1
|
Srinivasan M, Pollard H, Chapman DG, Tonga K, Patel K, Blokland K, Touma D, Thamrin C, Cross T, Prisk K, King GG. The effect of expiratory flow limitation on supine persistent hyperinflation in COPD: a prospective observational study. ERJ Open Res 2024; 10:00255-2024. [PMID: 39588072 PMCID: PMC11587055 DOI: 10.1183/23120541.00255-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction COPD is characterised by airflow obstruction, expiratory airway collapse and closure causing expiratory flow limitation (EFL) and hyperinflation. Supine posture may worsen ventilatory function in COPD, which may cause hyperinflation to persist and contribute to symptoms of orthopnoea and sleep disturbance. Our aim was to determine the impact of supine posture on hyperinflation, dynamic elastance and EFL in COPD and healthy subjects. We hypothesised that changes in hyperinflation in supine posture are influenced by EFL and gas trapping in COPD. Methods Clinically stable COPD patients (compatible symptoms, smoking >10 pack-years, obstructed spirometry) and healthy controls underwent oscillometry in the seated and supine positions. Hyperinflation was measured by inspiratory capacity (IC) and the ratio of IC to total lung capacity (IC/TLC) while seated and supine EFL was measured as the difference in mean inspiratory and mean expiratory oscillatory reactance at 5 Hz (X rs5). Relationships between IC, IC/TLC and X rs5, were examined by Spearman correlation. Results 42 COPD patients demonstrated no change in IC/TLC from seated (0.31 L) to supine (0.32 L) position (p=0.079) compared to significant increases seen in 14 control subjects (0.37 L seated versus 0.44 L supine; p<0.001). In COPD, worse dynamic elastance (X rs5 rs 0.499; p=0.001) and EFL (ΔX rs5 rs -0.413; p=0.007), along with increased age and lower body-mass-index were predictors of supine hyperinflation. Conclusion Supine persistent hyperinflation occurs in COPD and is associated with increased dynamic elastance and EFL, likely the result of increased airway closure due to gravitational redistribution of lung mass.
Collapse
Affiliation(s)
- Meera Srinivasan
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney University, Sydney, NSW, Australia
- Department of Respiratory Medicine, The Canberra Hospital, Garran, ACT, Australia
| | - Hannah Pollard
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - David G. Chapman
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Katrina Tonga
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney University, Sydney, NSW, Australia
| | - Kieran Patel
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Kaj Blokland
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - David Touma
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Cindy Thamrin
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney University, Sydney, NSW, Australia
| | - Troy Cross
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney University, Sydney, NSW, Australia
| | - Kim Prisk
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Department of Medicine, University of California, San Diego, CA, USA
| | - Gregory G. King
- The Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Smith MB, Chen H, Oliver BGG. The Lungs in Space: A Review of Current Knowledge and Methodologies. Cells 2024; 13:1154. [PMID: 38995005 PMCID: PMC11240436 DOI: 10.3390/cells13131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Space travel presents multiple risks to astronauts such as launch, radiation, spacewalks or extravehicular activities, and microgravity. The lungs are composed of a combination of air, blood, and tissue, making it a complex organ system with interactions between the external and internal environment. Gravity strongly influences the structure of the lung which results in heterogeneity of ventilation and perfusion that becomes uniform in microgravity as shown during parabolic flights, Spacelab, and Skylab experiments. While changes in lung volumes occur in microgravity, efficient gas exchange remains and the lungs perform as they would on Earth; however, little is known about the cellular response to microgravity. In addition to spaceflight and real microgravity, devices, such as clinostats and random positioning machines, are used to simulate microgravity to study cellular responses on the ground. Differential expression of cell adhesion and extracellular matrix molecules has been found in real and simulated microgravity. Immune dysregulation is a known consequence of space travel that includes changes in immune cell morphology, function, and number, which increases susceptibility to infections. However, the majority of in vitro studies do not have a specific respiratory focus. These studies are needed to fully understand the impact of microgravity on the function of the respiratory system in different conditions.
Collapse
Affiliation(s)
- Michaela B. Smith
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Hui Chen
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Brian G. G. Oliver
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
3
|
Stepanek J, Blue RS, Connolly D. Pulmonary Function in Human Spaceflight. Semin Respir Crit Care Med 2023; 44:696-704. [PMID: 37459884 DOI: 10.1055/s-0043-1770064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human spaceflight is entering a time of markedly increased activity fueled by collaboration between governmental and private industry entities. This has resulted in successful mission planning for destinations in low Earth orbit, lunar destinations (Artemis program, Gateway station) as well as exploration to Mars. The planned construction of additional commercial space stations will ensure continued low Earth orbit presence and destinations for science but also commercial spaceflight participants. The human in the journey to space is exposed to numerous environmental challenges including increased gravitational forces, microgravity, altered human physiology during adaptation to weightlessness in space, altered ambient pressure, as well as other important stressors contingent on the type of mission and destination. This chapter will cover clinically important aspects relevant to lung function in a normally proceeding mission; emergency scenarios such as decompression, fire, etc., will not be covered as these are beyond the scope of this review. To date, participation in commercial spaceflight by those with pre-existing chronic medical conditions is very limited, and hence, close collaboration between practicing pulmonary specialists and aerospace medicine specialists is of critical importance to guarantee safety, proper clinical management, and hence success in these important endeavors.
Collapse
Affiliation(s)
- Jan Stepanek
- Aerospace Medicine Program, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Rebecca S Blue
- Aerospace Medicine Program Aerospace Medicine and Vestibular Research Laboratory (AMVRL), Mayo Clinic, Scottsdale, Arizona
| | - Desmond Connolly
- Human Performance, Air & Space Division, QinetiQ Plc, Farnborough, United Kingdom
| |
Collapse
|
4
|
Karlsson LL, Van Muylem A, Linnarsson D. Lung diffusing capacity for nitric oxide in space: microgravity gas density interactions. Front Physiol 2023; 14:1161062. [PMID: 37228824 PMCID: PMC10203558 DOI: 10.3389/fphys.2023.1161062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: During manned space exploration lung health is threatened by toxic planetary dust and radiation. Thus, tests such as lung diffusing capacity (DL) are likely be used in planetary habitats to monitor lung health. During a DL maneuver the rate of uptake of an inspired blood-soluble gas such as nitric oxide (NO) is determined (DLNO). The aim of this study was to investigate the influence of altered gravity and reduced atmospheric pressure on the test results, since the atmospheric pressure in a habitat on the moon or on Mars is planned to be lower than on Earth. Changes of gravity are known to alter the blood filling of the lungs which in turn may modify the rate of gas uptake into the blood, and changes of atmospheric pressure may alter the speed of gas transport in the gas phase. Methods: DLNO was determined in 11 subjects on the ground and in microgravity on the International Space Station. Experiments were performed at both normal (1.0 atm absolute, ata) and reduced (0.7 ata) atmospheric pressures. Results: On the ground, DLNO did not differ between pressures, but in microgravity DLNO was increased by 9.8% (9.5) (mean [SD]) and 18.3% (15.8) at 1.0 and 0.7 ata respectively, compared to normal gravity, 1.0 ata. There was a significant interaction between pressure and gravity (p = 0.0135). Discussion: Estimates of the membrane (DmNO) and gas phase (DgNO) components of DLNO suggested that at normal gravity a reduced pressure led to opposing effects in convective and diffusive transport in the gas phase, with no net effect of pressure. In contrast, a DLNO increase with reduced pressure at microgravity is compatible with a substantial increase of DmNO partially offset by reduced DgNO, the latter being compatible with interstitial edema. In microgravity therefore, DmNO would be proportionally underestimated from DLNO. We also conclude that normal values for DL in anticipation of planetary exploration should be determined not only on the ground but also at the gravity and pressure conditions of a future planetary habitat.
