement (during dynamic exercise), without any significant losses to external motions or frictions. The ergometer was also made to be adjustable for subject leg length and was designed for suspension within the bore of the magnet to eliminate transmission of force and vibration to the MR scanner. A description of the design and construction, as well as the important technical features, is presented herein.
Collapse
Affiliation(s)
- Graydon H Raymer
- Department of Medical Biophysics, The University of Western Ontario, London, Ont., Canada N6A 5C1.
| | | | | | | | | |
Collapse
|
20
|
Forbes SC, Raymer GH, Kowalchuk JM, Marsh GD. NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise. J Appl Physiol (1985) 2005; 99:1668-75. [PMID: 16002768 DOI: 10.1152/japplphysiol.01200.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During heavy-intensity exercise, the mechanisms responsible for the continued slow decline in phosphocreatine concentration ([PCr]) (PCr slow component) have not been established. In this study, we tested the hypothesis that a reduced intracellular acidosis would result in a greater oxidative flux and, consequently, a reduced magnitude of the PCr slow component. Subjects (n = 10) performed isotonic wrist flexion in a control trial and in an induced alkalosis (Alk) trial (0.3g/kg oral dose of NaHCO3, 90 min before testing). Wrist flexion, at a contraction rate of 0.5 Hz, was performed for 9 min at moderate- (75% of onset of acidosis; intracellular pH threshold) and heavy-intensity (125% intracellular pH threshold) exercise. 31P-magnetic resonance spectroscopy was used to measure intracellular [H+], [PCr], [Pi], and [ATP]. The initial recovery data were used to estimate the rate of ATP synthesis and oxidative flux at the end of heavy-intensity exercise. In repeated trials, venous blood sampling was used to measure plasma [H+], [HCO3-], and [Lac-]. Throughout rest and exercise, plasma [H+] was lower (P < 0.05) and [HCO3-] was elevated (P < 0.05) in Alk compared with control. During the final 3 min of heavy-intensity exercise, Alk caused a lower (P < 0.05) intracellular [H+] [246 (SD 117) vs. 291 nmol/l (SD 129)], a greater (P < 0.05) [PCr] [12.7 (SD 7.0) vs. 9.9 mmol/l (SD 6.0)], and a reduced accumulation of [ADP] [0.065 (SD 0.031) vs. 0.098 mmol/l (SD 0.059)]. Oxidative flux was similar (P > 0.05) in the conditions at the end of heavy-intensity exercise. In conclusion, our results are consistent with a reduced intracellular acidosis, causing a decrease in the magnitude of the PCr slow component. The decreased PCr slow component in Alk did not appear to be due to an elevated oxidative flux.
Collapse
Affiliation(s)
- S C Forbes
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada N6A-3K7
| | | | | | | |
Collapse
|
21
|
Homma T, Hamaoka T, Sako T, Murakami M, Esaki K, Kime R, Katsumura T. Muscle oxidative metabolism accelerates with mild acidosis during incremental intermittent isometric plantar flexion exercise. DYNAMIC MEDICINE : DM 2005; 4:2. [PMID: 15720727 PMCID: PMC1079909 DOI: 10.1186/1476-5918-4-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 02/20/2005] [Indexed: 12/03/2022]
Abstract
Background It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. Methods Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. Results EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). Conclusion With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.
