1
|
Jin G, Kumar H, Clark AR, Burrowes KS, Hoffman EA, Tawhai MH. Evaluating the role of sex-related structure-function differences on airway aerosol transport and deposition. J Appl Physiol (1985) 2024; 137:1285-1300. [PMID: 39169840 PMCID: PMC11918303 DOI: 10.1152/japplphysiol.00898.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Several experimental studies have found that females have higher particle deposition in the airways than males. This has implications for the delivery of aerosolized therapeutics and for understanding sex differences in respiratory system response to environmental exposures. This study evaluates several factors that potentially contribute to sex differences in particle deposition, using scale-specific structure-function models of one-dimensional (1-D) ventilation distribution, particle transport, and deposition. The impact of gravity, inhalation flow rate, and dead space are evaluated in 12 structure-based models (7 females; 5 males). Females were found to have significantly higher total, bronchial, and alveolar deposition than males across a particle size range from 0.01 to 10 μm. Results suggest that higher deposition fraction in females is due to higher alveolar deposition for smaller particle sizes and higher bronchial deposition for larger particles. Females had higher alveolar deposition in the lower lobes and slightly lower particle concentration in the left upper lobe. Males were found to be more sensitive to changes due to gravity, showing greater reduction in bronchial deposition fraction. Males were also more sensitive to change in inhalation flow rate and to scaling of dead space due to the larger male baseline airway size. Predictions of sex differences in particle deposition-that are consistent with the literature-suggest that sex-based characteristics of lung and airway size interacting with particle size gives rise to differences in regional deposition.NEW & NOTEWORTHY Sex differences in airway tract particle deposition are analyzed using computational models that account for scale-specific structure and function. We show that sex-related differences in lung and airway size can explain experimental observations of increased deposition fraction in females, with females tending toward enhanced fine particle deposition in the alveolar airways and enhanced bronchial deposition for larger particles.
Collapse
Affiliation(s)
- Ge Jin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Thompson RB, Darquenne C. Magnetic Resonance Imaging of Aerosol Deposition. J Aerosol Med Pulm Drug Deliv 2023; 36:228-234. [PMID: 37523222 DOI: 10.1089/jamp.2023.29087.rbt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Nuclear magnetic resonance imaging (MRI) uses non-ionizing radiation and offers a host of contrast mechanisms with the potential to quantify aerosol deposition. This chapter introduces the physics of MRI, its use in lung imaging, and more specifically, the methods that are used for the detection of regional distributions of inhaled particles. The most common implementation of MRI is based on imaging of hydrogen atoms (1H) in water. The regional deposition of aerosol particles can be measured by the perturbation of the acquired 1H signals via labeling of the aerosol with contrast agents. Existing in vitro human and in vivo animal model measurements of regional aerosol deposition in the respiratory tract are described, demonstrating the capability of MRI to assess aerosol deposition in the lung.
Collapse
Affiliation(s)
- Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chantal Darquenne
- Department of Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Numerical investigations of the particle deposition in the human terminal alveoli under the Martian gravity. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Abstract
Traditionally, empirical correlations for predicting respiratory tract deposition of inhaled aerosols have been developed using limited available in vivo data. More recently, advances in medical image segmentation and additive manufacturing processes have allowed researchers to conduct extensive in vitro deposition experiments in realistic replicas of the upper and central branching airways. This work has led to a collection of empirical equations for predicting regional aerosol deposition, especially in the upper, nasal and oral airways. The present section reviews empirical correlations based on both in vivo and in vitro data, which may be used to predict total and regional deposition. Equations are presented for predicting total respiratory deposition fraction, mouth-throat fraction, nasal, and nose-throat fractions for a large variety of aerosol sizes, subject age groups, and breathing maneuvers. Use of these correlations to estimate total lung deposition is also described.
Collapse
Affiliation(s)
- Andrew R Martin
- Department of Mechanical Engineering, 10-324 Donadeo Innovation Center for Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Abstract
Modeling particle deposition in the human lung requires information about the morphology of the lung in terms of simple geometric units, e.g., characterizing bronchial airways by straight cylindrical tubes. Five different regional deposition models are discussed in this section with respect to morphometric lung models and related mathematical modeling techniques: 1) one-dimensional cross-section or "trumpet" model, 2) deterministic symmetric generation or "single-path" model, 3) deterministic asymmetric generation or "multiple-path" model, 4) stochastic asymmetric generation or "multiple-path" model, and 5) single-path computational fluid and particle dynamics (CFPD) model. Current deposition models can predict the following regional deposition quantities relevant for the administration of medical aerosols: 1) regional bronchial and alveolar deposition, 2) generational lung deposition, 3) lobar deposition, 4) generational lobar deposition, and 5) generational surface deposition. Although deposition fractions predicted by the different models depend on the selection of a specific morphometric lung model and a specific set of analytical deposition equations, all models predict the same trends as functions of particle diameter and breathing parameters. In general, the overall agreement between the modeling predictions obtained by the various deposition models and the available experimental evidence indicates that current deposition models correctly predict regional and generational deposition.
Collapse
Affiliation(s)
- Werner Hofmann
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Prisk GK. Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon. Med J Aust 2019; 211:271-276. [PMID: 31420881 DOI: 10.5694/mja2.50312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Space flight presents a set of physiological challenges to the space explorer which result from the absence of gravity (or in the case of planetary exploration, partial gravity), radiation exposure, isolation and a prolonged period in a confined environment, distance from Earth, the need to venture outside in the hostile environment of the destination, and numerous other factors. Gravity affects regional lung function, and the human lung shows considerable alteration in function in low gravity; however, this alteration does not result in deleterious changes that compromise lung function upon return to Earth. The decompression stress associated with extravehicular activity, or spacewalk, does not appear to compromise lung function, and future habitat (living quarter) designs can be engineered to minimise this stress. Dust exposure is a significant health hazard in occupational settings such as mining, and exposure to extraterrestrial dust is an almost inevitable consequence of planetary exploration. The combination of altered pulmonary deposition of extraterrestrial dust and the potential for the dust to be highly toxic likely makes dust exposure the greatest threat to the lung in planetary exploration.
