1
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
2
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Binwal M, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul Jr. A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:85-103. [PMID: 40073265 PMCID: PMC11844145 DOI: 10.1093/jimmun/vkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function and polarization, which is crucial to the resolution of inflammation. The contribution of lipid synthesis to proinflammatory macrophage responses is well understood. However, how lipid synthesis regulates proresolving macrophage responses needs to be better understood. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity that regulates lipid metabolism. We previously demonstrated that lipin-1 supports proresolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage proresolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis, the transport of citrate from the mitochondria, reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO mice and macrophages. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting proresolving macrophage function in response to proresolving stimuli.
Collapse
Affiliation(s)
- Temitayo T Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Monika Binwal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins and Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Eric Bohrnsen
- Proteins and Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul Jr.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
3
|
Francés R, Rabah Y, Preat T, Plaçais PY. Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling. Nat Commun 2024; 15:10467. [PMID: 39622834 PMCID: PMC11612226 DOI: 10.1038/s41467-024-54778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia. Dh44 released by dopamine neurons limits glial fatty acid synthesis and build-up of lipid stores. Although basally active, this hormonal axis is acutely stimulated following learning of a danger-predictive cue. This results in transient suppression of glial anabolic use of pyruvate, sparing it for memory-relevant energy supply to neurons. Diverting pyruvate destination may dampen the need to upregulate glial glycolysis in response to increased neuronal demand. Although beneficial for the energy efficiency of memory formation, this mechanism reveals an ongoing competition between neuronal fuelling and glial anabolism.
Collapse
Affiliation(s)
- Raquel Francés
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Yasmine Rabah
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Dewald Z, Adesanya O, Bae H, Gupta A, Derham JM, Chembazhi UV, Kalsotra A. Altered drug metabolism and increased susceptibility to fatty liver disease in a mouse model of myotonic dystrophy. Nat Commun 2024; 15:9062. [PMID: 39433769 PMCID: PMC11494077 DOI: 10.1038/s41467-024-53378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG)n repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants. Expression of CUG-expanded (CUG)exp repeat RNA within hepatocytes sequestered muscleblind-like proteins and triggered widespread gene expression and RNA processing defects. Mechanistically, we demonstrate that increased expression and alternative splicing of acetyl-CoA carboxylase 1 drives excessive lipid accumulation in DM1 livers, which is exacerbated by high-fat, high-sugar diets. Together, these findings reveal that (CUG)exp RNA toxicity disrupts normal hepatic functions, predisposing DM1 livers to injury, MAFLD, and drug clearance pathologies that may jeopardize the health of affected individuals and complicate their treatment.
Collapse
Affiliation(s)
- Zachary Dewald
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Haneui Bae
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andrew Gupta
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerburg Biohub, Chicago, IL, USA.
| |
Collapse
|
6
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
7
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
8
|
Pham T, Walden E, Huard S, Pezacki J, Fullerton MD, Baetz K. Fine tuning Acetyl-CoA Carboxylase 1 activity through localization: Functional genomics reveal a role for the lysine acetyltransferase NuA4 and sphingolipid metabolism in regulating Acc1 activity and localization. Genetics 2022; 221:6591204. [PMID: 35608294 PMCID: PMC9339284 DOI: 10.1093/genetics/iyac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.
Collapse
Affiliation(s)
- Trang Pham
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Elizabeth Walden
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Sylvain Huard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - John Pezacki
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa K1N6N5 Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada.,Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
9
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
10
|
Albracht-Schulte K, Wilson S, Johnson P, Pahlavani M, Ramalingam L, Goonapienuwala B, Kalupahana NS, Festuccia WT, Scoggin S, Kahathuduwa CN, Moustaid-Moussa N. Sex-Dependent Effects of Eicosapentaenoic Acid on Hepatic Steatosis in UCP1 Knockout Mice. Biomedicines 2021; 9:1549. [PMID: 34829779 PMCID: PMC8615653 DOI: 10.3390/biomedicines9111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022] Open
Abstract
Visceral obesity may be a driving factor in nonalcoholic fatty liver disease (NAFLD) development. Previous studies have shown that the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA), ameliorates obesity in high-fat (HF) fed male, C57Bl/6 mice at thermoneutral conditions, independent of uncoupling protein 1 (UCP1). Our goals herein were to investigate sex-dependent mechanisms of EPA in the livers of wild type (WT) and UCP1 knockout (KO) male and female mice fed a HF diet (45% kcal fat; WT-HF, KO-HF) with or without supplementation of 36 g/kg EPA (WT-EPA, KO-EPA). KO significantly increased body weight in males, with no significant reductions with EPA in the WT or KO groups. In females, there were no significant differences in body weight among KO groups and no effects of EPA. In males, liver TGs were significantly higher in the KO-HF group and reduced with EPA, which was not observed in females. Accordingly, gene and protein markers of mitochondrial oxidation, peroxisomal biogenesis and oxidation, as well as metabolic futile cycles were sex-dependently impacted by KO and EPA supplementation. These findings suggest a genotypic difference in response to dietary EPA supplementation on the livers of male and female mice with diet-induced obesity and housed at thermoneutrality.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Savanna Wilson
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Paige Johnson
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Mandana Pahlavani
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Bimba Goonapienuwala
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - William T. Festuccia
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Chanaka N. Kahathuduwa
- Texas Tech University Health Sciences Center, Department of Laboratory Sciences and Primary Care, Lubbock, TX 79430, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| |
Collapse
|
11
|
Chaanine AH. Metabolic Remodeling and Implicated Calcium and Signal Transduction Pathways in the Pathogenesis of Heart Failure. Int J Mol Sci 2021; 22:ijms221910579. [PMID: 34638917 PMCID: PMC8508915 DOI: 10.3390/ijms221910579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The heart is an organ with high-energy demands in which the mitochondria are most abundant. They are considered the powerhouse of the cell and occupy a central role in cellular metabolism. The intermyofibrillar mitochondria constitute the majority of the three-mitochondrial subpopulations in the heart. They are also considered to be the most important in terms of their ability to participate in calcium and cellular signaling, which are critical for the regulation of mitochondrial function and adenosine triphosphate (ATP) production. This is because they are located in very close proximity with the endoplasmic reticulum (ER), and for the presence of tethering complexes enabling interorganelle crosstalk via calcium signaling. Calcium is an important second messenger that regulates mitochondrial function. It promotes ATP production and cellular survival under physiological changes in cardiac energetic demand. This is accomplished in concert with signaling pathways that regulate both calcium cycling and mitochondrial function. Perturbations in mitochondrial homeostasis and metabolic remodeling occupy a central role in the pathogenesis of heart failure. In this review we will discuss perturbations in ER-mitochondrial crosstalk and touch on important signaling pathways and molecular mechanisms involved in the dysregulation of calcium homeostasis and mitochondrial function in heart failure.