Collapse
Affiliation(s)
- Lars L. Karlsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Dag Linnarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
6
|
Shi L, Herrmann J, Bou Jawde S, Bates JHT, Nia HT, Suki B. Modeling the influence of gravity and the mechanical properties of elastin and collagen fibers on alveolar and lung pressure-volume curves. Sci Rep 2022; 12:12280. [PMID: 35853981 PMCID: PMC9294799 DOI: 10.1038/s41598-022-16650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between pressure (P) and volume (V) in the human lung has been extensively studied. However, the combined effects of gravity and the mechanical properties of elastin and collagen on alveolar and lung P-V curves during breathing are not well understood. Here, we extended a previously established thick-walled spherical model of a single alveolus with wavy collagen fibers during positive pressure inflation. First, we updated the model for negative pressure-driven inflation that allowed incorporation of a gravity-induced pleural pressure gradient to predict how the static alveolar P-V relations vary spatially throughout an upright human lung. Second, by introducing dynamic surface tension and collagen viscoelasticity, we computed the hysteresis loop of the lung P-V curve. The model was tested by comparing its predicted regional ventilation to literature data, which offered insight into the effects of microgravity on ventilation. The model has also produced novel testable predictions for future experiments about the variation of mechanical stresses in the septal walls and the contribution of collagen and elastin fibers to the P-V curve and throughout the lung. The model may help us better understand how mechanical stresses arising from breathing and pleural pressure variations affect regional cellular mechanotransduction in the lung.
Collapse
Affiliation(s)
- Linzheng Shi
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Samer Bou Jawde
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Lan M, Phillips SD, Archambault-Leger V, Chepko AB, Lu R, Anderson AP, Masterova KS, Fellows AM, Halter RJ, Buckey JC. Proposed mechanism for reduced jugular vein flow in microgravity. Physiol Rep 2021; 9:e14782. [PMID: 33931957 PMCID: PMC8087922 DOI: 10.14814/phy2.14782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/31/2021] [Indexed: 12/03/2022] Open
Abstract
Internal jugular flow is reduced in space compared with supine values, which can be associated with internal jugular vein (IJV) thrombosis. The mechanism is unknown but important to understand to prevent potentially serious vein thromboses on long duration flights. We used a novel, microgravity‐focused numerical model of the cranial vascular circulation to develop hypotheses for the reduced flow. This model includes the effects of removing hydrostatic gradients and tissue compressive forces – unique effects of weightlessness. The IJV in the model incorporates sensitivity to transmural pressure across the vein, which can dramatically affect resistance and flow in the vein. The model predicts reduced IJV flow in space. Although tissue weight in the neck is reduced in weightlessness, increasing transmural pressure, this is more than offset by the reduction in venous pressure produced by the loss of hydrostatic gradients and tissue pressures throughout the body. This results in a negative transmural pressure and increased IJV resistance. Unlike the IJV, the walls of the vertebral plexus are rigid; transmural pressure does not affect its resistance and so its flow increases in microgravity. This overall result is supported by spaceflight measurements, showing reduced IJV area inflight compared with supine values preflight. Significantly, this hypothesis suggests that interventions that further decrease internal IJV pressure (such as lower body negative pressure), which are not assisted by other drainage mechanisms (e.g. gravity), might lead to stagnant flow or IJV collapse with reduced flow, which could increase rather than decrease the risk of venous thrombosis.
Collapse
Affiliation(s)
- Mimi Lan
- Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| | | | | | | | | | | | | | | | - Ryan J Halter
- Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| | - Jay C Buckey
- Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
8
|
Kirkpatrick AW, Hamilton DR, McKee JL, MacDonald B, Pelosi P, Ball CG, Roberts D, McBeth PB, Cocolini F, Ansaloni L, Peireira B, Sugrue M, Campbell MR, Kimball EJ, Malbrain MLNG, Roberts D. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 2020. [PMID: 33278908 DOI: 10.1503/cjs.019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Humans are destined to explore space, yet critical illness and injury may be catastrophically limiting for extraterrestrial travel. Humans are superorganisms living in symbiosis with their microbiomes, whose genetic diversity dwarfs that of humans. Symbiosis is critical and imbalances are associated with disease, occurring within hours of serious illness and injury. There are many characteristics of space flight that negatively influence the microbiome, especially deep space itself, with its increased radiation and absence of gravity. Prolonged weightlessness causes many physiologic changes that are detrimental; some resemble aging and will adversely affect the ability to tolerate critical illness or injury and subsequent treatment. Critical illness-induced intra-abdominal hypertension (IAH) may induce malperfusion of both the viscera and microbiome, with potentially catastrophic effects. Evidence from animal models confirms profound IAH effects on the gut, namely ischemia and disruption of barrier function, mechanistically linking IAH to resultant organ dysfunction. Therefore, a pathologic dysbiome, space-induced immune dysfunction and a diminished cardiorespiratory reserve with exacerbated susceptibility to IAH, imply that a space-deconditioned astronaut will be vulnerable to IAH-induced gut malperfusion. This sets the stage for severe gut ischemia and massive biomediator generation in an astronaut with reduced cardiorespiratory/immunological capacity. Fortunately, experiments in weightless analogue environments suggest that IAH may be ameliorated by conformational abdominal wall changes and a resetting of thoracoabdominal mechanics. Thus, review of the interactions of physiologic changes with prolonged weightlessness and IAH is required to identify appropriate questions for planning exploration class space surgical care.
Collapse
Affiliation(s)
- Andrew W Kirkpatrick
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Douglas R Hamilton
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Jessica L McKee
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Braedon MacDonald
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paolo Pelosi
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Chad G Ball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paul B McBeth
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Federico Cocolini
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Luca Ansaloni
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Bruno Peireira
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Michael Sugrue
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Mark R Campbell
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Edward J Kimball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Manu L N G Malbrain
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| |
Collapse
|
9
|
Prisk GK. Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon. Med J Aust 2019; 211:271-276. [PMID: 31420881 DOI: 10.5694/mja2.50312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Space flight presents a set of physiological challenges to the space explorer which result from the absence of gravity (or in the case of planetary exploration, partial gravity), radiation exposure, isolation and a prolonged period in a confined environment, distance from Earth, the need to venture outside in the hostile environment of the destination, and numerous other factors. Gravity affects regional lung function, and the human lung shows considerable alteration in function in low gravity; however, this alteration does not result in deleterious changes that compromise lung function upon return to Earth. The decompression stress associated with extravehicular activity, or spacewalk, does not appear to compromise lung function, and future habitat (living quarter) designs can be engineered to minimise this stress. Dust exposure is a significant health hazard in occupational settings such as mining, and exposure to extraterrestrial dust is an almost inevitable consequence of planetary exploration. The combination of altered pulmonary deposition of extraterrestrial dust and the potential for the dust to be highly toxic likely makes dust exposure the greatest threat to the lung in planetary exploration.
