1
|
Lindahl SGE. Using the prone position could help to combat the development of fast hypoxia in some patients with COVID-19. Acta Paediatr 2020; 109:1539-1544. [PMID: 32484966 PMCID: PMC7301016 DOI: 10.1111/apa.15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
The world is facing an explosive COVID‐19 pandemic. Some cases rapidly develop deteriorating lung function, which causes deep hypoxaemia and requires urgent treatment. Many centres have started treating patients in the prone position, and oxygenation has improved considerably in some cases. Questions have been raised regarding the mechanisms behind this. The mini review provides some insights into the role of supine and prone body positions and summarises the latest understanding of the responsible mechanisms. The scope for discussion is outside the neonatal period and entirely based on experimental and clinical experiences related to adults. The human respiratory system is a complex interplay of many different variables. Therefore, this mini review has prioritised previous and ongoing research to find explanations based on three scientific areas: gravity, lung structure and fractal geometry and vascular regulation. It concludes that gravity is one of the variables responsible for ventilation/perfusion matching but in concert with lung structure and fractal geometry, ventilation and regulation of lung vascular tone. Since ventilation distribution does not change between supine and prone positions, the higher expression of nitric oxide in dorsal lung vessels than in ventral vessels is likely to be the most important mechanism behind enhanced oxygenation in the prone position.
Collapse
|
2
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Pratali L. Right Heart-Pulmonary Circulation at High Altitude and the Development of Subclinical Pulmonary Interstitial Edema. Heart Fail Clin 2018; 14:333-337. [PMID: 29966631 DOI: 10.1016/j.hfc.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most healthy subjects can develop a subclinical interstitial pulmonary edema that is a complex and multifactor phenomenon, still with unanswered questions, and might be one line of defense against the development of severe symptomatic lung edema. Whether the acute, reversible increase in lung fluid content is really an innocent and benign part of the adaptation to extreme physiologic condition or rather the clinically relevant marker of an individual vulnerability to life-threatening high altitude pulmonary edema remains to be established in future studies. Thus the question if encouraging more conservative habits to climb is right or not remains open.
Collapse
Affiliation(s)
- Lorenza Pratali
- Department of Institute of Clinical Physiology, National research Council, Via Moruzzi 1, Pisa 56214, Italy.
| |
Collapse
|
4
|
Review of hypoxaemia in anaesthetized horses: predisposing factors, consequences and management. Vet Anaesth Analg 2017; 44:397-408. [DOI: 10.1016/j.vaa.2016.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
|
5
|
Johansson MJ, Kvitting JPE, Flatebø T, Nicolaysen A, Nicolaysen G, Walther SM. Inhibition of Constitutive Nitric Oxide Synthase Does Not Influence Ventilation-Perfusion Matching in Normal Prone Adult Sheep With Mechanical Ventilation. Anesth Analg 2016; 123:1492-1499. [PMID: 27622722 DOI: 10.1213/ane.0000000000001556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Local formation of nitric oxide in the lung induces vasodilation in proportion to ventilation and is a putative mechanism behind ventilation-perfusion matching. We hypothesized that regional ventilation-perfusion matching occurs in part due to local constitutive nitric oxide formation. METHODS Ventilation and perfusion were analyzed in lung regions (≈1.5 cm) before and after inhibition of constitutive nitric oxide synthase with N-nitro-L-arginine methyl ester (L-NAME) (25 mg/kg) in 7 prone sheep ventilated with 10 cm H2O positive end-expiratory pressure. Ventilation and perfusion were measured by the use of aerosolized fluorescent and infused radiolabeled microspheres, respectively. The animals were exsanguinated while deeply anesthetized; then, lungs were excised, dried at total lung capacity, and divided into cube units. The spatial location for each cube was tracked and fluorescence and radioactivity per unit weight determined. RESULTS After administration of L-NAME, pulmonary artery pressure increased from a mean of 16.6-23.6 mm Hg, P = .007 but PaO2, PaCO2, and SD log(V/Q) did not change. Distribution of ventilation was not influenced by L-NAME, but a small redistribution of perfusion from ventral to dorsal lung regions was observed. Perfusion to regions with the highest ventilation (fifth quintile of the ventilation distribution) remained unchanged after L-NAME. CONCLUSIONS We found minimal or no influence of constitutive nitric oxide synthase inhibition by L-NAME on the distributions of ventilation and perfusion, and ventilation-perfusion in prone, anesthetized, ventilated, and healthy adult sheep with normal gas exchange.