Collapse
Affiliation(s)
- Antoine H. Chaanine
- Department of Medicine, Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; ; Tel.: +1-(504)-988-1612
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Sena LA, Denmeade SR. Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon? Cancer Res 2021; 81:4385-4393. [PMID: 34145040 PMCID: PMC8416800 DOI: 10.1158/0008-5472.can-21-1392] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Tumor metabolism supports the energetic and biosynthetic needs of rapidly proliferating cancer cells and modifies intra- and intercellular signaling to enhance cancer cell invasion, metastasis, and immune evasion. Prostate cancer exhibits unique metabolism with high rates of de novo fatty acid synthesis driven by activation of the androgen receptor (AR). Increasing evidence suggests that activation of this pathway is functionally important to promote prostate cancer aggressiveness. However, the mechanisms by which fatty acid synthesis are beneficial to prostate cancer have not been well defined. In this review, we summarize evidence indicating that fatty acid synthesis drives progression of prostate cancer. We also explore explanations for this phenomenon and discuss future directions for targeting this pathway for patient benefit.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Choi Y, Kim DS, Lee MC, Park S, Lee JW, Om AS. Effects of Bacillus Subtilis-Fermented White Sword Bean Extract on Adipogenesis and Lipolysis of 3T3-L1 Adipocytes. Foods 2021; 10:1423. [PMID: 34205436 PMCID: PMC8235212 DOI: 10.3390/foods10061423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the adipogenesis and lipolysis effects of the Bacillus subtilis-fermented white sword bean extract (FWSBE) on 3T3-L1 adipocytes, we treated 3T3-L1 preadipocytes before and after differentiation with FWSBE and measured triglyceride, free glycerol, mRNA, and protein levels. First, FWSBE reduced the cell viability of 3T3-L1 pre-adipocytes under 1000 µg/mL conditions. Triglyceride accumulation in 3T3-L1 pre-adipocytes was suppressed, and free glycerol content in mature 3T3-L1 adipocytes was increased in the FWSBE treatment groups, indicating that FWSBE has anti-obesity effects. Further, FWSBE suppressed adipogenesis in 3T3-L1 pre-adipocytes by lowering the protein levels of C/EBPα, PPARγ, and FAS and increasing the level of pACC and pAMPK. Additionally, FWSBE promoted lipolysis in mature 3T3-L1 adipocytes by increasing the transcription levels of Ppara, Acox, and Lcad and the protein levels of pHSL and ATGL. Thus, we suggest that FWSBE can be a potential dietary supplement because of its anti-obesity properties.
Collapse
Affiliation(s)
- Yujeong Choi
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Da-Som Kim
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Seulgi Park
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Joo-Won Lee
- Department of Active Aging Industry, Division of Industrial Information Studies, Hanyang University, Seoul 04763, Korea
| | - Ae-Son Om
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
- Department of Active Aging Industry, Division of Industrial Information Studies, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Regulation of Energy Substrate Metabolism in Endurance Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094963. [PMID: 34066984 PMCID: PMC8124511 DOI: 10.3390/ijerph18094963] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein. In prolonged moderate to high-intensity exercise, there is a delicate interplay between carbohydrate and fat metabolism, and this bioenergetic process is tightly regulated by numerous physiological, nutritional, and environmental factors such as exercise intensity and duration, body mass and feeding state. Carbohydrate metabolism is of critical importance during prolonged endurance-type exercise, reflecting the physiological need to regulate glucose homeostasis, assuring optimal glycogen storage, proper muscle fuelling, and delaying the onset of fatigue. Fat metabolism represents a sustainable source of energy to meet energy demands and preserve the ‘limited’ carbohydrate stores. Coordinated neural, hormonal and circulatory events occur during prolonged endurance-type exercise, facilitating the delivery of fatty acids from adipose tissue to the working muscle for oxidation. However, with increasing exercise intensity, fat oxidation declines and is unable to supply ATP at the rate of the exercise demand. Protein is considered a subsidiary source of energy supporting carbohydrates and fat metabolism, contributing to approximately 10% of total ATP turnover during prolonged endurance-type exercise. In this review we present an overview of substrate metabolism during prolonged endurance-type exercise and the regulatory mechanisms involved in ATP turnover to meet the energetic demands of exercise.