Collapse
Affiliation(s)
- G Kim Prisk
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Geier ET, Theilmann RJ, Prisk GK, Sá RC. Regional airflow obstruction after bronchoconstriction and subsequent bronchodilation in subjects without pulmonary disease. J Appl Physiol (1985) 2019; 127:31-39. [PMID: 31120808 DOI: 10.1152/japplphysiol.00912.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some subjects with asthma have ventilation defects that are resistant to bronchodilator therapy, and it is thought that these resistant defects may be due to ongoing inflammation or chronic airway remodeling. However, it is unclear whether regional obstruction due to bronchospasm alone persists after bronchodilator therapy. To investigate this, six young, healthy subjects, in whom inflammation and remodeling were assumed to be absent, were bronchoconstricted with a PC20 [the concentration of methacholine that elicits a 20% drop in forced expiratory volume in 1 s (FEV1)] dose of methacholine and subsequently bronchodilated with a standard dose of albuterol on three separate occasions. Specific ventilation imaging, a proton MRI technique, was used to spatially map specific ventilation across 80% of each subject's right lung in each condition. The ratio between regional specific ventilation at baseline and after intervention was used to classify areas that had constricted. After albuterol rescue from methacholine bronchoconstriction, 12% (SD 9) of the lung was classified as constricted. Of the 12% of lung units that were classified as constricted after albuterol, approximately half [7% (SD 7)] had constricted after methacholine and failed to recover, whereas half [6% (SD 4)] had remained open after methacholine but became constricted after albuterol. The incomplete regional recovery was not reflected in the subjects' FEV1 measurements, which did not decrease from baseline (P = 0.97), nor was it detectable as an increase in specific ventilation heterogeneity (P = 0.78).NEW & NOTEWORTHY In normal subjects bronchoconstricted with methacholine and subsequently treated with albuterol, not all regions of the healthy lung returned to their prebronchoconstricted specific ventilation after albuterol, despite full recovery of integrative lung indexes (forced expiratory volume in 1 s and specific ventilation heterogeneity). The regions that remained bronchoconstricted following albuterol were those with the highest specific ventilation at baseline, which suggests that they may have received the highest methacholine dose.
Collapse
Affiliation(s)
- E T Geier
- Department of Medicine, University of California, San Diego, California
| | - R J Theilmann
- Department of Radiology, University of California, San Diego, California
| | - G K Prisk
- Department of Medicine, University of California, San Diego, California
| | - R C Sá
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
11
|
Prisk GK. Effects of Partial Gravity on the Function and Particle Handling of the Human Lung. CURRENT PATHOBIOLOGY REPORTS 2019; 6:159-166. [PMID: 30687585 DOI: 10.1007/s40139-018-0174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of Review The challenges presented to the lung by the space environment are the effects of prolonged absence of gravity, the challenges of decompression stress associated with spacewalking, and the changes in the deposition of inhaled particulate matter. Recent Findings Although there are substantial changes in the function of the lung in partial gravity, the lung is largely unaffected by sustained exposure, returning rapidly to a normal state after return to 1G. Provided there is adequate denitrogenation prior to a spacewalk, avoiding the development of venous gas emboli, the lung copes well with the low pressure environment of the spacesuit. Particulate deposition is reduced in partial gravity, but where that deposition occurs is likely in the more peripheral airspaces, with associated longer retention times, potentially raising the toxicological potential of toxic dusts. Summary Despite its delicate structure the lung performs well in partial gravity, with the greatest threat likely arising from inhaled particulate matter (extra-terrestrial dusts).
Collapse
Affiliation(s)
- G Kim Prisk
- Department of Medicine, University of California, San Diego
| |
Collapse
|
12
|
Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J Mol Sci 2018; 19:ijms19123729. [PMID: 30477143 PMCID: PMC6320872 DOI: 10.3390/ijms19123729] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been implicated in the pathophysiology of numerous terrestrial disease processes and associated with morbidity following spaceflight. Furthermore, oxidative stress has long been considered a causative agent in adverse reproductive outcomes. The purpose of this review is to summarize the pathogenesis of oxidative stress caused by cosmic radiation and microgravity, review the relationship between oxidative stress and reproductive outcomes in females, and explore what role spaceflight-induced oxidative damage may have on female reproductive and developmental outcomes.
Collapse
|
13
|
Yu K, Doherty AH, Genik PC, Gookin SE, Roteliuk DM, Wojda SJ, Jiang ZS, McGee-Lawrence ME, Weil MM, Donahue SW. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:62-68. [PMID: 29198315 DOI: 10.1016/j.lssr.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.
Collapse
Affiliation(s)
- Kanglun Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alison H Doherty
- Department of Medical Education, WWAMI Medical Education Program, University of Wyoming, Laramie, WY, USA
| | - Paula C Genik
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sara E Gookin
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Danielle M Roteliuk
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samantha J Wojda
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Seth W Donahue
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
14
|
Kang W, Clark AR, Tawhai MH. Gravity outweighs the contribution of structure to passive ventilation-perfusion matching in the supine adult human lung. J Appl Physiol (1985) 2017; 124:23-33. [PMID: 29051337 DOI: 10.1152/japplphysiol.00791.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravity and matched airway/vascular tree geometries are both hypothesized to be key contributors to ventilation-perfusion (V̇/Q̇) matching in the lung, but their relative contributions are challenging to quantify experimentally. We used a structure-based model to conduct an analysis of the relative contributions of tissue deformation (the "Slinky" effect), other gravitational mechanisms (weight of blood and gravitational gradient in tissue elastic recoil), and matched airway and arterial tree geometry to V̇/Q̇ matching and therefore to total lung oxygen exchange. Our results showed that the heterogeneity in V̇ and Q̇ were lowest and the correlation between V̇ and Q̇ was highest when the only mechanism for V̇/Q̇ matching was either tissue deformation or matched geometry. Heterogeneity in V̇ and Q̇ was highest and their correlation was poorest when all mechanisms were active (that is, at baseline). Eliminating the contribution of matched geometry did not change the correlation between V̇ and Q̇ at baseline. Despite the much larger heterogeneities in V̇ and Q̇ at baseline, the contribution of in-common (to V̇ and Q̇) gravitational mechanisms provided sufficient compensatory V̇/Q̇ matching to minimize the impact on oxygen transfer. In summary, this model predicts that during supine normal breathing under gravitational loading, passive V̇/Q̇ matching is predominantly determined by shared gravitationally induced tissue deformation, compliance distribution, and the effect of the hydrostatic pressure gradient on vessel and capillary size and blood pressures. Contribution from the matching airway and arterial tree geometries in this model is minor under normal gravity in the supine adult human lung. NEW & NOTEWORTHY We use a computational model to systematically analyze contributors to ventilation-perfusion matching in the lung. The model predicts that the multiple effects of gravity are the predominant mechanism in providing passive ventilation-perfusion matching in the supine adult human lung under normal gravitational loads, while geometric matching of airway and arterial trees plays a minor role.