Collapse
Affiliation(s)
- G Kim Prisk
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Prisk GK. Effects of Partial Gravity on the Function and Particle Handling of the Human Lung. CURRENT PATHOBIOLOGY REPORTS 2019; 6:159-166. [PMID: 30687585 DOI: 10.1007/s40139-018-0174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of Review The challenges presented to the lung by the space environment are the effects of prolonged absence of gravity, the challenges of decompression stress associated with spacewalking, and the changes in the deposition of inhaled particulate matter. Recent Findings Although there are substantial changes in the function of the lung in partial gravity, the lung is largely unaffected by sustained exposure, returning rapidly to a normal state after return to 1G. Provided there is adequate denitrogenation prior to a spacewalk, avoiding the development of venous gas emboli, the lung copes well with the low pressure environment of the spacesuit. Particulate deposition is reduced in partial gravity, but where that deposition occurs is likely in the more peripheral airspaces, with associated longer retention times, potentially raising the toxicological potential of toxic dusts. Summary Despite its delicate structure the lung performs well in partial gravity, with the greatest threat likely arising from inhaled particulate matter (extra-terrestrial dusts).
Collapse
Affiliation(s)
- G Kim Prisk
- Department of Medicine, University of California, San Diego
| |
Collapse
|
8
|
Linakis MW, Job KM, Liu X, Collingwood SC, Pangburn HA, Ott DK, Sherwin CMT. Riding (High) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces. Expert Opin Drug Metab Toxicol 2017; 13:925-934. [PMID: 28772091 DOI: 10.1080/17425255.2017.1360867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION When in flight, pilots of high performance aircraft experience conditions unique to their profession. Training flights, performed as often as several times a week, can expose these pilots to altitudes in excess of 15 km (~50,000 ft, with a cabin pressurized to an altitude of ~20,000 ft), and the maneuvers performed in flight can exacerbate the G-forces felt by the pilot. While the pilots specifically train to withstand these extreme conditions, the physiologic stress could very likely lead to differences in the disposition of chemicals in the body, and consequently, dangerously high exposures. Unfortunately, very little is known about how the conditions experienced by fighter pilots affects chemical disposition. Areas covered: The purpose of this review is to present information about the effects of high altitude, G-forces, and other conditions experienced by fighter pilots on chemical disposition. Using this information, the expected changes in chemical exposure will be discussed, using isopropyl alcohol as an example. Expert opinion: There is a severe lack of information concerning the effects of the fighter pilot environment on the pharmacokinetics and pharmacodynamics of chemicals. Given the possibility of exposure prior to or during flight, it is important that these potential effects be investigated further.
Collapse
Affiliation(s)
- Matthew W Linakis
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Kathleen M Job
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Xiaoxi Liu
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Scott C Collingwood
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Heather A Pangburn
- c Department of Aeromedical Research , United States Air Force School of Aerospace Medicine , Dayton , OH , USA
| | - Darrin K Ott
- c Department of Aeromedical Research , United States Air Force School of Aerospace Medicine , Dayton , OH , USA
| | - Catherine M T Sherwin
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
9
|
Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7020113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Darquenne C, Lamm WJ, Fine JM, Corley RA, Glenny RW. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD. JOURNAL OF AEROSOL SCIENCE 2016; 99:27-39. [PMID: 27493296 PMCID: PMC4968943 DOI: 10.1016/j.jaerosci.2016.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predictions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 = 50-80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 μm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 μm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.798 ± 0.205 vs. 0.527 ± 0.122 mL/mL, p=0.01; MS: -0.271±0.129 vs. -0.145 ± 0.076 mL/mL, p=0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to-moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wayne J. Lamm
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Janelle M. Fine
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robb W. Glenny
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Darquenne C, Borja MG, Oakes JM, Breen EC, Olfert IM, Scadeng M, Prisk GK. Increase in relative deposition of fine particles in the rat lung periphery in the absence of gravity. J Appl Physiol (1985) 2014; 117:880-6. [PMID: 25170069 PMCID: PMC4199993 DOI: 10.1152/japplphysiol.00298.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022] Open
Abstract
While it is well recognized that pulmonary deposition of inhaled particles is lowered in microgravity (μG) compared with gravity on the ground (1G), the absence of sedimentation causes fine particles to penetrate deeper in the lung in μG. Using quantitative magnetic resonance imaging (MRI), we determined the effect of gravity on peripheral deposition (DEPperipheral) of fine particles. Aerosolized 0.95-μm-diameter ferric oxide particles were delivered to spontaneously breathing rats placed in plethysmographic chambers both in μG aboard the NASA Microgravity Research Aircraft and at 1G. Following exposure, lungs were perfusion fixed, fluid filled, and imaged in a 3T MR scanner. The MR signal decay rate, R2*, was measured in each voxel of the left lung from which particle deposition (DEP) was determined based on a calibration curve. Regional deposition was assessed by comparing DEP between the outer (DEPperipheral) and inner (DEPcentral) areas on each slice, and expressed as the central-to-peripheral ratio. Total lung deposition tended to be lower in μG compared with 1G (1.01 ± 0.52 vs. 1.43 ± 0.52 μg/ml, P = 0.1). In μG, DEPperipheral was larger than DEPcentral (P < 0.03), while, in 1G, DEPperipheral was not significantly different from DEPcentral. Finally, central-to-peripheral ratio was significantly less in μG than in 1G (P ≤ 0.05). These data show a larger fraction of fine particles depositing peripherally in μG than in 1G, likely beyond the large- and medium-sized airways. Although not measured, the difference in the spatial distribution of deposited particles between μG and 1G could also affect particle retention rates, with an increase in retention for particles deposited more peripherally.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California;