Collapse
|
15
|
Protein kinase A negatively regulates VEGF-induced AMPK activation by phosphorylating CaMKK2 at serine 495. Biochem J 2021; 477:3453-3469. [PMID: 32869834 DOI: 10.1042/bcj20200555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK) in endothelial cells by vascular endothelial growth factor (VEGF) via the Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) represents a pro-angiogenic pathway, whose regulation and function is incompletely understood. This study investigates whether the VEGF/AMPK pathway is regulated by cAMP-mediated signalling. We show that cAMP elevation in endothelial cells by forskolin, an activator of the adenylate cyclase, and/or 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, triggers protein kinase A (PKA)-mediated phosphorylation of CaMKK2 (serine residues S495, S511) and AMPK (S487). Phosphorylation of CaMKK2 by PKA led to an inhibition of its activity as measured in CaMKK2 immunoprecipitates of forskolin/IBMX-treated cells. This inhibition was linked to phosphorylation of S495, since it was not seen in cells expressing a non-phosphorylatable CaMKK2 S495C mutant. Phosphorylation of S511 alone in these cells was not able to inhibit CaMKK2 activity. Moreover, phosphorylation of AMPK at S487 was not sufficient to inhibit VEGF-induced AMPK activation in cells, in which PKA-mediated CaMKK2 inhibition was prevented by expression of the CaMKK2 S495C mutant. cAMP elevation in endothelial cells reduced basal and VEGF-induced acetyl-CoA carboxylase (ACC) phosphorylation at S79 even if AMPK was not inhibited. Together, this study reveals a novel regulatory mechanism of VEGF-induced AMPK activation by cAMP/PKA, which may explain, in part, inhibitory effects of PKA on angiogenic sprouting and play a role in balancing pro- and anti-angiogenic mechanisms in order to ensure functional angiogenesis.
Collapse
|
16
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
17
|
Shyni GL, Sajin KF, Mangalam SN, Raghu KG. An in vitro study reveals the anti-obesity effects of 7- methoxy-3-methyl-5-((E)-prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran from Myristica fragrans. Eur J Pharmacol 2020; 891:173686. [PMID: 33121949 DOI: 10.1016/j.ejphar.2020.173686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Adipogenesis, the maturation process of preadipocytes, is closely associated with the development of obesity and other complex metabolic syndromes. Herein, we investigated the effect of 7- methoxy-3-methyl-5-((E)- prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran (TM), a benzofuran, isolated from the mace of Myristica fragrans Houtt on adipogenesis in 3T3-L1 preadipocytes to extrapolate whether this compound has any anti-obesity potential. For this, 3T3-L1 preadipocytes were induced to differentiate in the presence of various concentrations of TM (1, 5, 10 μM) and analyzed for triglyceride (TG) accumulation and the expression of proteins and genes involved in lipogenesis and lipolysis associated with adipogenesis. Results showed that TM significantly reduced TG accumulation and expression of marker proteins of adipocyte differentiation (peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and fatty acid-binding protein 4) and increased the secretion of glycerol in a dose-dependent manner. There was a significant dose-dependent decrease in the expression of fatty acid synthase, stearoyl-CoA desaturase-1, sterol regulatory element-binding transcription factor 1c, and acetyl-CoA carboxylase 1 and an increase in carnitine palmitoyltransferase 1, acyl-CoA oxidase, and peroxisome proliferator-activated receptor α in TM treated cells. The phosphorylation of cAMP-activated protein kinase was also increased, which in turn activated the phosphorylation of acetyl-CoA carboxylase in mature adipocytes. Also, there was an increase in glucose uptake by TM, suggesting its insulin-sensitizing potential. This is the first report on the anti-obesity effects of TM from Myristica fragrans on adipogenesis and lipid metabolism in 3T3-L1 adipocytes and demands detailed in vivo study for developing TM as anti-obesity therapeutics.
Collapse
Affiliation(s)
- Gangadharan Leela Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kaithathara Francis Sajin
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sivasankaran Nair Mangalam
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
18
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Dar MI, Jan S, Reddy GL, Wani R, Syed M, Dar MJ, Sawant SD, Vishwakarma RA, Syed SH. Differentiation of human neuroblastoma cell line IMR-32 by sildenafil and its newly discovered analogue IS00384. Cell Signal 2019; 65:109425. [PMID: 31689507 DOI: 10.1016/j.cellsig.2019.109425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
Abstract
Sildenafil, a phosphodiesterase-5 inhibitor is FDA approved drug against erectile dysfunction. It is currently undergoing many clinical trials, alone or in combinations against different diseases. Treatment of neural progenitor cells with sildenafil is known to regulate their basal cGMP levels and enhance neurogenesis and differentiation. cGMP as well as cAMP are known to play a central role in the maintenance, repair and remodelling of the nervous system. In the present study, we report the neurodifferentiation property of sildenafil in neuroblastoma cancer cell line IMR-32. Sildenafil was found to induce the formation of neurite outgrowths that were found expressing neuronal markers, such as NeuN, NF-H and βIII tubulin. IS00384, a recently discovered PDE5 inhibitor by our laboratory, was also found to induce neurodifferentiation of IMR-32 cells. The effect of IS00384 on differentiation was even more profound than sildenafil. Both the compounds were found to elevate and activate the Guanine nucleotide exchange factor C3G, which is a regulator of differentiation in IMR-32 cells. They were also found to elevate the levels of cGMP and activate the AMPK-ACC and PI3K-Akt signalling pathways. These pathways are known to play important role in cytoskeletal rearrangements necessary for differentiation. This study highlights the role of phosphodiesterases-5 in neurodifferentiation and use of sildenafil and IS00384 as small molecule tools to study the process of cellular differentiation.