Collapse
Affiliation(s)
- Toshiyuki Homma
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan
| | - Takafumi Hamaoka
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
- Department of Sports Performance, National Institute of Fitness and Sports in Kanoya, Shiromizu-cho 1, Kagoshima, 891-2393, Japan
| | - Takayuki Sako
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Motohide Murakami
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Kazuki Esaki
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Ryotaro Kime
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toshihito Katsumura
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
22
|
Schocke MFH, Esterhammer R, Arnold W, Kammerlander C, Burtscher M, Fraedrich G, Jaschke WR, Greiner A. High-energy phosphate metabolism during two bouts of progressive calf exercise in humans measured by phosphorus-31 magnetic resonance spectroscopy. Eur J Appl Physiol 2004; 93:469-79. [PMID: 15517340 DOI: 10.1007/s00421-004-1233-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
According to the literature the steady-state level of phosphocreatine (PCr) has a linear relationship to the workload during muscle exercise intensities below the lactate threshold, whereas this linearity is impaired during exercise intensities above the lactate threshold. The purpose of this study was to investigate the linearity between PCr kinetics and workload during two bouts of isotonic incremental calf exercise with transitions from moderate- to high-intensity as well as from high- to moderate-intensity work rates. Using a whole-body 1.5 T MR scanner and a self-built exercise bench, we performed serial phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) with a time resolution of 30 s in nine healthy male volunteers. Changes in PCr, inorganic phosphate (Pi) and pH were statistically evaluated in comparison to the baseline. The exercise protocol started with a 4.5 W interval of 6 min followed by two bouts of 1.5 W increments. The workload was increased in 2-min intervals up to 9 W during the first bout and up to 7.5 W during the second bout. The second bout was preceded by a 4.5 W interval of 2 min and followed by a 4.5 W interval of 4 min. PCr hydrolysis achieved a steady state during each increment and was highly linear to the work rate (r (2), -0.796; P <0.001). Pi accumulated during each bout, whereas the pH decreased continuously during the first bout and did not exhibit any substantial decrease during the second bout. The metabolite levels and pH were expressed as the median value and the range. Our study confirms that steady-state PCr levels also have a linear relationship to work intensities above the lactate threshold, while pH changes do not have any impact on PCr degradation. The lack of substantial changes in pH during the second exercise bout indicates that prior high-intensity exercise leads to an activation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Michael F H Schocke
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Schocke MFH, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS). Magn Reson Imaging 2004; 22:109-15. [PMID: 14972400 DOI: 10.1016/j.mri.2003.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 07/17/2003] [Accepted: 07/18/2003] [Indexed: 11/24/2022]
Abstract
Several previous 31 phosphorus magnetic resonance spectroscopy ((31)P MRS) studies performing incremental or progressive muscle exercises have observed that a decrease in pH is accompanied with an acceleration in phosphocreatine (PCr) hydrolysis. The purpose of this study was to investigate the relationship between PCr breakdown and pH during isotonic, exhaustive, incremental plantar flexion exercises. We included eight healthy, male volunteers into this study. Using a 1.5 Tesla MR scanner and a self-built exercise bench, we performed serial free induction decay (FID) (31)P MRS measurements with a time resolution of 1 min at rest, isotonic calf muscle exercise, and recovery. The exercise protocol consisted of 5-min intervals with 4.5, 6, 7.5, and 9 W workload followed by 9-min recovery. Changes in PCr and inorganic phosphate (Pi) were determined as percent changes in comparison to the baseline. In addition, pH values were calculated. This study obtained significant decreases in PCr corresponding to the gradual increases in workload. In each workload level that was succeeded by all volunteers, PCr hydrolysis passed into a steady state. After an early biphasic response, we detected a significant decrease in pH from the first to the second minute of the 6-W workload level followed by a further continuous decrease in pH up to the second minute of the recovery phase. The decrease in pH was not accompanied by acceleration in PCr hydrolysis. In conclusion, this study shows that PCr hydrolysis during incremental plantar flexion exercises passes into a steady state at different workload levels. The observed decrease in pH does not result in acceleration of PCr hydrolysis.