| | - Maria G Borja
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; and
| | - Jessica M Oakes
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; and
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - I Mark Olfert
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Darquenne C. Aerosol deposition in the human lung in reduced gravity. J Aerosol Med Pulm Drug Deliv 2014; 27:170-7. [PMID: 24870702 PMCID: PMC4088354 DOI: 10.1089/jamp.2013.1079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 10/25/2022] Open
Abstract
The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (~1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (~1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California , San Diego, La Jolla, CA
| |
Collapse
|
13
|
Prisk GK, Sá RC, Darquenne C. Cardiogenic mixing increases aerosol deposition in the human lung in the absence of gravity. ACTA ASTRONAUTICA 2013; 92:15-20. [PMID: 23976801 PMCID: PMC3747654 DOI: 10.1016/j.actaastro.2012.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RATIONALE Exposure to extraterrestrial dusts is an almost inevitable consequence of any proposed planetary exploration. Previous studies in humans showed reduced deposition in low-gravity compared with normal gravity (1G). However, the reduced sedimentation means that fewer particles deposit in the airways, increasing the number of particles transported to the lung periphery where they eventually deposit albeit at a smaller rate than in 1G. In this study, we determined the role that gravity and other mechanisms such as cardiogenic mixing play in peripheral lung deposition during breath holds. METHODS Eight healthy subjects inhaled boluses of 0.5 μm-diameter particles to penetration volumes (Vp) of 300 and 1200ml that were followed by breath holds of up to 10 sec. Tests were performed in 1G and during short periods of microgravity (μG) aboard the NASA Microgravity Research Aircraft. Aerosol deposition and dispersion were calculated from these data. RESULTS Results show that, for both Vp, deposition in 1G was significantly higher than in μG. In contrast, while dispersion was significantly higher in 1G compared to μG at Vp=1200ml, there was no significant gravitational effect on dispersion at Vp=300ml. Finally, for each G level and Vp, deposition and dispersion significantly increased with increasing breath-hold time. CONCLUSION The most important finding of this study is that, even in the absence of gravity, aerosol deposition in the lung periphery increased with increasing residence time. Because the particles used in this study were too large to be significantly affected by Brownian diffusion, the increase in deposition is likely due to cardiogenic motion effects.
Collapse
Affiliation(s)
- G. Kim Prisk
- Dept. of Medicine, UCSD, La Jolla, CA, USA
- Dept. of Radiology, UCSD, La Jolla, CA, USA
| | | | | |
Collapse
|
14
|
Darquenne C, Zeman KL, Sá RC, Cooper TK, Fine JM, Bennett WD, Prisk GK. Removal of sedimentation decreases relative deposition of coarse particles in the lung periphery. J Appl Physiol (1985) 2013; 115:546-55. [PMID: 23743403 DOI: 10.1152/japplphysiol.01520.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung deposition of >0.5-μm particles is strongly influenced by gravitational sedimentation, with deposition being reduced in microgravity (μG) compared with normal gravity (1G). Gravity not only affects total deposition, but may also alter regional deposition. Using gamma scintigraphy, we measured the distribution of regional deposition and retention of radiolabeled particles ((99m)Tc-labeled sulfur colloid, 5-μm diameter) in five healthy volunteers. Particles were inhaled in a controlled fashion (0.5 l/s, 15 breaths/min) during multiple periods of μG aboard the National Aeronautics and Space Administration Microgravity Research Aircraft and in 1G. In both cases, deposition scans were obtained immediately postinhalation and at 1 h 30 min, 4 h, and 22 h postinhalation. Regional deposition was characterized by the central-to-peripheral ratio and by the skew of the distribution of deposited particles on scans acquired directly postinhalation. Relative distribution of deposition between the airways and the alveolar region was derived from data acquired at the various time points. Compared with inhalation in 1G, subjects show an increase in central-to-peripheral ratio (P = 0.043), skew (P = 0.043), and tracheobronchial deposition (P < 0.001) when particles were inhaled in μG. The absence of gravity caused fewer particles to deposit in the lung periphery than in the central region where deposition occurred mainly in the airways in μG. Furthermore, the increased skew observed in μG likely illustrates the presence of localized areas of deposition, i.e., "hot spots", resulting from inertial impaction. In conclusion, gravity has a significant effect on deposition patterns of coarse particles, with most of deposition occurring in the alveolar region in 1G but in the large airways in μG.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma B, Darquenne C. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry. J Appl Physiol (1985) 2012; 113:442-50. [PMID: 22678957 DOI: 10.1152/japplphysiol.01549.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.