Collapse
Affiliation(s)
- Mohd I Dar
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research, India
| | - Suraya Jan
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research, India
| | - G Lakshma Reddy
- Academy of Scientific and Innovative Research, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Rubiada Wani
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research, India
| | - Mudassir Syed
- High Content Imaging Facility, CSIR-Indian Institute of Integrative Medicine, India
| | - Mohd J Dar
- Academy of Scientific and Innovative Research, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D Sawant
- Academy of Scientific and Innovative Research, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A Vishwakarma
- Academy of Scientific and Innovative Research, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sajad H Syed
- CSIR- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research, India.
| |
Collapse
|
20
|
Han Y, Zhou S, Coetzee S, Chen A. SIRT4 and Its Roles in Energy and Redox Metabolism in Health, Disease and During Exercise. Front Physiol 2019; 10:1006. [PMID: 31447696 PMCID: PMC6695564 DOI: 10.3389/fphys.2019.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
NAD+-dependent SIRT4 has been reported to be a key regulator of metabolic enzymes and antioxidant defense mechanisms in mitochondria. It also plays an important role in regulation of mitochondrial metabolism in response to exercise. Recent studies have shown that SIRT4 is involved in a wide range of mitochondrial metabolic processes, including depressing insulin secretion in pancreatic beta cells, promoting lipid synthesis, regulating mitochondrial adenosine triphosphate (ATP) homeostasis, controlling apoptosis and regulating redox. SIRT4 also appears to have enzymatic functions involved in posttranslational modifications such as ADP-ribosylation, lysine deacetylation and lipoamidation. However, the effects on SIRT4 by metabolic diseases and changes in metabolic homeostasis such as during exercise, along with the roles of SIRT4 in the regulation of metabolism during disease, are not well understood. The main goal of this review is to critically analyse and summarise the current research evidence on the significance of the SIRT4 as a metabolic regulator and in mitochondrial function and its putative roles in relation to metabolic diseases and exercise.
Collapse
Affiliation(s)
- Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Sonja Coetzee
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
21
|
Francini F, Schinella GR, Ríos JL. Activation of AMPK by Medicinal Plants and Natural Products: Its Role in Type 2 Diabetes Mellitus. Mini Rev Med Chem 2019; 19:880-901. [PMID: 30484403 DOI: 10.2174/1389557519666181128120726] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/04/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Type-2 Diabetes (T2D) is a metabolic disease characterized by permanent hyperglycemia, whose development can be prevented or delayed by using therapeutic agents and implementing lifestyle changes. Some therapeutic alternatives include regulation of glycemia through modulation of different mediators and enzymes, such as AMP-activated protein kinase (AMPK), a highly relevant cellular energy sensor for metabolic homeostasis regulation, with particular relevance in the modulation of liver and muscle insulin sensitivity. This makes it a potential therapeutic target for antidiabetic drugs. In fact, some of them are standard drugs used for treatment of T2D, such as biguanides and thiazolidindiones. In this review, we compile the principal natural products that are activators of AMPK and their effect on glucose metabolism, which could make them candidates as future antidiabetic agents. Phenolics such as flavonoids and resveratrol, alkaloids such as berberine, and some saponins are potential natural activators of AMPK with a potential future as antidiabetic drugs.
Collapse
Affiliation(s)
- Flavio Francini
- Centro de Endocrinologia Experimental y Aplicada, (CONICET-CCT La Plata-UNLP FCM, CEAS CICPBA), Argentina
| | - Guillermo R Schinella
- Cátedra de Farmacología Básica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - José-Luis Ríos
- Departament de Farmacologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
22
|
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu XZ, Nilsson LIH, Løvsletten NG, Berge K, Wergedahl H, Bjørndal B, Fluge Ø, Bruland O, Rustan AC, Halberg N, Røsland GV, Berge RK, Tronstad KJ. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019; 49:97-110. [PMID: 31351920 DOI: 10.1016/j.mito.2019.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.
Collapse
Affiliation(s)
| | | | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Norway
| | | | - Lena Hansen
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | - Hege Wergedahl
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nils Halberg
- Department of Biomedicine, University of Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
23
|
Zong Y, Zhang CS, Li M, Wang W, Wang Z, Hawley SA, Ma T, Feng JW, Tian X, Qi Q, Wu YQ, Zhang C, Ye Z, Lin SY, Piao HL, Hardie DG, Lin SC. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res 2019; 29:460-473. [PMID: 30948787 DOI: 10.1038/s41422-019-0163-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.
Collapse
Affiliation(s)
- Yue Zong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Simon A Hawley
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, Dundee, Scotland, UK
| | - Teng Ma
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Qu Qi
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yu-Qing Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhiyun Ye
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, Dundee, Scotland, UK
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China.