Collapse
Affiliation(s)
- W Kang
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - A R Clark
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - M H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| |
Collapse
|
15
|
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. Front Physiol 2017; 8:547. [PMID: 28824446 PMCID: PMC5539130 DOI: 10.3389/fphys.2017.00547] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
Collapse
Affiliation(s)
| | - Marco M Germani
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di MilanoMilan, Italy
| | - Ivana Barravecchia
- Department of Pharmacy, University of PisaPisa, Italy.,MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Claudio Passino
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy.,Fondazione Toscana G. MonasterioPisa, Italy
| | - Debora Angeloni
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| |
Collapse
|
16
|
Chen Y, Xu C, Wang P, Cai Y, Ma H. Effect of Long-Term Simulated Microgravity on Immune System and Lung Tissues in Rhesus Macaque. Inflammation 2017; 40:589-600. [DOI: 10.1007/s10753-016-0506-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
18
|
Darquenne C, Lamm WJ, Fine JM, Corley RA, Glenny RW. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD. JOURNAL OF AEROSOL SCIENCE 2016; 99:27-39. [PMID: 27493296 PMCID: PMC4968943 DOI: 10.1016/j.jaerosci.2016.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predictions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 = 50-80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 μm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 μm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.798 ± 0.205 vs. 0.527 ± 0.122 mL/mL, p=0.01; MS: -0.271±0.129 vs. -0.145 ± 0.076 mL/mL, p=0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to-moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wayne J. Lamm
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Janelle M. Fine
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robb W. Glenny
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Verbanck S, Paiva M. Could lobar flow sequencing account for convection-dependent ventilation heterogeneity in normal humans? J Appl Physiol (1985) 2016; 121:589-91. [DOI: 10.1152/japplphysiol.01049.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium; and
| | - Manuel Paiva
- Respiratory Division, University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Sá RC, Zeman KL, Bennett WD, Prisk GK, Darquenne C. Effect of Posture on Regional Deposition of Coarse Particles in the Healthy Human Lung. J Aerosol Med Pulm Drug Deliv 2015; 28:423-31. [DOI: 10.1089/jamp.2014.1189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Kirby L. Zeman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William D. Bennett
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - G. Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Orthostatic Intolerance Is Independent of the Degree of Autonomic Cardiovascular Adaptation after 60 Days of Head-Down Bed Rest. BIOMED RESEARCH INTERNATIONAL 2015; 2015:896372. [PMID: 26425559 PMCID: PMC4573436 DOI: 10.1155/2015/896372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022]
Abstract
Spaceflight and head-down bed rest (HDBR) can induce the orthostatic intolerance (OI); the mechanisms remain to be clarified. The aim of this study was to determine whether or not OI after HDBR relates to the degree of autonomic cardiovascular adaptation. Fourteen volunteers were enrolled for 60 days of HDBR. A head-up tilt test (HUTT) was performed before and after HDBR. Our data revealed that, in all nonfainters, there was a progressive increase in heart rate over the course of HDBR, which remained higher until 12 days of recovery. The mean arterial pressure gradually increased until day 56 of HDBR and returned to baseline after 12 days of recovery. Respiratory sinus arrhythmia and baroreflex sensitivity decreased during HDBR and remained suppressed until 12 days of recovery. Low-frequency power of systolic arterial pressure increased during HDBR and remained elevated during recovery. Three subjects fainted during the HUTT after HDBR, in which systemic vascular resistance did not increase and remained lower until syncope. None of the circulatory patterns significantly differed between the fainters and the nonfainters at any time point. In conclusion, our data indicate that the impaired orthostatic tolerance after HDBR could not be distinguished by estimation of normal hemodynamic and/or neurocardiac data.
Collapse
|
22
|
Liu J, Li Y, Verheyden B, Chen S, Chen Z, Gai Y, Liu J, Gao J, Xie Q, Yuan M, Li Q, Li L, Aubert AE. Is autonomic modulation different between European and Chinese astronauts? PLoS One 2015; 10:e0120920. [PMID: 25799561 PMCID: PMC4370477 DOI: 10.1371/journal.pone.0120920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 02/09/2015] [Indexed: 11/29/2022] Open
Abstract
Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.
Collapse
Affiliation(s)
- Jiexin Liu
- Department of Cardiology, Beijing Friendship Hospital, China Capital Medical University, Beijing, China
- Department of Cardiology, University Hospital Gasthuisberg, K. U. Leuven, Leuven, Belgium
- * E-mail: (JL); (MY)
| | | | - Bart Verheyden
- Department of Cardiology, University Hospital Gasthuisberg, K. U. Leuven, Leuven, Belgium
| | | | | | | | | | | | - Qiong Xie
- China Astronaut Center, Beijing, China
| | - Ming Yuan
- China Astronaut Center, Beijing, China
- * E-mail: (JL); (MY)
| | - Qin Li
- Department of Cardiology, Beijing Friendship Hospital, China Capital Medical University, Beijing, China
| | - Li Li
- Department of Cardiology, Beijing Friendship Hospital, China Capital Medical University, Beijing, China
| | - André E. Aubert
- Department of Cardiology, University Hospital Gasthuisberg, K. U. Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Choi S, Hoffman EA, Wenzel SE, Castro M, Lin CL. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol (1985) 2014; 117:593-603. [PMID: 25103972 DOI: 10.1152/japplphysiol.00280.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions.
Collapse
Affiliation(s)
- Sanghun Choi
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa; IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa; Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa; Department of Radiology, The University of Iowa, Iowa City, Iowa; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh Pennsylvania; and
| | - Mario Castro
- Departments of Internal Medicine and Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa; IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa;
| |
Collapse
|
24
|
Abstract
Efficient gas exchange in the lung depends on the matching of ventilation and perfusion. However, the human lung is a readily deformable structure and as a result gravitational stresses generate gradients in both ventilation and perfusion. Nevertheless, the lung is capable of withstanding considerable change in the applied gravitational load before pulmonary gas exchange becomes impaired. The postural changes that are part of the everyday existence for most bipedal species are well tolerated, as is the removal of gravity (weightlessness). Increases in the applied gravitational load result only in a large impairment in pulmonary gas exchange above approximately three times that on the ground, at which point the matching of ventilation to perfusion is so impaired that efficient gas exchange is no longer possible. Much of the tolerance of the lung to alterations in gravitation stress comes from the fact that ventilation and perfusion are inextricably coupled. Deformations in the lung that alter ventilation necessarily alter perfusion, thus maintaining a degree of matching and minimizing the disruption in ventilation to perfusion ratio and thus gas exchange.