Collapse
Affiliation(s)
- Baoshun Ma
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | |
Collapse
|
17
|
Deposition of micrometer particles in pulmonary airways during inhalation and breath holding. J Biomech 2012; 45:1809-15. [PMID: 22560643 DOI: 10.1016/j.jbiomech.2012.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/23/2022]
Abstract
We investigated how breath holding increases the deposition of micrometer particles in pulmonary airways, compared with the deposition during inhalation period. A subject-specific airway model with up to thirteenth generation airways was constructed from multi-slice CT images. Airflow and particle transport were simulated by using GPU computing. Results indicate that breath holding effectively increases the deposition of 5μm particles for third to sixth generation (G3-G6) airways. After 10s of breath holding, the particle deposition fraction increased more than 5 times for 5μm particles. Due to a small terminal velocity, 1μm particles only showed a 50% increase in the most efficient case. On the other hand, 10μm particles showed almost complete deposition due to high inertia and high terminal velocity, leading to an increase of 2 times for G3-G6 airways. An effective breath holding time for 5μm particle deposition in G3-G6 airways was estimated to be 4-6s, for which the deposition amount reached 75% of the final deposition amount after 10s of breath holding.
Collapse
|
18
|
Modeling of the influence of tissue mechanical properties on the process of aerosol particles deposition in a model of human alveolus. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50020-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Darquenne C, van Ertbruggen C, Prisk GK. Convective flow dominates aerosol delivery to the lung segments. J Appl Physiol (1985) 2011; 111:48-54. [PMID: 21474695 DOI: 10.1152/japplphysiol.00796.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most previous computational studies on aerosol transport in models of the central airways of the human lung have focused on deposition, rather than transport of particles through these airways to the subtended lung regions. Using a model of the bronchial tree extending from the trachea to the segmental bronchi (J Appl Physiol 98: 970-980, 2005), we predicted aerosol delivery to the lung segments. Transport of 0.5- to 10-μm-diameter particles was computed at various gravity levels (0-1.6 G) during steady inspiration (100-500 ml/s). For each condition, the normalized aerosol distribution among the lung segments was compared with the normalized flow distribution by calculating the ratio (R(i)) of the number of particles exiting each segmental bronchus i to the flow. When R(i) = 1, particle transport was directly proportional to segmental flow. Flow and particle characteristics were represented by the Stokes number (Stk) in the trachea. For Stk < 0.01, R(i) values were close to 1 and were unaffected by gravity. For Stk > 0.01, R(i) varied greatly among the different outlets (R(i) = 0.30-1.93 in normal gravity for 10-μm particles at 500 ml/s) and was affected by gravity and inertia. These data suggest that, for Stk < 0.01, ventilation defines the delivery of aerosol to lung segments and that the use of aerosol tracers is a valid technique to visualize ventilation in different parts of the lung. At higher Stokes numbers, inertia, but not gravitational sedimentation, is the second major factor affecting the transport of large particles in the lung.
Collapse
Affiliation(s)
- C Darquenne
- Division of Physiology 0931, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0931, USA.
| | | | | |
Collapse
|
20
|
de Vasconcelos TF, Sapoval B, Andrade JS, Grotberg JB, Hu Y, Filoche M. Particle capture into the lung made simple? J Appl Physiol (1985) 2011; 110:1664-73. [PMID: 21415177 DOI: 10.1152/japplphysiol.00866.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the impact distribution of particles entering the human respiratory system is of primary importance as it concerns not only atmospheric pollutants or dusts of various kinds but also the efficiency of aerosol therapy and drug delivery. To model this process, current approaches consist of increasingly complex computations of the aerodynamics and particle capture phenomena, performed in geometries trying to mimic lungs in a more and more realistic manner for as many airway generations as possible. Their capture results from the complex interplay between the details of the aerodynamic streamlines and the particle drag mechanics in the resulting flow. In contrast, the present work proposes a major simplification valid for most airway generations at quiet breathing. Within this context, focusing on particle escape rather than capture reveals a simpler structure in the entire process. When gravity can be neglected, we show by computing the escape rates in various model geometries that, although still complicated, the escape process can be depicted as a multiplicative escape cascade in which each elementary step is associated with a single bifurcation. As a net result, understanding of the particle capture may not require computing particle deposition in the entire lung structure but can be abbreviated in some regions using our simpler approach of successive computations in single realistic bifurcations. Introducing gravity back into our model, we show that this multiplicative model can still be successfully applied on up to nine generations, depending on particle type and breathing conditions.
Collapse
|
21
|
Ma B, Darquenne C. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J Appl Physiol (1985) 2011; 110:1271-82. [PMID: 21330617 DOI: 10.1152/japplphysiol.00735.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.
Collapse
Affiliation(s)
- Baoshun Ma
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0931, USA
| | | |
Collapse
|
22
|
Morimoto Y, Miki T, Higashi T, Horie S, Tanaka K, Mukai C. [Effect of lunar dust on humans: -lunar dust: regolith-]. Nihon Eiseigaku Zasshi 2010; 65:479-85. [PMID: 20885072 DOI: 10.1265/jjh.65.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Haber S, Yitzhak D, Tsuda A. Trajectories and deposition sites of spherical particles moving inside rhythmically expanding alveoli under gravity-free conditions. J Aerosol Med Pulm Drug Deliv 2010; 23:405-13. [PMID: 20500094 DOI: 10.1089/jamp.2009.0774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Do fine particles (0.5-2 μm in diameter) deposit inside lung alveoli? This question is of particular interest in space flights where almost gravity-free conditions exist. Under such conditions, inhaled particles smaller than 0.5 μm in diameter or larger than 2 μm may deposit inside the alveoli due to Brownian motion or particle inertia, respectively. However, fine particles hardly affected by Brownian motion and of small mass can (wrongly) be perceived harmless, following closely fluid pathlines. METHODS The interplay between alveoli rhythmical expansion and the largely, previously disregarded geometrical interception mechanism was explored vis-à-vis predictions based on nonexpanding alveoli models. To this end, we employed a three-dimensional flow model that accounts for the rhythmical expansion of alveoli, and the trajectories of fine particles embedded in this flow were numerically calculated. RESULTS Stochastic trajectories and deposition sites that are substantially different than those obtained for reversible Poiseuille-like flow models were widely used in the past. Indeed, small, inertialess, non-Brownian particles can hardly enter rigid alveoli in microgravity circumstances because the flow field consists of isolated closed streamlines that separate the cavities from the airways. However, for expanding alveoli, the streamline map is significantly altered, allowing diversion of particles from the airways toward the alveoli walls. As a result, collision with the alveoli wall due to geometrical interception may occur, revealing an additional mechanism that may control particle deposition inside alveoli. CONCLUSIONS Fine particles 0.5-2 μm in diameter under zero gravity conditions may enter expanding alveoli and deposit due to the stochastic nature of the flow and the mechanism of geometrical interception. Their fate is very sensitive to their initial position. The majority of the particles tend to deposit inside alveoli located up the acinar tree, at the distal area of the alveoli and near its rim.