| |
Collapse
|
24
|
Okamoto S, Asgar NF, Yokota S, Saito K, Minokoshi Y. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Metabolism 2019; 90:52-68. [PMID: 30359677 DOI: 10.1016/j.metabol.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK), a heterotrimer with α1 or α2 catalytic subunits, acts as an energy sensor and regulates cellular homeostasis. Whereas AMPKα1 is necessary for myogenesis in skeletal muscle, the role of AMPKα2 in myogenic differentiation and energy metabolism-related gene expressions has remained unclear. We here examined the specific roles of AMPKα1 and AMPKα2 in the myogenic differentiation and mitochondria and energy metabolism-related gene expressions in C2C12 cells. MATERIALS AND METHODS Stable C2C12 cell lines expressing a scramble short hairpin RNA (shRNA) or shRNAs specific for AMPKα1 (shAMPKα1), AMPKα2 (shAMPKα2), or both AMPKα1 and AMPKα2 (shPanAMPK) were generated by lentivirus infection. Lentiviruses encoding wild-type AMPKα2 (WT-AMPKα2) or AMPKα2 with a mutated nuclear localization signal (ΔNLS-AMPKα2) were also constructed for introduction into myoblasts. Myogenesis was induced by culture of C2C12 myoblasts for 6 days in differentiation medium. RESULTS The amount of AMPKα2 increased progressively, whereas that of AMPKα1 remained constant, during the differentiation of myoblasts into myotubes. Expression of shPanAMPK or shAMPKα1, but not that of shAMPKα2, attenuated the proliferation of myoblasts as well as the phosphorylation of both acetyl-CoA carboxylase and the autophagy-initiating kinase ULK1 in myotubes. Up-regulation of myogenin mRNA, a marker for the middle stage of myogenesis, was attenuated in differentiating myotubes expressing shPanAMPK or shAMPKα1. In contrast, up-regulation of gene expression for muscle creatine kinase (MCK), a late-stage differentiation marker, as well as for genes related to mitochondrial biogenesis including the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α1 and α4 (PGC-1α1 and PGC-1α4) and mitochondria-specific genes such as cytochrome c were attenuated in myotubes expressing shAMPKα2 or shPanAMPK. The diameter of myotubes expressing shPanAMPK or shAMPKα2 was reduced, whereas that of those expressing shAMPKα1 was increased, compared with myotubes expressing scramble shRNA. A portion of AMPKα2 became localized to the nucleus during myogenic differentiation. The AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) and 2-deoxyglucose (2DG) each induced the nuclear translocation of WT-AMPKα2, but not that of ΔNLS-AMPKα2. Finally, expression of WT-AMPKα2 increased the mRNA abundance of PGC-1α1 and MCK mRNAs as well as cell diameter and tended to increase that of PGC-1α4, whereas that of ΔNLS-AMPKα2 increased only the abundance of MCK mRNA, in myotubes depleted of endogenous AMPKα2. CONCLUSION TAMPKα1 and AMPKα2 have distinct roles in myogenic differentiation of C2C12 cells, with AMPKα1 contributing to the middle stage of myogenesis and AMPKα2 to the late stage. AMPKα2 regulates gene expressions including MCK, PGC-1α1 and PGC-1α4 and mitochondria-specific genes such as cytochrome c during the late stage of differentiation. Furthermore, the nuclear translocation of AMPKα2 is necessary for maintenance of PGC-1α1 mRNA during myogenesis.
Collapse
Affiliation(s)
- Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Nur Farehan Asgar
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kumiko Saito
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
25
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Miyamoto L. Molecular Pathogenesis of Familial Wolff-Parkinson-White Syndrome. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 65:1-8. [PMID: 29593177 DOI: 10.2152/jmi.65.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Familial Wolff-Parkinson-White (WPW) syndrome is an autosomal dominant inherited disease and consists of a small percentage of WPW syndrome which exhibits ventricular pre-excitation by development of accessory atrioventricular pathway. A series of mutations in PRKAG2 gene encoding gamma2 subunit of 5'AMP-activated protein kinase (AMPK) has been identified as the cause of familial WPW syndrome. AMPK is one of the most important metabolic regulators of carbohydrates and lipids in many types of tissues including cardiac and skeletal muscles. Patients and animals with the mutation in PRKAG2 gene exhibit aberrant atrioventricular conduction associated with cardiac glycogen overload. Recent studies have revealed "novel" significance of canonical pathways leading to glycogen synthesis and provided us profound insights into molecular mechanism of the regulation of glycogen metabolism by AMPK. This review focuses on the molecular basis of the pathogenesis of cardiac abnormality due to PRKAG2 mutation and will provide current overviews of the mechanism of glycogen regulation by AMPK. J. Med. Invest. 65:1-8, February, 2018.
Collapse
|
27
|
Maher M, Diesch J, Casquero R, Buschbeck M. Epigenetic-Transcriptional Regulation of Fatty Acid Metabolism and Its Alterations in Leukaemia. Front Genet 2018; 9:405. [PMID: 30319689 PMCID: PMC6165860 DOI: 10.3389/fgene.2018.00405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
In recent years fatty acid metabolism has gained greater attention in haematologic cancers such as acute myeloid leukaemia. The oxidation of fatty acids provides fuel in the form of ATP and NADH, while fatty acid synthesis provides building blocks for cellular structures. Here, we will discuss how leukaemic cells differ from healthy cells in their increased reliance on fatty acid metabolism. In order to understand how these changes are achieved, we describe the main pathways regulating fatty acid metabolism at the transcriptional level and highlight the limited knowledge about related epigenetic mechanisms. We explore these mechanisms in the context of leukaemia and consider the relevance of the bone marrow microenvironment in disease management. Finally, we discuss efforts to interfere with fatty acid metabolism as a therapeutic strategy along with the use of metabolic parameters as biomarkers.
Collapse
Affiliation(s)
- Michael Maher
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Casquero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
28
|
Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S. Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol 2018; 315:C803-C817. [PMID: 30230919 DOI: 10.1152/ajpcell.00311.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.
Collapse
Affiliation(s)
- Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia.,Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia
| | - Vid Jan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet , Stockholm , Sweden.,National Research Tomsk State University , Tomsk , Russia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
29
|
Hsieh CT, Chang FR, Tsai YH, Wu YC, Hsieh TJ. 2-Bromo-4'-methoxychalcone and 2-Iodo-4'-methoxychalcone Prevent Progression of Hyperglycemia and Obesity via 5'-Adenosine-Monophosphate-Activated Protein Kinase in Diet-Induced Obese Mice. Int J Mol Sci 2018; 19:ijms19092763. [PMID: 30223438 PMCID: PMC6163633 DOI: 10.3390/ijms19092763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity and diabetes are global health-threatening issues. Interestingly, the mechanism of these pathologies is quite different among individuals. The discovery and development of new categories of medicines from diverse sources are urgently needed for preventing and treating diabetes and other metabolic disorders. Previously, we reported that chalcones are important for preventing biological disorders, such as diabetes. In this study, we demonstrate that the synthetic halogen-containing chalcone derivatives 2-bromo-4′-methoxychalcone (compound 5) and 2-iodo-4′-methoxychalcone (compound 6) can promote glucose consumption and inhibit cellular lipid accumulation via 5′-adenosine-monophosphate-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase 1 (ACC) phosphorylation in 3T3-L1 adipocytes and C2C12 skeletal myotubes. In addition, the two compounds significantly prevented body weight gain and impaired glucose tolerance, hyperinsulinemia, and insulin resistance, which collectively help to delay the progression of hyperglycemia in high-fat-diet-induced obese C57BL/6 mice. These findings indicate that 2-bromo-4′-methoxychalcone and 2-iodo-4′-methoxychalcone could act as AMPK activators, and may serve as lead compounds for a new class of medicines that target obesity and diabetes.