Collapse
Affiliation(s)
- G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, USA.
| |
Collapse
|
25
|
|
26
|
Darquenne C, Zeman KL, Sá RC, Cooper TK, Fine JM, Bennett WD, Prisk GK. Removal of sedimentation decreases relative deposition of coarse particles in the lung periphery. J Appl Physiol (1985) 2013; 115:546-55. [PMID: 23743403 DOI: 10.1152/japplphysiol.01520.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung deposition of >0.5-μm particles is strongly influenced by gravitational sedimentation, with deposition being reduced in microgravity (μG) compared with normal gravity (1G). Gravity not only affects total deposition, but may also alter regional deposition. Using gamma scintigraphy, we measured the distribution of regional deposition and retention of radiolabeled particles ((99m)Tc-labeled sulfur colloid, 5-μm diameter) in five healthy volunteers. Particles were inhaled in a controlled fashion (0.5 l/s, 15 breaths/min) during multiple periods of μG aboard the National Aeronautics and Space Administration Microgravity Research Aircraft and in 1G. In both cases, deposition scans were obtained immediately postinhalation and at 1 h 30 min, 4 h, and 22 h postinhalation. Regional deposition was characterized by the central-to-peripheral ratio and by the skew of the distribution of deposited particles on scans acquired directly postinhalation. Relative distribution of deposition between the airways and the alveolar region was derived from data acquired at the various time points. Compared with inhalation in 1G, subjects show an increase in central-to-peripheral ratio (P = 0.043), skew (P = 0.043), and tracheobronchial deposition (P < 0.001) when particles were inhaled in μG. The absence of gravity caused fewer particles to deposit in the lung periphery than in the central region where deposition occurred mainly in the airways in μG. Furthermore, the increased skew observed in μG likely illustrates the presence of localized areas of deposition, i.e., "hot spots", resulting from inertial impaction. In conclusion, gravity has a significant effect on deposition patterns of coarse particles, with most of deposition occurring in the alveolar region in 1G but in the large airways in μG.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang J, Liu C, Li T, Wang Y, Wang D. Proteomic analysis of pulmonary tissue in tail-suspended rats under simulated weightlessness. J Proteomics 2012; 75:5244-53. [DOI: 10.1016/j.jprot.2012.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
|
28
|
Guo Y, Guo N, Liu C, Wang D, Wang J, Sun X, Fan S, Wang C, Yang C, Zhang Y, Lu D, Yao Y. Effect of artificial gravity with exercise training on lung function during head-down bed rest in humans. Clin Physiol Funct Imaging 2012; 33:24-9. [PMID: 23216762 DOI: 10.1111/j.1475-097x.2012.01155.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Yinghua Guo
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Na Guo
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Changting Liu
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Delong Wang
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Junfeng Wang
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Xiqing Sun
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Shangchun Fan
- School of Instrumentation, Beijing University of Aeronautics and Astronautics; Beijing; China
| | - Changyong Wang
- Department of Tissue Engineering; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; Beijing; China
| | - Changbin Yang
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Yu Zhang
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Dongyuan Lu
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Yongjie Yao
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| |
Collapse
|
29
|
2010 Trauma Association of Canada presidential address: why the Trauma Association of Canada should care about space medicine. ACTA ACUST UNITED AC 2011; 69:1313-22. [PMID: 21150514 DOI: 10.1097/ta.0b013e3181ec2b11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Trauma Association of Canada is now 27 years old, having been officially founded in 1983, at the meetings of the Royal College as a maturation of the trauma committee of the Canadian Association of General Surgeons. The first page of the official minutes also stressed the need to welcome other disciplines into the fold. Personally, it has taken me years of involvement, as well as the Presidency, to truly appreciate the depth of our Founding Members commitment. These individuals set lofty mission goals for the organization, namely: to strive to improve the quality of care provided to the injured patient, including prehospital management and transport, acute care hospitalization, and reintegration into society; to support, conduct, and apply basic science and clinical and outcome research related to trauma; to encourage effective and efficient use of healthcare resources in the delivery of trauma care; and to foster professional and community education in the field of injury prevention and in the care of the injured patient. As daunting as these responsibilities are, I am suggesting one more: to overcome the great penalty of geography that challenges our nation and penalizes many of our citizens by aspiring to optimize these four goals, for all Canadians, irrespective of where they live--our potential fifth mission. Furthermore, I believe that lessons from space medicine may offer some strategies to accomplish this goal.
Collapse
|
30
|
Abstract
The pulmonary circulation is subject to direct challenge from both altered pressure and altered gravity. To efficiently exchange gas, the pulmonary capillaries must be extremely thin-walled and directly exposed to the alveolar space. Thus, alterations in ambient pressure are directly transmitted to the capillaries with the potential to alter pulmonary blood flow. To produce ventilation, the mammalian lung must expand and contract, and so it is a highly compliant structure. Thus, because the capillaries are contained in the alveolar walls, alterations in the apparent gravitational force deform the lung and directly affect pulmonary blood flow both through lung deformation and through changes in the hydrostatic pressure distribution in the lung. High gravitational forces are encountered in the aviation environment, while gravity is absent in spaceflight. Diving subjects the lung to large increases in ambient pressure, while large reductions in pressure occur, often associated with alterations in oxygen level and airway pressure, in aviation. This article reviews the effects of alterations in both gravity and ambient pressure on the pulmonary circulation.
Collapse
Affiliation(s)
- G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, USA.
| |
Collapse
|
31
|
|
32
|
Morimoto Y, Miki T, Higashi T, Horie S, Tanaka K, Mukai C. [Effect of lunar dust on humans: -lunar dust: regolith-]. Nihon Eiseigaku Zasshi 2010; 65:479-85. [PMID: 20885072 DOI: 10.1265/jjh.65.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Sá RC, Cronin MV, Henderson AC, Holverda S, Theilmann RJ, Arai TJ, Dubowitz DJ, Hopkins SR, Buxton RB, Prisk GK. Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI. J Appl Physiol (1985) 2010; 109:1950-9. [PMID: 20930129 DOI: 10.1152/japplphysiol.00220.2010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation (SV) is the ratio of fresh gas entering a lung region divided by its end-expiratory volume. To quantify the vertical (gravitationally dependent) gradient of SV in eight healthy supine subjects, we implemented a novel proton magnetic resonance imaging (MRI) method. Oxygen is used as a contrast agent, which in solution changes the longitudinal relaxation time (T1) in lung tissue. Thus alterations in the MR signal resulting from the regional rise in O(2) concentration following a sudden change in inspired O(2) reflect SV-lung units with higher SV reach a new equilibrium faster than those with lower SV. We acquired T1-weighted inversion recovery images of a sagittal slice of the supine right lung with a 1.5-T MRI system. Images were voluntarily respiratory gated at functional residual capacity; 20 images were acquired with the subject breathing air and 20 breathing 100% O(2), and this cycle was repeated five times. Expired tidal volume was measured simultaneously. The SV maps presented an average spatial fractal dimension of 1.13 ± 0.03. There was a vertical gradient in SV of 0.029 ± 0.012 cm(-1), with SV being highest in the dependent lung. Dividing the lung vertically into thirds showed a statistically significant difference in SV, with SV of 0.42 ± 0.14 (mean ± SD), 0.29 ± 0.10, and 0.24 ± 0.08 in the dependent, intermediate, and nondependent regions, respectively (all differences, P < 0.05). This vertical gradient in SV is consistent with the known gravitationally induced deformation of the lung resulting in greater lung expansion in the dependent lung with inspiration. This SV imaging technique can be used to quantify regional SV in the lung with proton MRI.