Collapse
Affiliation(s)
- Shimon Haber
- Department of Mechanical Engineering, Technion, Haifa, Israel.
| | | | | |
Collapse
|
24
|
Darquenne C, Harrington L, Prisk GK. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:2333-46. [PMID: 19414458 PMCID: PMC2696106 DOI: 10.1098/rsta.2008.0295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Obtaining in vivo data of particle transport in the human lung is often difficult, if not impossible. Computational fluid dynamics (CFD) can provide detailed information on aerosol transport in realistic airway geometries. This paper provides a review of the key CFD studies of aerosol transport in the acinar region of the human lung. It also describes the first ever three-dimensional model of a single fully alveolated duct with moving boundaries allowing for the cyclic expansion and contraction that occurs during breathing. Studies of intra-acinar aerosol transport performed in models with stationary walls (SWs) showed that flow patterns were influenced by the geometric characteristics of the alveolar aperture, the presence of the alveolar septa contributed to the penetration of the particles into the lung periphery and there were large inhomogeneities in deposition patterns within the acinar structure. Recent studies have now used acinar models with moving walls. In these cases, particles penetrate the alveolar cavities not only as a result of sedimentation and diffusion but also as a result of convective transport, resulting in a much higher deposition prediction than that in SW models. Thus, models that fail to incorporate alveolar wall motions probably underestimate aerosol deposition in the acinar region of the lung.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, mail code 0931, La Jolla, CA 92093-0931, USA.
| | | | | |
Collapse
|
25
|
Sznitman J, Heimsch T, Wildhaber JH, Tsuda A, Rösgen T. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng 2009; 131:031010. [PMID: 19154069 DOI: 10.1115/1.3049481] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inhalation of micron-sized aerosols into the lung's acinar region may be recognized as a possible health risk or a therapeutic tool. In an effort to develop a deeper understanding of the mechanisms responsible for acinar deposition, we have numerically simulated the transport of nondiffusing fine inhaled particles (1 mum and 3 microm in diameter) in two acinar models of varying complexity: (i) a simple alveolated duct and (ii) a space-filling asymmetrical acinar branching tree following the description of lung structure by Fung (1988, "A Model of the Lung Structure and Its Validation," J. Appl. Physiol., 64, pp. 2132-2141). Detailed particle trajectories and deposition efficiencies, as well as acinar flow structures, were investigated under different orientations of gravity, for tidal breathing motion in an average human adult. Trajectories and deposition efficiencies inside the alveolated duct are strongly related to gravity orientation. While the motion of larger particles (3 microm) is relatively insensitive to convective flows compared with the role of gravitational sedimentation, finer 1 microm aerosols may exhibit, in contrast, complex kinematics influenced by the coupling between (i) flow reversal due to oscillatory breathing, (ii) local alveolar flow structure, and (iii) streamline crossing due to gravity. These combined mechanisms may lead to twisting and undulating trajectories in the alveolus over multiple breathing cycles. The extension of our study to a space-filling acinar tree was well suited to investigate the influence of bulk kinematic interaction on aerosol transport between ductal and alveolar flows. We found the existence of intricate trajectories of fine 1 microm aerosols spanning over the entire acinar airway network, which cannot be captured by simple alveolar models. In contrast, heavier 3 microm aerosols yield trajectories characteristic of gravitational sedimentation, analogous to those observed in the simple alveolated duct. For both particle sizes, however, particle inhalation yields highly nonuniform deposition. While larger particles deposit within a single inhalation phase, finer 1 microm particles exhibit much longer residence times spanning multiple breathing cycles. With the ongoing development of more realistic models of the pulmonary acinus, we aim to capture some of the complex mechanisms leading to deposition of inhaled aerosols. Such models may lead to a better understanding toward the optimization of pulmonary drug delivery to target specific regions of the lung.
Collapse
Affiliation(s)
- Josué Sznitman
- Institute of Fluid Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Ma B, Lutchen KR. CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model. Ann Biomed Eng 2008; 37:271-85. [DOI: 10.1007/s10439-008-9620-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
27
|
Abstract
In the pulmonary acinus, the airflow Reynolds number is usually much less than unity and hence the flow might be expected to be reversible. However, this does not appear to be the case as a significant portion of the fine particles that reach the acinus remains there after exhalation. We believe that this irreversibility is at large a result of chaotic mixing in the alveoli of the acinar airways. To test this hypothesis, we solved numerically the equations for incompressible, pulsatile, flow in a rigid alveolated duct and tracked numerous fluid particles over many breathing cycles. The resulting Poincaré sections exhibit chains of islands on which particles travel. In the region between these chains of islands, some particles move chaotically. The presence of chaos is supported by the results of an estimate of the maximal Lyapunov exponent. It is shown that the streamfunction equation for this flow may be written in the form of a Hamiltonian system and that an expansion of this equation captures all the essential features of the Poincaré sections. Elements of Kolmogorov–Arnol’d–Moser theory, the Poincaré–Birkhoff fixed-point theorem, and associated Hamiltonian dynamics theory are then employed to confirm the existence of chaos in the flow in a rigid alveolated duct.