Collapse
Affiliation(s)
- Chi-Ting Hsieh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Tusty-Jiuan Hsieh
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
30
|
Kim YS, Kim M, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Hong EK, Choi WS. Alpha-lipoic acid reduces retinal cell death in diabetic mice. Biochem Biophys Res Commun 2018; 503:1307-1314. [PMID: 30017190 DOI: 10.1016/j.bbrc.2018.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress plays an important role in the development of diabetic retinopathy. Here, we examined whether α-lipoic acid (α-LA), a natural antioxidant, attenuated retinal injury in diabetic mice. The α-LA was orally administered to control mice or mice with streptozotocin-induced diabetes. We found that α-LA reduced oxidative stress, decreased and increased retinal 4-hydroxy-2-nonenal and glutathione peroxidase, respectively, and inhibited retinal cell death. Concomitantly, α-LA reversed the decreased activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase, and increased the levels of peroxisome proliferator-activated receptor delta and sirtuin3 in diabetic mouse retinas, similar to results shown after metformin treatment of retinal pigment epithelial cells (RPE) exposed to high glucose. Moreover, α-LA lowered the levels of O-linked β-N-acetylglucosamine transferase (OGT) and thioredoxin-interacting protein (TXNIP) in diabetic retinas that were more pronounced after metformin treatment of RPE cells. Importantly, α-LA lowered interactions between AMPK and OGT as shown by co-immunoprecipitation analyses, and this was accompanied by less cell death as measured by double immunofluorescence staining by terminal deoxynucleotide transferase-mediated dUTP nick-end labelling and OGT or TXNIP in retinal ganglion cells. Consistently, α-LA lowered the levels of cleaved poly(ADP-ribose) polymerase and pro-apoptotic marker cleaved caspase-3 in diabetic retinas. Our results indicated that α-LA reduced retinal cell death partly through AMPK activation or OGT inhibition in diabetic mice.
Collapse
Affiliation(s)
- Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Minjun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Eun-Kyung Hong
- Medvill Co., Ltd, 1606 Daeryung Post Tower 5th, 68 Digitalro 9gil, Guemcheon-gu, Seoul, 08512, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
31
|
Park YK, Obiang-Obounou BW, Lee KB, Choi JS, Jang BC. AZD1208, a pan-Pim kinase inhibitor, inhibits adipogenesis and induces lipolysis in 3T3-L1 adipocytes. J Cell Mol Med 2018; 22:2488-2497. [PMID: 29441719 PMCID: PMC5867077 DOI: 10.1111/jcmm.13559] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
The proviral integration moloney murine leukaemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, are involved in the control of cell growth, metabolism and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. AZD1208 is a pan-Pim kinase inhibitor and is known for its anti-cancer activity. In this study, we investigated the effect of AZD1208 on adipogenesis and lipolysis in 3T3-L1 cells, a murine preadipocyte cell line. AZD1208 markedly suppressed lipid accumulation and reduced triglyceride contents in differentiating 3T3-L1 cells, suggesting the drug's anti-adipogenic effect. On mechanistic levels, AZD1208 reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Remarkably, AZD1208 increased cAMP-activated protein kinase (AMPK) and LKB-1 phosphorylation while decreased intracellular ATP contents in differentiating 3T3-L1 cells. Furthermore, in differentiated 3T3-L1 adipocytes, AZD1208 also partially promoted lipolysis and enhanced the phosphorylation of hormone-sensitive lipase (HSL), a key lipolytic enzyme, indicating the drug's HSL-dependent lipolysis. In summary, the findings show that AZD1208 has anti-adipogenic and lipolytic effects on 3T3-L1 adipocytes. These effects are mediated by the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3, AMPK and HSL.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| | | | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
32
|
Vilchinskaya NA, Mochalova EP, Nemirovskaya TL, Mirzoev TM, Turtikova OV, Shenkman BS. Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J Physiol 2017; 595:7123-7134. [PMID: 28975644 DOI: 10.1113/jp275184] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Inactivation of a skeletal muscle results in slow to fast myosin heavy chain (MyHC) shift. AMP-activated protein kinase (AMPK) can be implicated in the regulation of genes encoding the slow MyHC isoform. Here we report that AMPK dephosphorylation after 24 h of mechanical unloading can contribute to histone deacetylase (HDAC) nuclear translocation; activation of AMPK prevents HDAC4 nuclear accumulation after 24 h of unloading and AMPK dephosphorylation inhibits slow MyHC expression following 24 h of unloading. Our data indicate that AMPK dephosphorylation during the first 24 h of mechanical unloading has a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(β) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. ABSTRACT One of the key events that occurs during skeletal muscle inactivation is a change in myosin phenotype, i.e. increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). It is known that calcineurin/nuclear factor of activated T-cells and AMP-activated protein kinase (AMPK) can regulate the expression of genes encoding MyHC slow isoform. Earlier, we found a significant decrease in phosphorylated AMPK in rat soleus after 24 h of hindlimb unloading (HU). We hypothesized that a decrease in AMPK phosphorylation and subsequent histone deacetylase (HDAC) nuclear translocation can be one of the triggering events leading to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with AMPK activator (AICAR) for 6 days before HU as well as during 24 h of HU. We discovered that AICAR treatment prevented a decrease in pre-mRNA and mRNA expression of MyHC I as well as MyHC IIa mRNA expression. Twenty-four hours of hindlimb suspension resulted in HDAC4 accumulation in the nuclei of rat soleus but AICAR pretreatment prevented this accumulation. The results of the study indicate that AMPK dephosphorylation after 24 h of HU had a significant impact on the MyHC I and MyHC IIa mRNA expression in rat soleus. AMPK dephosphorylation also contributed to HDAC4 translocation to the nuclei of soleus muscle fibres, suggesting an important role of HDAC4 as an epigenetic regulator in the process of myosin phenotype transformation.