Collapse
Affiliation(s)
- Mats J Johansson
- From the *Department of Cardiothoracic Anesthesia and Intensive Care; †Division of Cardiovascular Medicine, Department of Medical and Health Sciences; ‡Department of Cardiothoracic Surgery, Linköping University Hospital, Linköping, Sweden; and §Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
6
|
Stack A, Derksen FJ, Williams KJ, Robinson NE, Jackson WF. Regional heterogeneity in the reactivity of equine small pulmonary blood vessels. J Appl Physiol (1985) 2016; 120:599-607. [PMID: 26769957 DOI: 10.1152/japplphysiol.00975.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/12/2016] [Indexed: 11/22/2022] Open
Abstract
Regional differences in large equine pulmonary artery reactivity exist. It is not known if this heterogeneity extends into small vessels. The hypothesis that there is regional heterogeneity in small pulmonary artery and vein reactivity to sympathomimetics (phenylephrine and isoproterenol) and a parasympathomimetic (methacholine) was tested using wire myography on small vessels from caudodorsal (CD) and cranioventral (CV) lung of 12 horses [9 mares, 3 geldings, 8.67 ± 0.81 (age ± SE) yr, of various breeds that had never raced]. To study relaxation, vessels were precontracted with U46619 (10(-6) M). Methacholine mechanism of action was investigated using L-nitroarginine methylester (L-NAME, 100 μM) and indomethacin (10 μM). Phenylephrine did not contract any vessels. Isoproterenol relaxed CD arteries more than CV arteries (maximum relaxation 28.18% and 48.67%; Log IC50 ± SE -7.975 ± 0.1327 and -8.033 ± 0.1635 for CD and CV, respectively, P < 0.0001), but not veins. Methacholine caused contraction of CD arteries (maximum contraction 245.4%, Log EC50 ± SE -6.475 ± 0.3341), and relaxation of CV arteries (maximum relaxation 40.14%, Log IC50 ± SE -6.791 ± 0.1954) and all veins (maximum relaxation 50.62%, Log IC50 ± SE -6.932 ± 0.1986) in a nonregion-dependent manner. L-NAME (n = 8, P < 0.0001) and indomethacin (n = 7, P < 0.0001) inhibited methacholine-induced relaxation of CV arteries, whereas indomethacin augmented CD artery contraction (n = 8, P < 0.0001). Our data demonstrate significant regional heterogeneity in small blood vessel reactivity when comparing the CD to the CV region of the equine lung.
Collapse
Affiliation(s)
- Alice Stack
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan;
| | - Frederik J Derksen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kurt J Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; and
| | - N Edward Robinson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Stack A, Derksen FJ, Williams KJ, Robinson NE, Jackson WF. Lung region and racing affect mechanical properties of equine pulmonary microvasculature. J Appl Physiol (1985) 2014; 117:370-6. [PMID: 24925981 DOI: 10.1152/japplphysiol.00314.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise-induced pulmonary hemorrhage is a performance-limiting condition of racehorses associated with severe pathology, including small pulmonary vein remodeling. Pathology is limited to caudodorsal (CD) lung. Mechanical properties of equine pulmonary microvasculature have not been studied. We hypothesized that regional differences in pulmonary artery and vein mechanical characteristics do not exist in control animals, and that racing and venous remodeling impact pulmonary vein mechanical properties in CD lung. Pulmonary arteries and veins [range of internal diameters 207-386 ± 67 μm (mean ± SD)] were harvested from eight control and seven raced horses. With the use of wire myography, CD and cranioventral (CV) vessels were stretched in 10-μm increments. Peak wall tension was plotted against changes in diameter (length). Length-tension data were compared between vessel type, lung region, and horse status (control and raced). Pulmonary veins are stiffer walled than arteries. CD pulmonary arteries are stiffer than CV arteries, whereas CV veins are stiffer than CD veins. Racing is associated with increased stiffness of CD pulmonary veins and, to a lesser extent, CV arteries. For example, at 305 μm, tension in raced and control CD veins is 27.74 ± 2.91 and 19.67 ± 2.63 mN/mm (means ± SE; P < 0.05, Bonferroni's multiple-comparisons test after two-way ANOVA), and 16.12 ± 2.04 and 15.07 ± 2.47 mN/mm in raced and control CV arteries, respectively. This is the first report of an effect of region and/or exercise on mechanical characteristics of small pulmonary vessels. These findings may implicate pulmonary vein remodeling in exercise-induced pulmonary hemorrhage pathogenesis.
Collapse
Affiliation(s)
- Alice Stack
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Frederik J Derksen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kurt J Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; and
| | - N Edward Robinson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Hubbell JAE, Muir WW. Oxygenation, oxygen delivery and anaesthesia in the horse. Equine Vet J 2014; 47:25-35. [DOI: 10.1111/evj.12258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J. A. E. Hubbell
- The Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University; Columbus USA
| | - W. W. Muir
- Veterinary Clinical Pharmacology Consulting Services; Columbus Ohio USA
| |
Collapse
|
9
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
10
|
Abstract
The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels.