Collapse
Affiliation(s)
- F. S. Henry
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115
| | | | - A. Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
28
|
Asgharian B, Price O, Oberdörster G. A Modeling Study of the Effect of Gravity on Airflow Distribution and Particle Deposition in the Lung. Inhal Toxicol 2008; 18:473-81. [PMID: 16603478 DOI: 10.1080/08958370600602009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.
Collapse
Affiliation(s)
- Bahman Asgharian
- CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
29
|
Finlay WH, Martin AR. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv 2008; 21:189-206. [PMID: 18518795 DOI: 10.1089/jamp.2007.0645] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate prediction of respiratory tract deposition is important in gauging the health risks of ambient bioaerosols and environmental aerosols, as well as in developing pharmaceutical aerosols for drug delivery. The present article highlights recent advances in the prediction of total, extrathoracic, and lung deposition fractions of inhaled aerosols over a broad range of parameters for both oral and nasal breathing. These advances build on recent data from in vivo and in vitro studies that have benefited from recent improvements in high-resolution imaging, rapid prototyping, and computational simulation abilities that have significantly enhanced the current understanding of respiratory tract deposition. It is anticipated that the relatively simple equations for predicting total or whole lung deposition that follow from the recent work discussed herein will allow for improved correlation between respiratory tract deposition and a wide range of health outcomes.
Collapse
|
30
|
Deposition of inhaled particles in the human lung is more peripheral in lunar than in normal gravity. Eur J Appl Physiol 2008; 103:687-95. [PMID: 18488244 DOI: 10.1007/s00421-008-0766-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Lunar dust presents a potential toxic challenge to future explorers of the moon. The extent of the inflammatory response to lunar dust will in part depend on where in the lung particles deposit. To determine the effect of lowered gravity, we measured deposition of 0.5 and 1 microm diameter particles in six subjects on the ground (1G) and during short periods of lunar gravity (1/6G) aboard the NASA Microgravity Research Aircraft. Total deposition was measured during continuous aerosol breathing, and regional deposition by aerosol bolus inhalations at penetration volumes (V (p)) of 200, 500 and 1,200 ml. For both particle sizes (d (p)), deposition was gravity-dependent with the lowest deposition occurring at the lower G-level. Total deposition decreased by 25 and 32% from 1G to 1/6G for 0.5 and 1 microm diameter particles, respectively. In the bolus tests, deposition increased with increasing V (p). However, the penetration volume required to achieve a given deposition level was larger in 1/6G than in 1G. For example, for d (p) = 1 microm (0.5 microm), a level of 25% deposition was reached at V (p) = 260 ml (370 ml) in 1G but not until V (p) = 730 ml (835 ml) in 1/6G. Thus in 1G, deposition in more central airways reduces the transport of fine particles to the lung periphery. In the fractional gravity environment of a lunar outpost, while inhaled fine particle deposition may be lower than on earth, those particles that are deposited will do so in more peripheral regions of the lung.
Collapse
|
31
|
Darquenne C, Prisk GK. Aerosols in the study of convective acinar mixing. Respir Physiol Neurobiol 2005; 148:207-16. [PMID: 15890563 PMCID: PMC1199522 DOI: 10.1016/j.resp.2005.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 03/03/2005] [Accepted: 03/05/2005] [Indexed: 11/23/2022]
Abstract
Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1200 ml in eight subjects. Inspiration was followed by a 10-s breath hold, during which small flow reversals (FR) were imposed, and expiration. There was no physiologically significant dependence in dispersion and deposition with increasing FR. The results were qualitatively similar to those obtained in a previous study in microgravity in which it was speculated that the phenomenon of stretch and fold occurred during the first breathing cycle without the need of any subsequent FR.
Collapse
Affiliation(s)
- Chantal Darquenne
- Physiology/NASA Laboratory 0931, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0931, USA.
| | | |
Collapse
|
32
|
Abstract
The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.
Collapse
Affiliation(s)
- G Kim Prisk
- Division of Physiology, Department of Medicine, University of California--San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0931, USA.
| |
Collapse
|
33
|
Butler JP, Tsuda A. Logistic trajectory maps and aerosol mixing due to asynchronous flow at airway bifurcations. Respir Physiol Neurobiol 2005; 148:195-206. [PMID: 16002347 DOI: 10.1016/j.resp.2005.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Aerosols too large for significant Brownian transport, and too small for significant inertial transport, are nonetheless known to deposit deep in the lung, and are associated with increased risk of pulmonary disease. Classical models fail to explain such transport. We hypothesized that kinematic irreversibility in ventilation, arising from velocity saddle-points or from flow asynchrony at airway bifurcations, may be the fundamental transport mechanism. Our experimental evidence shows striking trajectory irreversibility in rat lungs ventilated with 2-color polymerizable silicones, representing resident and tidal gas. The striated patterns in small airways, even after one ventilatory cycle, support our hypothesis. Here we analyze bifurcating flow asynchrony in a simplified one-dimensional model. We find: unexpected richness and chaos in particle trajectories; almost all trajectories visit all spatial positions; surprisingly, there is complete mixing-the limiting concentration is spatially uniform. This is a new finding supporting the idea that kinematic irreversibility is a potent mixing and transport mechanism for aerosols deep in the lung.