Collapse
Affiliation(s)
| | | | - Tatiana L Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V Turtikova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
33
|
Gudiksen A, Bertholdt L, Stankiewicz T, Tybirk J, Plomgaard P, Bangsbo J, Pilegaard H. Effects of training status on PDH regulation in human skeletal muscle during exercise. Pflugers Arch 2017; 469:1615-1630. [PMID: 28801776 DOI: 10.1007/s00424-017-2019-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/23/2022]
Abstract
Pyruvate dehydrogenase (PDH) is the gateway enzyme for carbohydrate-derived pyruvate feeding into the TCA cycle. PDH may play a central role in regulating substrate shifts during exercise, but the influence of training state on PDH regulation during exercise is not fully elucidated. The purpose of this study was to investigate the impact of training state on post-translational regulation of PDHa activity during submaximal and exhaustive exercise. Eight untrained and nine endurance exercise-trained healthy male subjects performed incremental exercise on a cycle ergometer: 40 min at 50% incremental peak power output (IPPO), 10 min at 65% (IPPO), followed by 80% (IPPO) until exhaustion. Trained subjects had higher (P < 0.05) PDH-E1α, PDK1, PDK2, PDK4, and PDP1 protein content as well as PDH phosphorylation and PDH acetylation. Exercising at the same relative intensity led to similar muscle PDH activation in untrained and trained subjects, whereas PDHa activity at exhaustion was higher (P < 0.05) in trained than untrained. Furthermore, exercise induced similar PDH dephosphorylation in untrained and trained subjects, while PDH acetylation was increased (P < 0.05) only in trained subjects. In conclusion, PDHa activity and PDH dephosphorylation were well adjusted to the relative exercise intensity during submaximal exercise. In addition, higher PDHa activity in trained than untrained at exhaustion seemed related to differences in glycogen utilization rather than differences in PDH phosphorylation and acetylation state, although site-specific contributions cannot be ruled out.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Tomasz Stankiewicz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Jonas Tybirk
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
34
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
35
|
Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, Lantier L, LaRocque LM, Marton A, Neubert P, Schröder A, Rakova N, Jantsch J, Dikalova AE, Dikalov SI, Harrison DG, Müller DN, Nishiyama A, Rauh M, Harris RC, Luft FC, Wassermann DH, Sands JM, Titze J. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 2017; 127:1944-1959. [PMID: 28414295 DOI: 10.1172/jci88532] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.
Collapse
|
36
|
Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 2017; 14:164-180. [PMID: 28169991 PMCID: PMC5672799 DOI: 10.1038/nrurol.2016.272] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis. Despite AMPK's known function in physiology, its role in pathological processes such as prostate cancer is enigmatic. However, emerging evidence is now beginning to decode the paradoxical role of AMPK in cancer and, therefore, inform clinicians if - and how - AMPK could be therapeutically targeted. Spatiotemporal regulation of AMPK complexes could be one of the mechanisms that governs this kinase's role in cancer. We hypothesize that different upstream stimuli will activate select subcellular AMPK complexes. This hypothesis is supported by the distinct subcellular locations of the various AMPK subunits. Each of these unique AMPK complexes regulates discrete downstream processes that can be tumour suppressive or oncogenic. AMPK's final biological output is then determined by the weighted net function of these downstream signalling events, influenced by additional prostate-specific signalling.
Collapse
Affiliation(s)
- Ayesha S. Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
- Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
37
|
Bhaswant M, Shafie SR, Mathai ML, Mouatt P, Brown L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 2016; 41:24-31. [PMID: 28760424 DOI: 10.1016/j.nut.2016.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. METHODS Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. RESULTS HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CONCLUSION CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia
| | - Siti Raihanah Shafie
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia
| | - Michael L Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Peter Mouatt
- Analytical Research Laboratory, Southern Cross Plant Science, Southern Cross University, East Lismore, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia.
| |
Collapse
|
38
|
Hypolipidaemic function of Hsian-tsao tea ( Mesona procumbens Hemsl.): Working mechanisms and active components. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Luo J, Hong Y, Lu Y, Qiu S, Chaganty BKR, Zhang L, Wang X, Li Q, Fan Z. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett 2016; 384:39-49. [PMID: 27693630 DOI: 10.1016/j.canlet.2016.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent.
Collapse
Affiliation(s)
- Jingtao Luo
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat K R Chaganty
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lun Zhang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xudong Wang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Qiang Li
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Veratri Nigri Rhizoma et Radix (Veratrum nigrum L.) and Its Constituent Jervine Prevent Adipogenesis via Activation of the LKB1-AMPKα-ACC Axis In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8674397. [PMID: 27143989 PMCID: PMC4837256 DOI: 10.1155/2016/8674397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022]
Abstract
This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity.