Collapse
Affiliation(s)
- Robb W Glenny
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
11
|
Abstract
Evolutionary forces drive beneficial adaptations in response to a complex array of environmental conditions. In contrast, over several millennia, humans have been so enamored by the running/athletic prowess of horses and dogs that they have sculpted their anatomy and physiology based solely upon running speed. Thus, through hundreds of generations, those structural and functional traits crucial for running fast have been optimized. Central among these traits is the capacity to uptake, transport and utilize oxygen at spectacular rates. Moreover, the coupling of the key systems--pulmonary-cardiovascular-muscular is so exquisitely tuned in horses and dogs that oxygen uptake response kinetics evidence little inertia as the animal transitions from rest to exercise. These fast oxygen uptake kinetics minimize Intramyocyte perturbations that can limit exercise tolerance. For the physiologist, study of horses and dogs allows investigation not only of a broader range of oxidative function than available in humans, but explores the very limits of mammalian biological adaptability. Specifically, the unparalleled equine cardiovascular and muscular systems can transport and utilize more oxygen than the lungs can supply. Two consequences of this situation, particularly in the horse, are profound exercise-induced arterial hypoxemia and hypercapnia as well as structural failure of the delicate blood-gas barrier causing pulmonary hemorrhage and, in the extreme, overt epistaxis. This chapter compares and contrasts horses and dogs with humans with respect to the structural and functional features that enable these extraordinary mammals to support their prodigious oxidative and therefore athletic capabilities.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| | | |
Collapse
|
12
|
Williams KJ, Robinson NE, Defeijter-Rupp H, Millerick-May M, Stack A, Hauptman J, Derksen FJ. Distribution of venous remodeling in exercise-induced pulmonary hemorrhage of horses follows reported blood flow distribution in the equine lung. J Appl Physiol (1985) 2013; 114:869-78. [PMID: 23372148 DOI: 10.1152/japplphysiol.01170.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise-induced pulmonary hemorrhage (EIPH), which has been reported in humans and a variety of domestic animals following strenuous exercise, is most often documented in racehorses. Remodeling of pulmonary veins (VR) in equine EIPH was recently described, suggesting that it contributes to the pathogenesis of the disease. The cause of VR is unknown. We tested the hypothesis that the development of VR follows pulmonary blood flow distribution, preferentially occurring in the caudodorsal lung region. Furthermore, we hypothesized that VR underpins development of the other lesions of EIPH pathology. The lungs of 10 EIPH-affected horses and 8 controls were randomly sampled for histopathology (2,520 samples) and blindly scored for presence and severity of VR, hemosiderin (H), and interstitial fibrosis (IF). Mean sample score (MSS), mean lesion score, and percent samples with lesions were determined in four dorsal and three ventral lung regions, and the frequency, spatial distribution, and severity of lesions were determined. MSS for VR and H were significantly greater dorsally than ventrally (P < 0.001) and also decreased significantly in the caudocranial direction (P < 0.001). IF decreased only in the caudocranial direction. The percent samples with lesions followed the same distribution as MSS. VR often was accompanied by H; IF never occurred without VR and H. Similarity of the distribution of EIPH lesions and the reported fractal distribution of pulmonary blood flow suggests that VR develops in regions of high blood flow. Further experiments are necessary to determine whether VR is central to the pathogenesis of EIPH.
Collapse
Affiliation(s)
- Kurt J Williams
- Department of Pathobiology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Costa M, Ronchi F, Ivanow A, Carmona A, Casarini D, Slocombe R. Association between circulating angiotensin-converting enzyme and exercise-induced pulmonary haemorrhage in Thoroughbred racehorses. Res Vet Sci 2012; 93:993-4. [DOI: 10.1016/j.rvsc.2011.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/29/2011] [Accepted: 10/16/2011] [Indexed: 10/14/2022]
|
14
|
Perko D, Pretnar-Oblak J, Šabovič M, Zaletel M, Žvan B. Associations between cerebral and systemic endothelial function in migraine patients: a post-hoc study. BMC Neurol 2011; 11:146. [PMID: 22085841 PMCID: PMC3254070 DOI: 10.1186/1471-2377-11-146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/15/2011] [Indexed: 01/22/2023] Open
Abstract
Background There is a growing interest in the role of the endothelium in migraine. Recently, our group showed differences in endothelial function between the anterior and posterior cerebral circulation in healthy subjects, reduced vasodilatatory capacity of the posterior cerebral circulation and unimpaired systemic endothelial function in migraine patients without comorbidities. However, the relationship between cerebral and systemic endothelial function and the anterior and posterior cerebral endothelial function in migraine patients is still not clear. Methods We compared cerebral and systemic endothelial function through post-hoc linear regression analysis of cerebrovascular reactivity (CVR) to L-arginine between the middle cerebral artery (MCA) and flow-mediated vasodilatation (FMD) of the right brachial artery and the posterior cerebral artery (PCA) and FMD in migraine patients without comorbidities and in healthy subjects. The anterior and posterior cerebral endothelial function was also compared using post-hoc linear regression analysis between CVR to L-arginine in the MCA and the PCA. Results No significant correlation was found between CVR to L-arginine in the MCA and FMD and in the PCA and FMD in migraine patients with aura (p = 0.880 vs. p = 0.682), without aura (p = 0.153 vs. p = 0.179) and in healthy subjects (p = 0.869 vs. p = 0.662). On the other hand, we found a significant correlation between CVR to L-arginine in the MCA and PCA in migraine patients with aura (p = 0.004), without aura (p = 0.001) and in healthy subjects (p = 0.002). Detailed analysis of the linear regression between all migraine patients and healthy subjects did not show any difference in the regression coefficient (slope) (p = 0.382). However, a significant difference in curve elevation (intercept) was found (p = 0.002). Conclusions Our study suggests that the endothelial function in the cerebral and systemic circulation might be different in migraine patients without comorbidities, while that of the anterior and posterior cerebral circulation might be coupled. These results could improve understanding of endothelial function in migraine patients without comorbidities.