Collapse
Affiliation(s)
- James P Butler
- Physiology Program, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
34
|
Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 2005; 44:837-53. [PMID: 15286087 DOI: 10.1177/0091270004267193] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Medications have been taken since the first Mercury flight in 1967 and, since then, have been used for several indications such as space motion sickness, sleeplessness, headache, nausea, vomiting, back pain, and congestion. As the duration of space missions get longer, it is even more likely that astronauts will encounter some of the acute illnesses that are frequently seen on Earth. Microgravity environment induces several physiological changes in the human body. These changes include cardiovascular degeneration, bone decalcification, decreased plasma volume, blood flow, lymphocyte and eosinophil levels, altered hormonal and electrolyte levels, muscle atrophy, decreased blood cell mass, increased immunoglobulin A and M levels, and a decrease in the amount of microsomal P-450 and the activity of some of its dependent enzymes. These changes may be expected to have severe implications on the pharmacokinetic and pharmacodynamic properties of drug substances.
Collapse
Affiliation(s)
- Annemarie Graebe
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, USA
| | | | | | | | | |
Collapse
|
35
|
Darquenne C, Prisk GK. Aerosol deposition in the human respiratory tract breathing air and 80:20 heliox. ACTA ACUST UNITED AC 2005; 17:278-85. [PMID: 15625820 PMCID: PMC1266295 DOI: 10.1089/jam.2004.17.278] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aerosol mixing resulting from turbulent flows is thought to be an important mechanism of deposition in the upper respiratory tract (URT). Since turbulence levels are a function of gas density, the use of a low density carrier gas would be expected to reduce deposition in the URT. We measured aerosol deposition in the respiratory tract of 8 healthy subjects using both air and heliox, a low density gas mixture containing 80% helium and 20% oxygen, as the carrier gas. The subjects breathed 0.5, 1, and 2 microm-diameter monodisperse polystyrene latex particles from a reservoir at a constant flow rate (approximately 450 mL/sec) and tidal volume (approximately 900 mL). Aerosol concentration and flow rate were measured at the mouth using a photometer and a pneumotachograph, respectively. Deposition was 17.0%, 20.3%, and 38.9% in air and 16.8%, 18.5%, and 36.9% in heliox for 0.5; 1, and 2 microm-diameter particles, respectively. There was a small but statistically significant decrease in deposition when using heliox compared to air for 1 and 2 microm-diameter particles (p < 0.05). While it could not be directly measured from these data, it is likely that when breathing heliox instead of air, deposition is reduced in the URT and increased in the small airways and alveoli.
Collapse
|
36
|
Darquenne C, Prisk GK. Effect of small flow reversals on aerosol mixing in the alveolar region of the human lung. J Appl Physiol (1985) 2004; 97:2083-9. [PMID: 15298988 DOI: 10.1152/japplphysiol.00588.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that irreversibility of alveolar flow combined with a stretched and folded pattern of streamlines can lead to a sudden increase in mixing in the lung. To determine whether this phenomenon is operative in the human lung in vivo, we performed a series of bolus studies with a protocol designed to induce complex folding patterns. Boli of 0.5- and 1-microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1,200 ml in eight subjects during short periods of microgravity aboard the National Aeronautics and Space Administration Microgravity Research Aircraft. Inspiration was from residual volume to 1 liter above 1 G functional residual capacity. This was followed by a 10-s breathhold, during which up to seven 100-ml flow reversals (FR) were imposed at V(p) = 300 ml and up to four 500-ml FR at V(p) = 1,200 ml, and by an expiration to residual volume. Bolus dispersion and deposition were calculated from aerosol concentration and flow rate continuously monitored at the mouth. There was no significant increase in dispersion and deposition with increasing FR except for dispersion between 0 and 7 FR at V(p) = 300 ml with 0.5-microm-diameter particles, and this increase was small. This suggested that either the phenomenon of stretch and fold did not occur within the number of FR we performed or that it had already occurred during the one breathing cycle included in the basic maneuver. We speculate that the phenomenon occurred during the basic maneuver, which is consistent with the high degree of dispersion and deposition observed previously in microgravity.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0931, USA.
| | | |
Collapse
|
37
|
Abstract
Our current understanding of the transport and deposition of aerosols (viruses, bacteria, air pollutants, aerosolized drugs) deep in the lung has been grounded in dispersive theories based on untested assumptions about the nature of acinar airflow fields. Traditionally, these have been taken to be simple and kinematically reversible. In this article, we apply the recently discovered fluid mechanical phenomenon of irreversible low-Reynolds number flow to the lung. We demonstrate, through flow visualization studies in rhythmically ventilated rat lungs, that such a foundation is false, and that chaotic mixing may be key to aerosol transport. We found substantial alveolar flow irreversibility with stretched and folded fractal patterns, which lead to a sudden increase in mixing. These findings support our theory that chaotic alveolar flow--characterized by stagnation saddle points associated with alveolar vortices--governs gas kinematics in the lung periphery, and hence the transport, mixing, and ultimately the deposition of fine aerosols. This mechanism calls for a rethinking of the relationship of exposure and deposition of fine inhaled particles.