Collapse
|
41
|
Chen GC, Su HM, Lin YS, Tsou PY, Chyuan JH, Chao PM. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. J Nutr Biochem 2016; 33:28-35. [PMID: 27260465 DOI: 10.1016/j.jnutbio.2016.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 01/13/2023]
Abstract
α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100μmol/L) or in combination with α-ESA (LN+α-ESA; 75+25μmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Gou-Chun Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hui-Min Su
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Po-Yen Tsou
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jong-Ho Chyuan
- Hualien District Agricultural Research and Extension Station, Hualien, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
42
|
O'Neill HM, Lally JS, Galic S, Pulinilkunnil T, Ford RJ, Dyck JRB, van Denderen BJ, Kemp BE, Steinberg GR. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol Rep 2015; 3:3/7/e12444. [PMID: 26156967 PMCID: PMC4552526 DOI: 10.14814/phy2.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions.
Collapse
Affiliation(s)
- Hayley M O'Neill
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada Department of Medicine, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia Faculty of Health Sciences and Medicine, Bond Institute of Health and Sport, Bond University, Robina, Queensland, Australia
| | - James S Lally
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sandra Galic
- Department of Medicine, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas Pulinilkunnil
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bryce J van Denderen
- Department of Medicine, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| | - Bruce E Kemp
- Department of Medicine, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada Department of Medicine, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
43
|
Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 2015; 22:1060-77. [PMID: 25545135 PMCID: PMC4389911 DOI: 10.1089/ars.2014.6213] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Maintenance of metabolic homeostasis is critical for cellular and organismal health. Proper regulation of mitochondrial functions represents a crucial element of overall metabolic homeostasis. Mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) play pivotal roles in promoting this homeostasis by regulating numerous aspects of mitochondrial metabolism in response to environmental stressors. RECENT ADVANCES New work has illuminated multiple links between mitochondrial sirtuins and cancer. SIRT5 has been shown to regulate the recently described post-translational modifications succinyl-lysine, malonyl-lysine, and glutaryl-lysine. An understanding of these modifications is still in its infancy. Enumeration of SIRT3 and SIRT5 targets via advanced proteomic techniques promises to dramatically enhance insight into functions of these proteins. CRITICAL ISSUES In this review, we highlight the roles of mitochondrial sirtuins and their targets in cellular and organismal metabolic homeostasis. Furthermore, we discuss emerging roles for mitochondrial sirtuins in suppressing and/or promoting tumorigenesis, depending on the cellular and molecular context. FUTURE DIRECTIONS Currently, hundreds of potential SIRT3 and SIRT5 molecular targets have been identified in proteomic experiments. Future studies will need to validate the major targets of these enzymes, and elucidate how acetylation and/or acylation modulate their functionality. A great deal of interest exists in targeting sirtuins pharmacologically; this endeavor will require development of sirtuin-specific modulators (activators and inhibitors) as potential treatments for cancer and metabolic disease.
Collapse
Affiliation(s)
- Surinder Kumar
- 1 Department of Pathology, University of Michigan , Ann Arbor, Michigan
| | | |
Collapse
|
44
|
Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JFP. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol 2015; 593:2053-69. [PMID: 25640469 DOI: 10.1113/jphysiol.2014.283267] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption (V̇O2 peak ) or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% V̇O2 peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPK(Thr172) , ACC(Ser221) , TBC1D1(Ser231) and GS(2+2a) ) or lower (TBC1D4(Ser704) ). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPK(Thr172) , TBC1D1(Ser231) , TBC1D4(Ser704) and ACC(Ser221) ) or higher (GS(2+2a) ). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling.
Collapse
Affiliation(s)
- Dorte E Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Kinnunen S, Mänttäri S, Herzig KH, Nieminen P, Mustonen AM, Saarela S. Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides). J Comp Physiol B 2015; 185:435-45. [PMID: 25652584 DOI: 10.1007/s00360-015-0893-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting.
Collapse
Affiliation(s)
- Sanni Kinnunen
- Department of Biology, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland,
| | | | | | | | | | | |
Collapse
|
46
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
47
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
48
|
Sanchez AMJ, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69. [PMID: 25121614 DOI: 10.1152/ajpregu.00187.2014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors involved in mitophagy are more abundant in the fasted state. In contrast, strength and resistance exercises preferentially raise ubiquitin-proteasome system activity and involve several protein synthesis factors, such as the recently characterized DAGK for mechanistic target of rapamycin activation. In this review, we discuss recent progress on the impact of acute and chronic exercise on cell component turnover systems, with particular focus on autophagy, which until now has been relatively overlooked in skeletal muscle. We especially highlight the most recent studies on the factors that can impact its modulation, including the mode of exercise and the nutritional status, and also discuss the current limitations in the literature to encourage further works on this topic.
Collapse
Affiliation(s)
- Anthony M J Sanchez
- Department of Critical Care, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada; University of Perpignan Via Domitia, Laboratoire Performance Santé Altitude, EA 4604, Font-Romeu, France;
| | - Henri Bernardi
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; and
| | - Guillaume Py
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| | - Robin B Candau
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| |
Collapse
|
49
|
Treadmill training increases SIRT-1 and PGC-1 α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner. Mediators Inflamm 2014; 2014:987017. [PMID: 25002755 PMCID: PMC4070581 DOI: 10.1155/2014/987017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023] Open
Abstract
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.
Collapse
|
50
|
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, Skinner HD, Fitzgerald AL, Osman AA, Wei Y, Xia X, Songyang Z, Mills GB, Hung MC, Caulin C, Liang J, Myers JN. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 2014; 54:960-974. [PMID: 24857548 DOI: 10.1016/j.molcel.2014.04.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/25/2022]
Abstract
Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiping Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tong-Xin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Noriaki Tanaka
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daisuke Sano
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandra M Ward
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vlad C Sandulache
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samar A Jasser
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heath D Skinner
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alison Lea Fitzgerald
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuefeng Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Diabetes Research, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduated Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|