Collapse
Affiliation(s)
- Denis Perko
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
15
|
Yuan JXJ, Garcia JG, West JB, Hales CA, Rich S, Archer SL. High-Altitude Pulmonary Edema. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2011. [PMCID: PMC7122766 DOI: 10.1007/978-0-387-87429-6_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-altitude pulmonary edema (HAPE) is an uncommon form of pulmonary edema that occurs in healthy individuals within a few days of arrival at altitudes above 2,500–3,000 m. The crucial pathophysiology is an excessive hypoxia-mediated rise in pulmonary vascular resistance (PVR) or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular hydrostatic pressures despite normal left atrial pressure. The resultant hydrostatic stress can cause both dynamic changes in the permeability of the alveolar capillary barrier and mechanical damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage (BAL) and pulmonary artery (PA) and microvascular pressure measurements in humans confirm that high capillary pressure induces a high-permeability non-inflammatory-type lung edema; a concept termed “capillary stress failure.” Measurements of endothelin and nitric oxide (NO) in exhaled air, NO metabolites in BAL fluid, and NO-dependent endothelial function in the systemic circulation all point to reduced NO availability and increased endothelin in hypoxia as a major cause of the excessive hypoxic PA pressure rise in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial sodium and water reabsorption likely contribute additionally to the phenotype of HAPE susceptibility. Recent studies using magnetic resonance imaging in humans strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level can cause leakage. This compelling but not yet fully proven mechanism predicts that in areas of high blood flow due to lesser vasoconstriction edema will develop owing to pressures that exceed the structural and dynamic capacity of the alveolar capillary barrier to maintain normal alveolar fluid balance. Numerous strategies aimed at lowering HPV and possibly enhancing active alveolar fluid reabsorption are effective in preventing and treating HAPE. Much has been learned about HAPE in the past four decades such that what was once a mysterious alpine malady is now a well-characterized and preventable lung disease. This chapter will relate the history, pathophysiology, and treatment of HAPE, using it not only to illuminate the condition, but also for the broader lessons it offers in understanding pulmonary vascular regulation and lung fluid balance.
Collapse
Affiliation(s)
- Jason X. -J. Yuan
- Departments of Medicine, COMRB Rm. 3131 (MC 719), University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, 60612 Illinois USA
| | - Joe G.N. Garcia
- 310 Admin.Office Building (MC 672), University of Illinois at Chicago, 1737 W. Polk Street, Suite 310, Chicago, 60612 Illinois USA
| | - John B. West
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0623 California USA
| | - Charles A. Hales
- Dept. Pulmonary & Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, 02114 Massachusetts USA
| | - Stuart Rich
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, 60637 Illinois USA
| | - Stephen L. Archer
- Department of Medicine, University of Chicago School of Medicine, 5841 S. Maryland Ave., Chicago, 60637 Illinois USA
| |
Collapse
|
16
|
Richter T, Bergmann R, Pietzsch J, Közle I, Hofheinz F, Schiller E, Ragaller M, van den Hoff J. Effects of posture on regional pulmonary blood flow in rats as measured by PET. J Appl Physiol (1985) 2009; 108:422-9. [PMID: 19926822 DOI: 10.1152/japplphysiol.91257.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using small animal PET with (68)Ga-radiolabeled human albumin microspheres (Ga-68-microspheres), we investigated the effect of posture on regional pulmonary blood flow (PBF) in normal rats. This in vivo method is noninvasive and quantitative, and it allows for repeated longitudinal measurements. The purpose of the experiment was to quantify spatial differences in PBF in small animals in different postures. Two studies were performed in anesthetized, spontaneously breathing Wistar rats. Study 1 was designed to determine PBF in the prone and supine positions. Ga-68-microspheres were given to five prone and eight supine animals. We found that PBF increased in dorsal regions of supine animals (0.75) more than in prone animals (0.70; P = 0.037), according to a steeper vertical gradient of flow in supine than in prone animals. No differences in spatial heterogeneity were detected. Study 2 was designed to determine the effects of tissue distribution on PBF measurements. Because microspheres remained fixed in the lung, PET was performed on animals in the position in which they received Ga-68-microsphere injections and thereafter in the opposite posture. The distribution of PBF showed a preference for dorsal regions in both positions, but the distribution was dependent on the position during administration of the microspheres. We conclude that PET using Ga-68-microspheres can detect and quantify regional PBF in animals as small as the rat. PBF distributions differed between the prone and supine postures and were influenced by the distribution of lung tissue within the thorax.