Collapse
Affiliation(s)
- Akira Tsuda
- Physiology Program, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
38
|
Darquenne C, Paiva M, Prisk GK. Effect of gravity on aerosol dispersion and deposition in the human lung after periods of breath holding. J Appl Physiol (1985) 2000; 89:1787-92. [PMID: 11053327 DOI: 10.1152/jappl.2000.89.5.1787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the extent of the role that gravity plays in dispersion and deposition during breath holds, we performed aerosol bolus inhalations of 1-microm-diameter particles followed by breath holds of various lengths on four subjects on the ground (1G) and during short periods of microgravity (microG). Boluses of approximately 70 ml were inhaled to penetration volumes (V(p)) of 150 and 500 ml, at a constant flow rate of approximately 0.45 l/s. Aerosol concentration and flow rate were continuously measured at the mouth. Aerosol deposition and dispersion were calculated from these data. Deposition was independent of breath-hold time at both V(p) in microG, whereas, in 1G, deposition increased with increasing breath hold time. At V(p) = 150 ml, dispersion was similar at both gravity levels and increased with breath hold time. At V(p) = 500 ml, dispersion in 1G was always significantly higher than in microG. The data provide direct evidence that gravitational sedimentation is the main mechanism of deposition and dispersion during breath holds. The data also suggest that cardiogenic mixing and turbulent mixing contribute to deposition and dispersion at shallow V(p).
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0931, USA.
| | | | | |
Collapse
|
39
|
Abstract
Although environmental physiologists are readily able to alter many aspects of the environment, it is not possible to remove the effects of gravity on Earth. During the past decade, a series of space flights were conducted in which comprehensive studies of the lung in microgravity (weightlessness) were performed. Stroke volume increases on initial exposure to microgravity and then decreases as circulating blood volume is reduced. Diffusing capacity increases markedly, due to increases in both pulmonary capillary blood volume and membrane diffusing capacity, likely due to more uniform pulmonary perfusion. Both ventilation and perfusion become more uniform throughout the lung, although much residual inhomogeneity remains. Despite the improvement in the distribution of both ventilation and perfusion, the range of the ventilation-to-perfusion ratio seen during a normal breath remains unaltered, possibly because of a spatial mismatch between ventilation and perfusion on a small scale. There are unexpected changes in the mixing of gas in the periphery of the lung, and evidence suggests that the intrinsic inhomogeneity of the lung exists at a scale of an acinus or a few acini. In addition, aerosol deposition in the alveolar region is unexpectedly high compared with existing models.
Collapse
Affiliation(s)
- G K Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
40
|
Darquenne C, West JB, Prisk GK. Dispersion of 0.5- to 2-micron aerosol in microG and hypergravity as a probe of convective inhomogeneity in the lung. J Appl Physiol (1985) 1999; 86:1402-9. [PMID: 10194229 DOI: 10.1152/jappl.1999.86.4.1402] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp >500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0931, USA.
| | | | | |
Collapse
|
41
|
Tsuda A, Otani Y, Butler JP. Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion. J Appl Physiol (1985) 1999; 86:977-84. [PMID: 10066713 DOI: 10.1152/jappl.1999.86.3.977] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mixing associated with "stretch-and-fold" convective flow patterns has recently been demonstrated to play a potentially important role in aerosol transport and deposition deep in the lung (J. P. Butler and A. Tsuda. J. Appl. Physiol. 83: 800-809, 1997), but the origin of this potent mechanism is not well characterized. In this study we hypothesized that even a small degree of asynchrony in otherwise reversible alveolar wall motion is sufficient to cause flow irreversibility and stretch-and-fold convective mixing. We tested this hypothesis using a large-scale acinar model consisting of a T-shaped junction of three short, straight, square ducts. The model was filled with silicone oil, and alveolar wall motion was simulated by pistons in two of the ducts. The pistons were driven to generate a low-Reynolds-number cyclic flow with a small amount of asynchrony in boundary motion adjusted to match the degree of geometric (as distinguished from pressure-volume) hysteresis found in rabbit lungs (H. Miki, J. P. Butler, R. A. Rogers, and J. Lehr. J. Appl. Physiol. 75: 1630-1636, 1993). Tracer dye was introduced into the system, and its motion was monitored. The results showed that even a slight asynchrony in boundary motion leads to flow irreversibility with complicated swirling tracer patterns. Importantly, the kinematic irreversibility resulted in stretching of the tracer with narrowing of the separation between adjacent tracer lines, and when the cycle-by-cycle narrowing of lateral distance reached the slowly growing diffusion distance of the tracer, mixing abruptly took place. This coupling of evolving convective flow patterns with diffusion is the essence of the stretch-and-fold mechanism. We conclude that even a small degree of boundary asynchrony can give rise to stretch-and-fold convective mixing, thereby leading to transport and deposition of fine and ultrafine aerosol particles deep in the lung.
Collapse
Affiliation(s)
- A Tsuda
- Physiology Program, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
42
|
Darquenne C, West JB, Prisk GK. Deposition and dispersion of 1-micrometer aerosol boluses in the human lung: effect of micro- and hypergravity. J Appl Physiol (1985) 1998; 85:1252-9. [PMID: 9760313 DOI: 10.1152/jappl.1998.85.4.1252] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed bolus inhalations of 1-micrometer particles in four subjects on the ground (1 G) and during parabolic flights both in microgravity (microG) and in approximately 1.6 G. Boluses of approximately 70 ml were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 200 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The deposition, dispersion, and position of the bolus in the expired gas were calculated from these data. For Vp >/=400 ml, both deposition and dispersion increased with Vp and were strongly gravity dependent, with the greatest deposition and dispersion occurring for the largest G level. At Vp = 800 ml, deposition and dispersion increased from 33.9% and 319 ml in microG to 56.9% and 573 ml at approximately 1.6 G, respectively (P < 0.05). At each G level, the bolus was expired at a smaller volume than Vp, and this volume became smaller with increasing Vp. Although dispersion was lower in microG than in 1 G and approximately 1.6 G, it still increased steadily with increasing Vp, showing that nongravitational ventilatory inhomogeneity is partly responsible for dispersion in the human lung.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0931, USA.
| | | | | |
Collapse
|