Collapse
|
24
|
Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol (1985) 2004; 96:2050-6. [PMID: 14766777 DOI: 10.1152/japplphysiol.01261.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic alkalosis induced by sodium bicarbonate (NaHCO3) ingestion has been shown to enhance performance during brief high-intensity exercise. The mechanisms associated with this increase in performance may include increased muscle phosphocreatine (PCr) breakdown, muscle glycogen utilization, and plasma lactate (Lac-pl) accumulation. Together, these changes would imply a shift toward a greater contribution of anaerobic energy production, but this statement has been subject to debate. In the present study, subjects ( n = 6) performed a progressive wrist flexion exercise to volitional fatigue (0.5 Hz, 14–21 min) in a control condition (Con) and after an oral dose of NaHCO3 (Alk: 0.3 g/kg; 1.5 h before testing) to evaluate muscle metabolism over a complete range of exercise intensities. Phosphorus-31 magnetic resonance spectroscopy was used to continuously monitor intracellular pH, [PCr], [Pi], and [ATP] (brackets denote concentration). Blood samples drawn from a deep arm vein were analyzed with a blood gas-electrolyte analyzer to measure plasma pH, Pco2, and [Lac-]pl, and plasma [Formula: see text] was calculated from pH and Pco2. NaHCO3 ingestion resulted in an increased ( P < 0.05) plasma pH and [Formula: see text] throughout rest and exercise. Time to fatigue and peak power output were increased ( P < 0.05) by ∼12% in Alk. During exercise, a delayed ( P < 0.05) onset of intracellular acidosis (1.17 ± 0.26 vs. 1.28 ± 0.22 W, Con vs. Alk) and a delayed ( P < 0.05) onset of rapid increases in the [Pi]-to-[PCr] ratio (1.21 ± 0.30 vs. 1.30 ± 0.30 W) were observed in Alk. No differences in total [H+], [Pi], or [Lac-]pl accumulation were detected. In conclusion, NaHCO3 ingestion was shown to increase plasma pH at rest, which resulted in a delayed onset of intracellular acidification during incremental exercise. Conversely, NaHCO3 was not associated with increased [Lac-]pl accumulation or PCr breakdown.
Collapse
Affiliation(s)
- Graydon H Raymer
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
25
|
Roussel M, Mattei JP, Le Fur Y, Ghattas B, Cozzone PJ, Bendahan D. Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. J Appl Physiol (1985) 2003; 94:1145-52. [PMID: 12433845 DOI: 10.1152/japplphysiol.01024.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Onset of intracellular acidosis during muscular exercise has been generally attributed to activation or hyperactivation of nonoxidative ATP production but has not been analyzed quantitatively in terms of H(+) balance, i.e., production and removal mechanisms. To address this issue, we have analyzed the relation of intracellular acidosis to H(+) balance during exercise bouts in seven healthy subjects. Each subject performed a 6-min ramp rhythmic exercise (finger flexions) at low frequency (LF, 0.47 Hz), leading to slight acidosis, and at high frequency (HF, 0.85 Hz), inducing a larger acidosis. Metabolic changes were recorded using (31)P-magnetic resonance spectroscopy. Onset of intracellular acidosis was statistically identified after 3 and 4 min of exercise for HF and LF protocols, respectively. A detailed investigation of H(+) balance indicated that, for both protocols, nonoxidative ATP production preceded a change in pH. For HF and LF protocols, H(+) consumption through the creatine kinase equilibrium was constant in the face of increasing H(+) generation and efflux. For both protocols, changes in pH were not recorded as long as sources and sinks for H(+) approximately balanced. In contrast, a significant acidosis occurred after 4 min of LF exercise and 3 min of HF exercise, whereas the rise in H(+) generation exceeded the rise in H(+) efflux at a nearly constant H(+) uptake associated with phosphocreatine breakdown. We have clearly demonstrated that intracellular acidosis in exercising muscle does not occur exclusively as a result of nonoxidative ATP production but, rather, reflects changes in overall H(+) balance.
Collapse
Affiliation(s)
- M Roussel
- Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6612, and Faculté de Médecine de Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Crowther GJ, Gronka RK. Fiber recruitment affects oxidative recovery measurements of human muscle in vivo. Med Sci Sports Exerc 2002; 34:1733-7. [PMID: 12439076 DOI: 10.1097/00005768-200211000-00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Fast-twitch and slow-twitch muscle fibers are known to have distinct metabolic properties. However, it has not been clearly established whether such heterogeneity within mixed-fiber muscles can influence measurements of energy metabolism in vivo. We therefore tested the hypothesis that differences in muscle fiber recruitment can cause differences in whole-muscle oxidative recovery from exercise. METHODS We used (31)P magnetic resonance spectroscopy to measure oxidative ATP synthesis in the ankle dorsiflexor muscles of eight healthy volunteers under a variety of recruitment conditions. Oxidative ATP synthesis after isometric exercise was quantified as the rate constant k(PCr), the reciprocal of the time constant of PCr recovery. RESULTS k(PCr) was 37% higher after low-force ramp contractions (which primarily recruit slow-twitch fibers) than after ballistic contractions to the same peak force (which recruit both fast- and slow-twitch fibers). k(PCr) was also 24% higher after low-force ramp contractions than after high-force ramp contractions, presumably reflecting the recruitment of fast-twitch fibers at high forces. CONCLUSION Our results indicate that the muscle fibers recruited first in voluntary contractions have a higher oxidative capacity than those recruited last. Such metabolic differences among fibers can confound whole-muscle measurements and thus need to be taken into account when studying voluntary exercise.