Collapse
Affiliation(s)
- Torsten Richter
- Department of Anesthesia and Critical Care, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Miike T, Shirahase H, Kanda M, Kunishiro K, Kurahashi K. Regional heterogeneity of substance P-induced endothelium-dependent contraction, relaxation, and -independent contraction in rabbit pulmonary arteries. Life Sci 2008; 83:810-4. [PMID: 18952112 DOI: 10.1016/j.lfs.2008.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 09/18/2008] [Accepted: 09/26/2008] [Indexed: 11/25/2022]
Abstract
AIMS The present study examined whether substance P (SP)-induced endothelium-dependent TXA(2)-mediated contraction (EDC), nitric oxide (NO)-mediated relaxation (EDR), and endothelium-independent contraction (EIC) are different between the rabbit proximal and distal intrapulmonary arteries. MAIN METHODS The helically cut strips of isolated proximal and distal arteries were fixed vertically between hooks in organ bath, and changes in isometric tension were measured. KEY FINDINGS SP-induced EDC was greater in the distal than proximal arteries, and EDR was greater in the proximal than distal arteries. However, under the complete blockade of NK(2) receptors and NO production, SP (10(-9)-3x10(-7) M)-induced EDC did not differ between proximal and distal arteries. Under the complete blockade of NK(2) receptors and TXA(2) production, SP (3x10(-10)-3x10(-8) M)-induced EDR was greater in the proximal than distal arteries. Neither contraction induced by U-46619, a TXA(2) agonist, nor relaxation by sodium nitroprusside, an NO donor, was different between both portions of the arteries. Both ionomycin (10(-8) M)- and l-arginine (1 mM)-induced EDRs were also significantly greater in the proximal than distal arteries. Under the blockade of NK(1) receptors and NO and TXA(2) production, SP (10(-7) M)-induced EIC was greater in the distal than proximal arteries. In summary, the capacity for NO production is higher in the proximal than distal arteries, resulting in SP-induced higher EDR and lower EDC in the proximal arteries. SIGNIFICANCE These regional differences in responses to SP may play important roles in maintaining the homogenous distribution of blood flow in the lung.
Collapse
Affiliation(s)
- Tomohiro Miike
- Pharmacology Division, RI Research Center, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, Medical University Clinic, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
20
|
Dehnert C, Berger MM, Mairbäurl H, Bärtsch P. High altitude pulmonary edema: a pressure-induced leak. Respir Physiol Neurobiol 2007; 158:266-73. [PMID: 17602898 DOI: 10.1016/j.resp.2007.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
High altitude pulmonary edema (HAPE) is a non-cardiogenic pulmonary edema that can occur in healthy individuals who ascend rapidly to altitudes above 3000-4000m. Excessive pulmonary artery pressure (PAP) is crucial for the development of HAPE, since lowering pulmonary artery pressure by nifedipine or tadalafil (phosphodiesterase-5-inhibitor) will in most cases prevent HAPE. Recent studies using microspheres in swine and magnetic resonance imaging in humans strongly support the concept and primacy of nonuniform hypoxic arteriolar vasoconstriction to explain how hypoxic pulmonary vasoconstriction occurring predominantly at the arteriolar level can cause leakage. Evidence is accumulating that the excessive PAP response in HAPE-susceptible individuals is due to a reduced NO bioavailability. HAPE-susceptible individuals show an endothelial dysfunction in the systemic circulation in hypoxia. Lower levels of exhaled NO in hypoxia before and during HAPE suggest that this abnormality also occurs in the lungs and polymorphisms of the eNOS gene are associated with susceptibility to HAPE in the Indian and Japanese population.