Collapse
Affiliation(s)
- Rui Carlos Sá
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0852, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sá RC, Prisk GK, Paiva M. Microgravity alters respiratory abdominal and rib cage motion during sleep. J Appl Physiol (1985) 2009; 107:1406-12. [PMID: 19779153 PMCID: PMC2777791 DOI: 10.1152/japplphysiol.91516.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 09/23/2009] [Indexed: 11/22/2022] Open
Abstract
The abdominal and rib cage contributions to tidal breathing differ between rapid-eye-movement (REM) and non-NREM sleep. We hypothesized that abdominal relative contribution during NREM and REM sleep would be altered in different directions when comparing sleep on Earth with sleep in sustained microgravity (microG), due to conformational changes and differences in coupling between the rib cage and the abdominal compartment induced by weightlessness. We studied respiration during sleep in five astronauts before, during, and after two Space Shuttle missions. A total of 77 full-night (8 h) polysomnographic studies were performed; abdominal and rib cage respiratory movements were recorded using respiratory inductive plethysmography. Breath-by-breath analysis of respiration was performed for each class: awake, light sleep, deep sleep, and REM sleep. Abdominal contribution to tidal breathing increased in microG, with the first measure in space being significantly higher than preflight values, followed by a return toward preflight values. This was observed for all classes. Preflight, rib cage, and abdominal movements were found to be in phase for all but REM sleep, for which an abdominal lead was observed. The abdominal leading role during REM sleep increased while deep sleep showed the opposite behavior, the rib cage taking a leading role in-flight. In microG, the percentage of inspiratory time in the overall breath, the duty cycle (T(I)/T(Tot)), decreased for all classes considered when compared with preflight, while normalized inspiratory flow, taking the awake values as reference, increased in-flight for light sleep, deep sleep, and REM. Changes in abdominal-rib cage displacements probably result from a less efficient operating point for the diaphragm and a less efficient coupling between the abdomen and the apposed portion of the rib cage in microG. However, the preservation of total ventilation suggests that short-term adaptive mechanisms of ventilatory control compensate for these mechanical changes.
Collapse
Affiliation(s)
- Rui Carlos Sá
- Laboratoire de Physique Biomédicale, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| | | | | |
Collapse
|
35
|
Kirkpatrick AW, Keaney M, Kmet L, Ball CG, Campbell MR, Kindratsky C, Groleau M, Tyssen M, Keyte J, Broderick TJ. Intraperitoneal Gas Insufflation Will Be Required for Laparoscopic Visualization in Space: A Comparison of Laparoscopic Techniques in Weightlessness. J Am Coll Surg 2009; 209:233-41. [DOI: 10.1016/j.jamcollsurg.2009.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 11/28/2022]
|
36
|
Intra-abdominal pressure effects on porcine thoracic compliance in weightlessness: implications for physiologic tolerance of laparoscopic surgery in space. Crit Care Med 2009; 37:591-7. [PMID: 19114906 DOI: 10.1097/ccm.0b013e3181954491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Laparoscopic surgery (LS) is envisioned as an option for spaceflight, but requires intra-abdominal hypertension (IAH) to create the surgical domain. Prolonged weightlessness induces physiologic deconditioning that questions the ability of ill or injured astronauts to tolerate IAH. On earth, IAH results in marked ventilatory embarrassment. As there has been no previous study of physiologic changes related to LS in weightlessness, we studied anesthetized pigs in parabolic flight. DESIGN Parabolic flight research laboratory. SUBJECTS Five anesthetized Yorkshire pigs. INTERVENTIONS Subjects were transported from an animal care facility and secured aboard an aircraft capable of generating hypergravity and weightlessness. Mechanical ventilation was performed using pressure control and positive end-expiratory pressure at 15 and 2 cm H2O, respectively; rate 12 breaths/min. Three abdominal conditions were used during LS: insufflation to produce IAH, abdominal wall retraction (AWR), and no abdominal wall manipulation (baseline). During each parabola breath by breath-tidal volumes (Vt) were recorded by a transport ventilator (HT-50 Newport Medical). MEASUREMENTS AND MAIN RESULTS Least square means (LS-means) of weight corrected Vt (milliliter per kilogram) by gravity (g) and abdominal condition were determined using a mixed effects model for repeated measures analysis. Increasing gravity (g) consistently reduced Vt (p = 0.0011) as did insufflation (p < 0.0001). In 1g, Vt (LS-mean 13.7, 95% confidence interval [CI]: 12.4-15.0) was relatively unaffected by AWR (LS-mean 12.8, 95% CI: 11.5-14.00), but markedly decreased by IAH (LS-mean 10.00, 95% CI: 8.9-11.1), an effect accentuated in hypergravity (LS-mean 8.1, 95% CI: 6.4-9.8). In weightlessness, Vt reduction during insufflation was near obviated (LS-mean 12.3, 95% CI: 10.6-14.1), and AWR regularly but inconsistently increased the Vt above 1g baseline (LS-mean 13.7, 95% CI: 11.7-15.8). CONCLUSIONS Weightlessness protects against thoracic compliance changes that are inherent in IAH during induced pneumoperitoneum in gravity. The technique-related physiologic cost of performing LS in space deconditioned astronauts should be incorporated into design concepts for space surgery systems.
Collapse
|
37
|
Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, Drescher J, Jordan J, Tank J. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol (1985) 2007; 103:156-61. [PMID: 17446414 DOI: 10.1152/japplphysiol.00137.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired autonomic control represents a cardiovascular risk factor during long-term spaceflight. Little has been reported on blood pressure (BP), heart rate (HR), and heart rate variability (HRV) during and after prolonged spaceflight. We tested the hypothesis that cardiovascular control remains stable during prolonged spaceflight. Electrocardiography, photoplethysmography, and respiratory frequency (RF) were assessed in eight male cosmonauts (age 41–50 yr, body-mass index of 22–28 kg/m2) during long-term missions (flight lengths of 162–196 days). Recordings were made 60 and 30 days before the flight, every 4 wk during flight, and on days 3 and 6 postflight during spontaneous and controlled respiration. Orthostatic testing was performed pre- and postflight. RF and BP decreased during spaceflight ( P < 0.05). Mean HR and HRV in the low- and high-frequency bands did not change during spaceflight. However, the individual responses were different and correlated with preflight values. Pulse-wave transit time decreased during spaceflight ( P < 0.05). HRV reached during controlled respiration (6 breaths/min) decreased in six and increased in one cosmonaut during flight. The most pronounced changes in HR, BP, and HRV occurred after landing. The decreases in BP and RF combined with stable HR and HRV during flight suggest functional adaptation rather than pathological changes. Pulse-wave transit time shortening in our study is surprising and may reflect cardiac output redistribution in space. The decrease in HRV during controlled respiration (6 breaths/min) indicates reduced parasympathetic reserve, which may contribute to postflight disturbances.
Collapse
|
38
|
Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol (1985) 2006; 101:439-47. [PMID: 16601306 DOI: 10.1152/japplphysiol.01419.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extended exposure to microgravity (μG) is known to reduce strength in weight-bearing muscles and was also reported to reduce respiratory muscle strength. Short- duration exposure to μG reduces vital capacity (VC), a surrogate measure for respiratory muscle strength, for the first few days, with little change in O2 uptake, ventilation, or end-tidal partial pressures. Accordingly we measured VC, maximum inspiratory and expiratory pressures, and indexes of pulmonary gas exchange in 10 normal subjects (9 men, 1 woman, 39–52 yr) who lived on the International Space Station for 130–196 days in a normoxic, normobaric atmosphere. Subjects were studied four times in the standing and supine postures preflight at sea level at 1 G, approximately monthly in μG, and multiple times postflight. VC in μG was essentially unchanged compared with preflight standing [5.28 ± 0.08 liters (mean ± SE), n = 187; 5.24 ± 0.09, n = 117, respectively; P = 0.03] and considerably greater than that measured supine in 1G (4.96 ± 0.10, n = 114, P < 0.001). There was a trend for VC to decrease after the first 2 mo of μG, but there were no changes postflight. Maximum respiratory pressures in μG were generally intermediate to those standing and supine in 1G, and importantly they showed no decrease with time spent in μG. O2 uptake and CO2 production were reduced (∼12%) in extended μG, but inhomogeneity in the lung was not different compared with short-duration exposure to μG. The results show that VC is essentially unchanged and respiratory muscle strength is maintained during extended exposure to μG, and metabolic rate is reduced.