Collapse
|
27
|
Yoshida T. The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS. JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY AND APPLIED HUMAN SCIENCE 2002; 21:247-55. [PMID: 12491822 DOI: 10.2114/jpa.21.247] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.
Collapse
|
28
|
Cohen-Solal A. Oxygen uptake should be measured and not estimated in patients with heart failure. Int J Cardiol 2002. [DOI: 10.1016/s0167-5273(02)00058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Kowalchuk JM, Smith SA, Weening BS, Marsh GD, Paterson DH. Forearm muscle metabolism studied using (31)P-MRS during progressive exercise to fatigue after Acz administration. J Appl Physiol (1985) 2000; 89:200-9. [PMID: 10904053 DOI: 10.1152/jappl.2000.89.1.200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of acetazolamide (Acz)-induced carbonic anhydrase inhibition (CAI) on muscle intracellular thresholds (T) for intracellular pH (pH(i)) and inorganic phosphate-to-phosphate creatine ratio (P(i)/PCr) and the plasma lactate (La(-)) threshold were examined in nine adult male subjects performing forearm wrist flexion exercise to fatigue. Exercise consisted of raising and lowering (1-s contraction, 1-s relaxation) a cylinder whose volume increased at a rate of 200 ml/min. The protocol was performed during control (Con) and after 45 min of CAI with Acz (10 mg/kg body wt iv). T(pH(i)) and T(P(i)/PCr), determined using (31)P-labeled magnetic resonance spectroscopy (MRS), were similar in Acz (722 +/- 50 and 796 +/- 75 mW, respectively) and Con (855 +/- 211 and 835 +/- 235 mW, respectively). The pH(i) was similar at end-exercise (6.38 +/- 0.10 Acz and 6.43 +/- 0.22 Con), but pH(i) recovery was slowed in Acz. In a separate experiment, blood was sampled from a deep arm vein at the elbow for determination of plasma lactate concentration ([La(-)](pl)) and T(La(-)). [La(-)](pl) was lower (P < 0.05) in Acz than Con (3.7 +/- 1.7 vs. 5.0 +/- 1.7 mmol/l) at end-exercise and in early recovery, but T(La(-)) was higher (1,433 +/- 243 vs. 1,041 +/- 414 mW, respectively). These data suggest that the lower [La(-)](pl) seen with CAI was not due to a delayed onset or rate of muscle La(-) accumulation but may be related to impaired La(-) removal from muscle.
Collapse
Affiliation(s)
- J M Kowalchuk
- The Centre for Activity and Ageing, School of Kinesiology, University of Western Ontario, London, Ontario N6A 3K7.
| | | | | | | | | |
Collapse
|
30
|
Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and skeletal muscle metabolism during exercise in anorexic females. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Chilibeck PD, Paterson DH, Cunningham DA, Taylor AW, Noble EG. Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals. J Appl Physiol (1985) 1997; 82:63-9. [PMID: 9029199 DOI: 10.1152/jappl.1997.82.1.63] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The relationships between muscle capillarization, estimated O2 diffusion distance from capillary to mitochondria, and O2 uptake (VO2) kinetics were studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. VO2 kinetics were determined by calculating the time constants (tau) for the phase 2 VO2 adjustment to and recovery from the average of 12 repeats of a 6-min, moderate-intensity plantar flexion exercise. Muscle capillarization was determined from cross sections of biopsy material taken from lateral gastrocnemius. Young and old groups had similar VO2 kinetics (tau VO2-on = 44 vs. 48 s; tau VO2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, and estimated O2 diffusion distances. Muscle capillarization, expressed as capillary density or average number of capillary contacts per fiber/average fiber area, and the estimates of diffusion distance were significantly correlated to VO2-off kinetics in the young (r = -0.68 to -0.83; P < 0.05). We conclude that 1) capillarization and VO2 kinetics during exercise of a muscle group accustomed to everyday activity (e.g., walking) are well maintained in old individuals, and 2) in the young, recovery of VO2 after exercise is faster, with a greater capillary supply over a given muscle fiber area or shorter O2 diffusion distances.