Collapse
Affiliation(s)
- Christoph Dehnert
- Medical University Clinic, Department of Internal Medicine, Div. of Sports Medicine, Im Neuenheimer Feld 410, D - 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Rimeika D, Wiklund NP, Lindahl SGE, Wiklund CU. Regional differences in nitric oxide-mediated vasorelaxation in porcine pulmonary arteries. Acta Anaesthesiol Scand 2006; 50:947-53. [PMID: 16923089 DOI: 10.1111/j.1399-6576.2006.01060.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Several previous investigations have shown improved oxygenation when ventilator-treated patients with acute lung injury are turned prone. In a previous human study, we demonstrated higher Ca(2+)-dependent nitric oxide synthase (NOS) activity in dorsal than in ventral parts of the lung. The current investigation was designed to determine whether Ca(2+)-dependent NOS activity was different in dorsal and ventral porcine lung regions. In addition, possible differences in vascular responses to nitroprusside or secondary to acetylcholine- or bradykinin-stimulated NO production were studied in dorsal and ventral pulmonary arteries. METHODS In the study, 20 pigs were used. Lung biopsies and pulmonary arterial rings were harvested from ventral and dorsal lung regions. NOS activity was determined by citrulline assay in the presence and absence of the calcium chelator ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EDTA) to discriminate between Ca(2+)-dependent and Ca(2+)-independent NOS activity. In organ baths, in submaximally contracted arterial rings, vasorelaxation induced by acetylcholine, bradykinin and nitroprusside was measured. RESULTS Ca(2+)-dependent NOS activity was higher in dorsal parts (87.2 +/- 9.1 citrulline units) than in ventral parts (62.2 +/- 10.1 citrulline units, P < 0.05) of porcine lung. There was a greater relaxation in dorsal than in ventral pulmonary arterial rings induced by both acetylcholine and bradykinin. Nitroprusside relaxed both sites equally. CONCLUSIONS Our results show that endothelial-derived NO is an important factor influencing the differences between dorsal and ventral lung regions in vasorelaxing activity in porcine pulmonary arteries. This finding provides an explanation for the improved oxygenation when patients with severe acute lung insufficiency are turned prone.
Collapse
Affiliation(s)
- D Rimeika
- Department of Anaesthesiology and Intensive Care Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
22
|
Richter T, Bellani G, Scott Harris R, Vidal Melo MF, Winkler T, Venegas JG, Musch G. Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med 2005; 172:480-7. [PMID: 15901611 PMCID: PMC2718529 DOI: 10.1164/rccm.200501-004oc] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The prone position is used to improve gas exchange in patients with acute respiratory distress syndrome. However, the regional mechanism by which the prone position improves gas exchange in acutely injured lungs is still incompletely defined. METHODS We used positron emission tomography imaging of [(13)N]nitrogen to assess the regional distribution of pulmonary shunt, aeration, perfusion, and ventilation in seven surfactant-depleted sheep in supine and prone positions. RESULTS In the supine position, the dorsal lung regions had a high shunt fraction, high perfusion, and poor aeration. The prone position was associated with an increase in lung gas content and with a more uniform distribution of aeration, as the increase in aeration in dorsal lung regions was not offset by loss of aeration in ventral regions. Consequently, the shunt fraction decreased in dorsal regions in the prone position without a concomitant impairment of gas exchange in ventral regions, thus leading to a significant increase in the fraction of pulmonary perfusion participating in gas exchange. In addition, the vertical distribution of specific alveolar ventilation became more uniform in the prone position. A biphasic relation between regional shunt fraction and gas fraction showed low shunt for values of gas fraction higher than a threshold, and a steep linear increase in shunt for lower values of gas fraction. CONCLUSION In a surfactant-deficient model of lung injury, the prone position improved gas exchange by restoring aeration and decreasing shunt while preserving perfusion in dorsal lung regions, and by making the distribution of ventilation more uniform.
Collapse
Affiliation(s)
- Torsten Richter
- Department of Anesthesia and Critical Care, CLN 309, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Starr IR, Lamm WJE, Neradilek B, Polissar N, Glenny RW, Hlastala MP. Regional hypoxic pulmonary vasoconstriction in prone pigs. J Appl Physiol (1985) 2005; 99:363-70. [PMID: 15774706 DOI: 10.1152/japplphysiol.00822.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is known to affect regional pulmonary blood flow distribution. It is unknown whether lungs with well-matched ventilation (V)/perfusion (Q) have regional differences in the HPV response. Five prone pigs were anesthetized and mechanically ventilated (positive end-expiratory pressure = 2 cmH2O). Two hypoxic preconditions [inspired oxygen fraction (FI(O2)) = 0.13] were completed to stabilize the animal's hypoxic response. Regional pulmonary blood Q and V distribution was determined at various FI(O2) (0.21, 0.15, 0.13, 0.11, 0.09) using the fluorescent microsphere technique. Q and V in the lungs were quantified within 2-cm3 lung pieces. Pieces were grouped, or clustered, based on the changes in blood flow when subjected to increasing hypoxia. Unique patterns of Q response to hypoxia were seen within and across animals. The three main patterns (clusters) showed little initial difference in V/Q matching at room air where the mean V/Q range was 0.92-1.06. The clusters were spatially located in cranial, central, and caudal portions of the lung. With decreasing FI(O2), blood flow shifted from the cranial to caudal regions. We determined that pulmonary blood flow changes, caused by HPV, produced distinct response patterns that were seen in similar regions across our prone porcine model.