Collapse
Affiliation(s)
- G Kim Prisk
- Div. of Physiology, Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0931, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.
Collapse
Affiliation(s)
- G Kim Prisk
- Division of Physiology, Department of Medicine, University of California--San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0931, USA.
| |
Collapse
|
40
|
Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 2005; 44:837-53. [PMID: 15286087 DOI: 10.1177/0091270004267193] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Medications have been taken since the first Mercury flight in 1967 and, since then, have been used for several indications such as space motion sickness, sleeplessness, headache, nausea, vomiting, back pain, and congestion. As the duration of space missions get longer, it is even more likely that astronauts will encounter some of the acute illnesses that are frequently seen on Earth. Microgravity environment induces several physiological changes in the human body. These changes include cardiovascular degeneration, bone decalcification, decreased plasma volume, blood flow, lymphocyte and eosinophil levels, altered hormonal and electrolyte levels, muscle atrophy, decreased blood cell mass, increased immunoglobulin A and M levels, and a decrease in the amount of microsomal P-450 and the activity of some of its dependent enzymes. These changes may be expected to have severe implications on the pharmacokinetic and pharmacodynamic properties of drug substances.
Collapse
Affiliation(s)
- Annemarie Graebe
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, USA
| | | | | | | | | |
Collapse
|
41
|
Dellacá RL, Bettinelli D, Kays C, Techoueyres P, Lachaud JL, Vaïda P, Miserocchi G. Effect of changing the gravity vector on respiratory output and control. J Appl Physiol (1985) 2004; 97:1219-26. [PMID: 15155713 DOI: 10.1152/japplphysiol.00845.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the respiratory output in five subjects exposed to parabolic flights [gravity vector 1, 1.8 and 0 gravity vector in the craniocaudal direction (Gz)] and when switching from sitting to supine (legs bent at the knees). Despite differences in total respiratory compliance (highest at 0 Gz and in supine and minimum at 1.8 Gz), no significant changes in elastic inspiratory work were observed in the various conditions, except when comparing 1.8 Gz with 1 Gz (subjects were in the seated position in all circumstances), although the elastic work had an inverse relationship with total respiratory compliance that was highest at 0 Gz and in supine posture and minimum at 1.8 Gz. Relative to 1 Gz, lung resistance (airways plus lung tissue) increased significantly by 52% in the supine but slightly decreased at 0 Gz. We calculated, for each condition, the tidal volume changes based on the energy available in the preceding phase and concluded that an increase in inspiratory muscle output occurs when respiratory load increases (e.g., going from 0 to 1.8 Gz), whereas a decrease occurs in the opposite case (e.g., from 1.8 to 0 Gz). Despite these immediate changes, ventilation increased, going to 1.8 and 0 Gz (up to ≈23%), reflecting an increase in mean inspiratory flow rate, tidal volume, and respiratory frequency, while ventilation decreased (approximately −14%), shifting to supine posture (transition time ∼15 s). These data suggest a remarkable feature in the mechanical arrangement of the respiratory system such that it can maintain the ventilatory output with small changes in inspiratory muscle work in face of considerable changes in configuration and mechanical properties.
Collapse
Affiliation(s)
- R L Dellacá
- TBM Lab, Dipartimento di Bioingegneria, Politecnico di Milano, I-20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Bettinelli D, Kays C, Bailliart O, Capderou A, Techoueyres P, Lachaud JL, Vaïda P, Miserocchi G. Effect of gravity and posture on lung mechanics. J Appl Physiol (1985) 2002; 93:2044-52. [PMID: 12391116 DOI: 10.1152/japplphysiol.00492.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The volume-pressure relationship of the lung was studied in six subjects on changing the gravity vector during parabolic flights and body posture. Lung recoil pressure decreased by approximately 2.7 cmH(2)O going from 1 to 0 vertical acceleration (G(z)), whereas it increased by approximately 3.5 cmH(2)O in 30 degrees tilted head-up and supine postures. No substantial change was found going from 1 to 1.8 G(z). Matching the changes in volume-pressure relationships of the lung and chest wall (previous data), results in a decrease in functional respiratory capacity of approximately 580 ml at 0 G(z) relative to 1 G(z) and of approximately 1,200 ml going to supine posture. Microgravity causes a decrease in lung and chest wall recoil pressures as it removes most of the distortion of lung parenchyma and thorax induced by changing gravity field and/or posture. Hypergravity does not greatly affect respiratory mechanics, suggesting that mechanical distortion is close to maximum already at 1 G(z). The end-expiratory volume during quiet breathing corresponds to the mechanical functional residual capacity in each condition.
Collapse
Affiliation(s)
- D Bettinelli
- Dipartimento di Medicina Sperimentale, Ambientale e Biotecnologie Mediche, Università di Milano-Bicocca, I-20052 Monza (MI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bettinelli D, Kays C, Bailliart O, Capderou A, Techoueyres P, Lachaud JL, Vaïda P, Miserocchi G. Effect of gravity on chest wall mechanics. J Appl Physiol (1985) 2002; 92:709-16. [PMID: 11796685 DOI: 10.1152/japplphysiol.00644.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chest wall mechanics was studied in four subjects on changing gravity in the craniocaudal direction (G(z)) during parabolic flights. The thorax appears very compliant at 0 G(z): its recoil changes only from -2 to 2 cmH(2)O in the volume range of 30-70% vital capacity (VC). Increasing G(z) from 0 to 1 and 1.8 G(z) progressively shifted the volume-pressure curve of the chest wall to the left and also caused a fivefold exponential decrease in compliance. For lung volume <30% VC, gravity has an inspiratory effect, but this effect is much larger going from 0 to 1 G(z) than from 1 to 1.8 G(z). For a volume from 30 to 70% VC, the effect is inspiratory going from 0 to 1 G(z) but expiratory from 1 to 1.8 G(z). For a volume greater than approximately 70% VC, gravity always has an expiratory effect. The data suggest that the chest wall does not behave as a linear system when exposed to changing gravity, as the effect depends on both chest wall volume and magnitude of G(z).