Collapse
Affiliation(s)
- P D Chilibeck
- Centre for Activity and Ageing, Faculty of Kinesiology, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Vittone J, Blackman MR, Busby-Whitehead J, Tsiao C, Stewart KJ, Tobin J, Stevens T, Bellantoni MF, Rogers MA, Baumann G, Roth J, Harman SM, Spencer RG. Effects of single nightly injections of growth hormone-releasing hormone (GHRH 1-29) in healthy elderly men. Metabolism 1997; 46:89-96. [PMID: 9005976 DOI: 10.1016/s0026-0495(97)90174-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Age-related reductions in growth hormone (GH) and insulin-like growth factor-I (IGF-I) may contribute to decreased muscle mass and strength in older persons. The relationship of this phenomenon to skeletal muscle bioenergetics has not been reported. We sought to determine whether administration of GH-releasing hormone (GHRH) would sustain increases in GH and IGF-I and improve skeletal muscle function and selected measures of body composition and metabolism. We measured GH secretion, muscle strength, muscle histology, and muscle energy metabolism by phosphorus nuclear magnetic resonance spectroscopy (31P-NMRS), body composition, and endocrine-metabolic functions before and after 6 weeks of treatment. Eleven healthy, ambulatory, non-obese men aged 64 to 76 years with low baseline IGF-I levels were treated at home as outpatients by nightly subcutaneous self-injections of 2 mg GHRH for 6 weeks. We measured GH levels in blood samples obtained every 20 minutes from 8:00 PM to 8:00 AM; AM serum levels of IGF-I, IGF binding protein-3 (IGFBP-3), and GH binding protein (GHBP); muscle strength; muscle histology; the normalized phosphocreatine abundance, PCr/[PCr + Pi], and intracellular pH in forearm muscle by NMRS during both sustained and ramped exercise; body composition by dual-energy x-ray absorptiometry (DEXA); lipid levels; and glucose, insulin, and GH levels during an oral glucose tolerance test (OGTT). GHRH treatment increased mean nocturnal GH release (P < .02), the area under the GH peak ([AUPGH] P < .006), and GH peak amplitude (P < .05), with no change in GH pulse frequency or in levels of IGF-I, IGFBP-3, or GHBP Two of six measures of muscle strength, upright row (P < .02) and shoulder press (P < .04), and a test of muscle endurance, abdominal crunch (P < .03), improved. GHRH treatment did not alter exercise-mediated changes in PCr/[PCr + Pi] or intracellular pH, but decreased or abolished significant relationships between changes in PCr/[PCr + Pi] or pH and indices of muscle strength. GHRH treatment did not change weight, body mass index, waist to hip ratio, DEXA measures of muscle and fat, muscle histology, glucose, insulin, or GH responses to OGTT, or lipids. No significant adverse effects were observed. These data suggest that single nightly doses of GHRH are less effective than multiple daily doses of GHRH in eliciting GH- and/or IGF-I-mediated effects. GHRH treatment may increase muscle strength, and it alters baseline relationships between muscle strength and muscle bioenergetics in a manner consistent with a reduced need for anaerobic metabolism during exercise. Thus, an optimized regimen of GHRH administration might attenuate some of the effects of aging on skeletal muscle function in older persons.
Collapse
Affiliation(s)
- J Vittone
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Engelen M, Porszasz J, Riley M, Wasserman K, Maehara K, Barstow TJ. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol (1985) 1996; 81:2500-8. [PMID: 9018498 DOI: 10.1152/jappl.1996.81.6.2500] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is unclear whether hypoxia alters the kinetics of O2 uptake (VO2) during heavy exercise [above the lactic acidosis threshold (LAT)] and how these alterations might be linked to the rise in blood lactate. Eight healthy volunteers performed transitions from unloaded cycling to the same absolute heavy work rate for 8 min while breathing one of three inspired O2 concentrations: 21% (room air), 15% (mild hypoxia), and 12% (moderate hypoxia). Breathing 12% O2 slowed the time constant but did not affect the amplitude of the primary rise in VO2 (period of first 2-3 min of exercise) and had no significant effect on either the time constant or the amplitude of the slow VO2 component (beginning 2-3 min into exercise). Baseline heart rate was elevated in proportion to the severity of the hypoxia, but the amplitude and kinetics of increase during exercise and in recovery were unaffected by level of inspired O2. We conclude that the predominant effect of hypoxia during heavy exercise is on the early energetics as a slowed time constant for VO2 and an additional anaerobic contribution. However, the sum total of the processes representing the slow component of VO2 is unaffected.