Collapse
Affiliation(s)
- I R Starr
- Department of Medicine, Univ. of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lamm WJE, Starr IR, Neradilek B, Polissar NL, Glenny RW, Hlastala MP. Hypoxic pulmonary vasoconstriction is heterogeneously distributed in the prone dog. Respir Physiol Neurobiol 2005; 144:281-94. [PMID: 15556109 DOI: 10.1016/j.resp.2004.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2004] [Indexed: 11/24/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is thought to protect gas exchange by decreasing perfusion to hypoxic regions. However, with global hypoxia, non-uniformity in HPV may cause over-perfusion to some regions, leading to high-altitude pulmonary edema. To quantify the spatial distribution of HPV and regional PO2 (PRO2) among small lung regions (approximately 2.0 cm3), five prone beagles (approximately 8.3 kg) were anesthetized and ventilated (PEEP approximately 2 cm H2O) with an F1O2 of 0.21, then 0.50, 0.18, 0.15, and 0.12 in random order. Regional blood perfusion (Q), ventilation (VA) and calculated PRO2 were obtained using iv infusion of 15 microm and inhalation of 1 microm fluorescent microspheres. Lung pieces were clustered by their relative blood flow response to each F1O2. Clusters were shown to be spatially grouped within animals and across animals. Lung piece resistance increased as PRO2 decreased to 60-70 mmHg but dropped at PRO2's < 60mmHg. Regional ventilation changed little with hypoxia. HPV varied more in strength of response, rather than PRO2 response threshold. In initially homogeneous VA/Q lungs, we conclude that HPV response is heterogeneous and spatially clustered.
Collapse
Affiliation(s)
- Wayne J E Lamm
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
25
|
MacEachern KE, Smith GL, Nolan AM. Characteristics of the in vitro hypoxic pulmonary vasoconstrictor response in isolated equine and bovine pulmonary arterial rings. Vet Anaesth Analg 2004; 31:239-49. [PMID: 15509288 DOI: 10.1111/j.1467-2995.2004.00176.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Hypoxaemia accompanies dorsal recumbency in the horse and frequently complicates general anaesthesia. The physiology associated with this phenomenon is poorly understood. One possible cause of poor tolerance to dorsal recumbency is an absent or reduced response to hypoxic pulmonary vasoconstriction (HPV). This study compared the HPV response in isolated pulmonary artery vessels from equivalent regions of equine and bovine lung. ANIMALS Equine and bovine, in vitro study. MATERIALS AND METHODS Equine and bovine pulmonary arteries were removed from the lungs of euthanased horses and cattle. Measurements of isometric tension were made on isolated rings of pulmonary vessels at 37 degrees C in a Krebs' saline solution. Hypoxia was induced by bubbling with a nominally 0% O(2) gas mixture. RESULTS A significant HPV response was observed above a baseline tension induced by phenylephrine (PE; 0.3 microm) or 5-hydroxytryptamine (5-HT; 0.1 microm). The HPV response in equine pulmonary vessels was approximately 33% less than the response observed in equivalent bovine vessels (equine 196 +/- 20%versus bovine 290 +/- 32%; p < 0.05). Removal of the endothelium (by rubbing the luminal surface) significantly reduced but did not abolish the HPV response. Incubation with the nitric oxide (NO) synthase inhibitor N-nitro-l-arginine methyl ester (L-NAME; 100 microm), or COX-1/COX-2 inhibitor indomethacin (10 microm) markedly attenuated the HPV response in equine vessels. CONCLUSIONS These results suggest that a significant HPV response exists in isolated equine pulmonary vessels; a component of this response requires a functional endothelium. Inhibition of cyclooxygenase and NO synthase attenuated the response, suggesting the involvement of a COX product and/or NO in mediating this effect either directly or indirectly. Alternatively, a non-COX related action of the nonsteroidal anti-inflammatory drug, indomethacin, may be involved.