Collapse
Affiliation(s)
- D Bettinelli
- Dipartimento di Medicina Sperimentale, Ambientale e Biotecnologie Mediche, Università di Milano-Bicocca, I-20052 Monza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Montmerle S, Spaak J, Linnarsson D. Lung function during and after prolonged head-down bed rest. J Appl Physiol (1985) 2002; 92:75-83. [PMID: 11744645 DOI: 10.1152/jappl.2002.92.1.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the effects of prolonged head-down tilt bed rest (HDT) on lung mechanics and gas exchange. Six subjects were studied in supine and upright postures before (control), during [day 113 (D113)], and after (R + number of days of recovery) 120 days of HDT. Peak expiratory flow (PF) never differed between positions at any time and never differed from controls. Maximal midexpiratory flow (FEF(25-75%)) was lower in the supine than in the upright posture before HDT and was reduced in the supine posture by about 20% between baseline and D113, R + 0, and R + 3. The diffusing capacity for carbon monoxide corrected to a standardized alveolar volume (volume-corrected DL(CO)) was lower in the upright than in the supine posture and decreased in both postures by 20% between baseline and R + 0 and by 15% between baseline and R + 15. Pulmonary blood flow (Q(C)) increased from R + 0 to R + 3 by 20 (supine) and 35% (upright). As PF is mostly effort dependent, our data speak against major respiratory muscle deconditioning after 120 days of HDT. The decrease in FEF(25-75%) suggests a reduction in elastic recoil. Time courses of volume-corrected DL(CO) and Q(C) could be explained by a decrease in central blood volume during and immediately after HDT.
Collapse
Affiliation(s)
- Stéphanie Montmerle
- Section of Environmental Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
45
|
Gustafsson PM, Eiken O, Grönkvist M. Effects of hypergravity and anti-G suit pressure on intraregional ventilation distribution during VC breaths. J Appl Physiol (1985) 2001; 91:637-44. [PMID: 11457775 DOI: 10.1152/jappl.2001.91.2.637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of increased gravity in the head-to-foot direction (+G(z)) and pressurization of an anti-G suit (AGS) on total and intraregional intra-acinar ventilation inhomogeneity were explored in 10 healthy male subjects. They performed vital capacity (VC) single-breath washin/washouts of SF(6) and He in +1, +2, or +3 G(z) in a human centrifuge, with an AGS pressurized to 0, 6, or 12 kPa. The phase III slopes for SF(6) and He over 25-75% of the expired VC were used as markers of total ventilation inhomogeneity, and the (SF(6) -- He) slopes were used as indicators of intraregional intra-acinar inhomogeneity. SF(6) and He phase III slopes increased proportionally with increasing gravity, but the (SF(6) -- He) slopes remained unchanged. AGS pressurization did not change SF(6) or He slopes significantly but resulted in increased (SF(6) -- He) slope differences at 12 kPa. In conclusion, hypergravity increases overall but not intraregional intra-acinar inhomogeneity during VC breaths. AGS pressurization provokes increased intraregional intra-acinar ventilation inhomogeneity, presumably reflecting the consequences of basilar pulmonary vessel engorgement in combination with compression of the basilar lung regions.
Collapse
Affiliation(s)
- P M Gustafsson
- Swedish Defense Research Agency, Aviation Medicine, S-580 13 Linköping, Sweden.
| | | | | |
Collapse
|
46
|
Elliott AR, Shea SA, Dijk DJ, Wyatt JK, Riel E, Neri DF, Czeisler CA, West JB, Prisk GK. Microgravity reduces sleep-disordered breathing in humans. Am J Respir Crit Care Med 2001; 164:478-85. [PMID: 11500354 DOI: 10.1164/ajrccm.164.3.2010081] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To understand the factors that alter sleep quality in space, we studied the effect of spaceflight on sleep-disordered breathing. We analyzed 77 8-h, full polysomnographic recordings (PSGs) from five healthy subjects before spaceflight, on four occasions per subject during either a 16- or 9-d space shuttle mission and shortly after return to earth. Microgravity was associated with a 55% reduction in the apnea-hypopnea index (AHI), which decreased from a preflight value of 8.3 +/- 1.6 to 3.4 +/- 0.8 events/h inflight. This reduction in AHI was accompanied by a virtual elimination of snoring, which fell from 16.5 +/- 3.0% of total sleep time preflight to 0.7 +/- 0.5% inflight. Electroencephalogram (EEG) arousals also decreased in microgravity (by 19%), and this decrease was almost entirely a consequence of the reduction in respiratory-related arousals, which fell from 5.5 +/- 1.2 arousals/h preflight to 1.8 +/- 0.6 inflight. Postflight there was a return to near or slightly above preflight levels in these variables. We conclude that sleep quality during spaceflight is not degraded by sleep-disordered breathing. This is the first direct demonstration that gravity plays a dominant role in the generation of apneas, hypopneas, and snoring in healthy subjects.
Collapse
Affiliation(s)
- A R Elliott
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0931, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Darquenne C, Paiva M, Prisk GK. Effect of gravity on aerosol dispersion and deposition in the human lung after periods of breath holding. J Appl Physiol (1985) 2000; 89:1787-92. [PMID: 11053327 DOI: 10.1152/jappl.2000.89.5.1787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the extent of the role that gravity plays in dispersion and deposition during breath holds, we performed aerosol bolus inhalations of 1-microm-diameter particles followed by breath holds of various lengths on four subjects on the ground (1G) and during short periods of microgravity (microG). Boluses of approximately 70 ml were inhaled to penetration volumes (V(p)) of 150 and 500 ml, at a constant flow rate of approximately 0.45 l/s. Aerosol concentration and flow rate were continuously measured at the mouth. Aerosol deposition and dispersion were calculated from these data. Deposition was independent of breath-hold time at both V(p) in microG, whereas, in 1G, deposition increased with increasing breath hold time. At V(p) = 150 ml, dispersion was similar at both gravity levels and increased with breath hold time. At V(p) = 500 ml, dispersion in 1G was always significantly higher than in microG. The data provide direct evidence that gravitational sedimentation is the main mechanism of deposition and dispersion during breath holds. The data also suggest that cardiogenic mixing and turbulent mixing contribute to deposition and dispersion at shallow V(p).
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0931, USA.
| | | | | |
Collapse
|
48
|
Abstract
Although environmental physiologists are readily able to alter many aspects of the environment, it is not possible to remove the effects of gravity on Earth. During the past decade, a series of space flights were conducted in which comprehensive studies of the lung in microgravity (weightlessness) were performed. Stroke volume increases on initial exposure to microgravity and then decreases as circulating blood volume is reduced. Diffusing capacity increases markedly, due to increases in both pulmonary capillary blood volume and membrane diffusing capacity, likely due to more uniform pulmonary perfusion. Both ventilation and perfusion become more uniform throughout the lung, although much residual inhomogeneity remains. Despite the improvement in the distribution of both ventilation and perfusion, the range of the ventilation-to-perfusion ratio seen during a normal breath remains unaltered, possibly because of a spatial mismatch between ventilation and perfusion on a small scale. There are unexpected changes in the mixing of gas in the periphery of the lung, and evidence suggests that the intrinsic inhomogeneity of the lung exists at a scale of an acinus or a few acini. In addition, aerosol deposition in the alveolar region is unexpectedly high compared with existing models.
Collapse
Affiliation(s)
- G K Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
49
|
|
50
|
Dutrieue B, Lauzon AM, Verbanck S, Elliott AR, West JB, Paiva M, Prisk GK. Helium and sulfur hexafluoride bolus washin in short-term microgravity. J Appl Physiol (1985) 1999; 86:1594-602. [PMID: 10233123 DOI: 10.1152/jappl.1999.86.5.1594] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.
Collapse
Affiliation(s)
- B Dutrieue
- Biomedical Physics Laboratory, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|