Collapse
Affiliation(s)
- M Engelen
- Department of Medicine, Harbor-University of California, Los Angeles Medical Center, Torrance 90509, USA
| | | | | | | | | | | |
Collapse
|
34
|
Iwanaga K, Sakurai M, Minami T, Kato Y, Sairyo K, Kikuchi Y. Is the intracellular pH threshold an anaerobic threshold from the view point of intracellular events?: a brief review. APPLIED HUMAN SCIENCE : JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY 1996; 15:59-65. [PMID: 8739757 DOI: 10.2114/jpa.15.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intracellular biochemical changes could be monitored noninvasivery and continuously by using nuclear magnetic resonance (NMR). In about the last decade, intracellular behavior of phosphorus compounds and pH during muscle contraction in man have been studied by 31P nuclear magnetic resonance spectroscopy (31P-MRS). During incremental load, lactic acidosis was followed by a decline in intracellular pH. 31P-MRS studies has been definitely proved that this change in intracellular pH shows the threshold behavior. Some reports discussed the intracellular pH threshold (pHT) as an anaerobic threshold (AT) from the view point of intracellular events. However, our studies revealed that pHT did not reflect the onset of lactate production. In this article, studies of intracellular pH of working muscle were reviewed in relation to an anaerobic threshold.
Collapse
Affiliation(s)
- K Iwanaga
- Department of Ergonomics, Chiba University
| | | | | | | | | | | |
Collapse
|
35
|
Takahashi H, Inaki M, Fujimoto K, Tomoshige S, Katsuta S, Niitsu M, Itai Y. Index of the oxidative potential in human quadriceps muscle: simultaneous measurements of [31P]NMR and oxygen consumption during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 155:109-10. [PMID: 8553872 DOI: 10.1111/j.1748-1716.1995.tb09953.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- H Takahashi
- Department of Radiology, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Effects of Age on $$ (\dot V{O_2}) $$ Kinetics During Calf and Cycling Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995. [DOI: 10.1007/978-1-4615-1933-1_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
37
|
Plesh O, Meyerhoff DJ, Weiner MW. Phosphorus magnetic resonance spectroscopy of human masseter muscle. J Dent Res 1995; 74:338-44. [PMID: 7876427 DOI: 10.1177/00220345950740010901] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Masseter muscle metabolism is poorly understood. 31P Magnetic Resonance Spectroscopy (MRS) provides an opportunity for non-invasive study of muscle metabolism during rest, exercise, and recovery. The aim of this study was to investigate the changes in high-energy phosphates and pH in human masseter muscle associated with exertional pain. Phosphates and pH were measured with 31P Magnetic Resonance at 2.0 Tesla. The bite force was simultaneously measured with a force transducer. Continuous biting at maximum voluntary bite force (MVBF) and two intermittent biting exercises with different duty cycles were performed to pain intolerance. The light intermittent exercise did not produce pain. Brief MVBF requested at the beginning, during, and end of each exercise showed no decay. Qualitatively, changes in phosphates were similar to those reported from comparable limb muscle exercises: increased inorganic phosphate (Pi), decreased phosphocreatine (PCr), and no changes in ATP level. Quantitatively, however, the Pi/PCr ratio did not reach the levels reported in limb muscles during similar exercises. Also, the pH changed very little. Thus, the lack of fatigue was no surprise, since the level of changes in Pi/PCr and pH, reported to be associated with fatigue in limb muscles, was far less in the masseter. Pain development toward the end of the heavy exercises prevented further depletion of metabolites. Thus, the lack of fatigue generally postulated for the masseter muscle may not be due to resistance to fatigue of these fibers, but rather to the presence of pain preventing the fatigue. However, no specific metabolic changes associated with exertional pain were found.
Collapse
Affiliation(s)
- O Plesh
- University of California, San Francisco, School of Dentistry, Department of Restorative Dentistry 94143-0758
| | | | | |
Collapse
|
38
|
Yoshida T, Watari H. Exercise-induced splitting of the inorganic phosphate peak: investigation by time-resolved 31P-nuclear magnetic resonance spectroscopy. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1994; 69:465-73. [PMID: 7713064 DOI: 10.1007/bf00239861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.
Collapse
Affiliation(s)
- T Yoshida
- Exercise Physiology Laboratory, Faculty of Health and Sport Sciences, Osaka University, Japan
| | | |
Collapse
|
39
|
McLoughlin P, Popham P, Linton RA, Bruce RC, Band DM. Exercise-induced changes in plasma potassium and the ventilatory threshold in man. J Physiol 1994; 479 ( Pt 1):139-47. [PMID: 7990030 PMCID: PMC1155731 DOI: 10.1113/jphysiol.1994.sp020283] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. It has been reported that, during incremental exercise testing, the patterns of change in ventilation (VE) and arterial K+ (Ka+) are similar, suggesting that changing Ka+ may lead to the phenomenon of the ventilatory threshold through its action on the peripheral chemoreceptors. 2. Expiratory ventilation, oxygen consumption, CO2 production (VE, VO2, VCO2), arterialized venous PCO2 (Pav, CO2; see Methods), pH (pHav), K+ (Kav+) and lactate were measured during incremental exercise tests undertaken by six normal male subjects under control conditions and during lactic acidosis following severe exercise (experimental trial). 3. A ventilatory threshold, associated with a period of isocapnic buffering, was observed under both control and experimental conditions. During the control trial, plots of Kav+ against VO2 showed an inflexion close to the ventilatory threshold. Throughout the experimental trial Kav+ rose linearly relative to VO2. In both control and experimental trials Kav+ concentrations were similar at the ventilatory threshold. 4. These results suggest that the pattern of change of Ka+ cannot account for the phenomenon of the ventilatory threshold. The possibility that the peripheral chemoreceptor response is non-linear above a critical value of Ka+ requires further investigation.
Collapse
Affiliation(s)
- P McLoughlin
- Laboratory of Applied Physiology, United Medical and Dental School, St Thomas's Hospital, London
| | | | | | | | | |
Collapse
|
40
|
Marsh GD, McFadden RG, Nicholson RL, Leasa DJ, Thompson RT. Theophylline delays skeletal muscle fatigue during progressive exercise. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1993; 147:876-9. [PMID: 8466123 DOI: 10.1164/ajrccm/147.4.876] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, 31P nuclear magnetic resonance spectroscopy (NMRS) was used to examine the effect of theophylline on human forearm muscle metabolism during progressive exercise. Six healthy men (37 +/- 14 yr of age) were assigned to either a control (CTRL) group (n = 3), or a theophylline treatment (THEO) group (n = 3). Each subject performed two dynamic wrist flexion exercise tests to fatigue, with at least 72 h separating each trial. The THEO group repeated the protocol after receiving 300 mg of sustained-release theophylline every 12 h. 31P spectra were acquired every 36 s throughout exercise, and the relative contributions of the phosphate metabolites and pH were determined. Power output at the onset, or threshold of intracellular acidosis (IT), was identified for each subject from changes in phosphocreatine (PCr) metabolism and pH. Power at maximal exercise and at the IT was found to be reproducible in the CTRL group. After theophylline administration, the maximal power attained by the THEO group increased significantly by 19% (p < 0.05), from 2.25 +/- 0.2 to 2.68 +/- 0.15 W. A similar trend occurred in the onset of the IT, which was also prolonged by 19%, from 1.33 +/- 0.18 to 1.58 +/- 0.22 W. Therapeutic concentrations of theophylline significantly increased the endurance of the forearm musculature, apparently by delaying the onset of intracellular metabolic acidosis. These findings suggest an enhancement of oxidative capacity of the muscle.
Collapse
Affiliation(s)
- G D Marsh
- Department of Nuclear Medicine, St. Joseph's Health Centre, London, Ontario, Canada
| | | | | | | | | |
Collapse
|