Collapse
Affiliation(s)
- Karen E MacEachern
- University of Glasgow Veterinary School, Bearsden, Glasgow, Scotland G61 1QH, UK.
| | | | | |
Collapse
|
26
|
Rimeika D, Nyrén S, Wiklund NP, Koskela LR, Tørring A, Gustafsson LE, Larsson SA, Jacobsson H, Lindahl SGE, Wiklund CU. Regulation of regional lung perfusion by nitric oxide. Am J Respir Crit Care Med 2004; 170:450-5. [PMID: 15130909 DOI: 10.1164/rccm.200312-1663oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improved oxygenation has previously been shown in patients with acute lung injury when ventilated in prone position. We hypothesized that this was due to higher regional production of nitric oxide in dorsocaudal lung regions. We measured nitric oxide synthase mRNA expression and nitric oxide production by citrulline assay in ventral and dorsal lung tissue from patients. In volunteers, regional lung perfusion in prone and supine postures was assessed by single photon emission computed tomography using (99m)Tc macroaggregated albumin before and after inhibition of nitric oxide synthase by N(G)-monomethyl-L-arginine infusion. Nitric oxide synthase mRNA expression and nitric oxide production were significantly higher in dorsal compared with ventral lung regions. In supine posture, lung perfusion was shifted to ventral parts during nitric oxide synthase inhibition, whereas in the prone posture lung perfusion remained unchanged. Our results suggest a role for endogenous nitric oxide in regulation of regional pulmonary perfusion.
Collapse
Affiliation(s)
- Danguole Rimeika
- Department of Anaesthesiology, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hlastala MP, Lamm WJE, Karp A, Polissar NL, Starr IR, Glenny RW. Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol (1985) 2003; 96:1589-99. [PMID: 14698989 DOI: 10.1152/japplphysiol.00211.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to maintain optimal gas exchange by decreasing perfusion to hypoxic regions. However, global hypoxia and nonuniform HPV may result in overperfusion of poorly constricted regions leading to local edema seen in high-altitude pulmonary edema. To quantify the spatial distribution of HPV and its response to regional Po2 (Pr(O2)) among small lung regions, five pigs were anesthetized and mechanically ventilated in the supine posture. The animals were ventilated with an inspired O2 fraction (Fi(O2)) of 0.50 and 0.21 and then (in random order) 0.15, 0.12, and 0.09. Regional blood flow (Q) and alveolar ventilation (Va) were measured by using intravenous infusion of 15 microm and inhalation of 1-microm fluorescent microspheres, respectively. Pr(O2) was calculated for each piece at each Fi(O2). Lung pieces differed in their Q response to hypoxia in a manner related to their initial Va/Q with Fi(O2) = 0.21. Reducing Fi(O2) < 0.15 decreased Q to the initially high Va/Q (higher Pr(O2)) regions and forced Q into the low Va/Q (dorsal-caudal) regions. Resistance increased in most lung pieces as Pr(O2) decreased, reaching a maximum resistance when Pr(O2) is between 40 and 50 Torr. Local resistance decreased at PrO2 < 40 Torr. Pieces were statistically clustered with respect to their relative Q response pattern to each Fi(O2). Some clusters were shown to be spatially organized. We conclude that HPV is spatially heterogeneous. The heterogeneity of Q response may be related, in part, to the heterogeneity of baseline Va/Q.
Collapse
Affiliation(s)
- Michael P Hlastala
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-6522, USA.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Musch G, Layfield JDH, Harris RS, Melo MFV, Winkler T, Callahan RJ, Fischman AJ, Venegas JG. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol (1985) 2002; 93:1841-51. [PMID: 12381773 DOI: 10.1152/japplphysiol.00223.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Using positron emission tomography (PET) and intravenously injected (13)N(2), we assessed the topographical distribution of pulmonary perfusion (Q) and ventilation (V) in six healthy, spontaneously breathing subjects in the supine and prone position. In this technique, the intrapulmonary distribution of (13)N(2), measured during a short apnea, is proportional to regional Q. After resumption of breathing, regional specific alveolar V (sVA, ventilation per unit of alveolar gas volume) can be calculated from the tracer washout rate. The PET scanner imaged 15 contiguous, 6-mm-thick, slices of lung. Vertical gradients of Q and sVA were computed by linear regression, and spatial heterogeneity was assessed from the squared coefficient of variation (CV(2)). Both CV and CV were corrected for the estimated contribution of random imaging noise. We found that 1) both Q and V had vertical gradients favoring dependent lung regions, 2) vertical gradients were similar in the supine and prone position and explained, on average, 24% of Q heterogeneity and 8% of V heterogeneity, 3) CV was similar in the supine and prone position, and 4) CV was lower in the prone position. We conclude that, in recumbent, spontaneously breathing humans, 1) vertical gradients favoring dependent lung regions explain a significant fraction of heterogeneity, especially of Q, and 2) although Q does not seem to be systematically more homogeneous in the prone position, differences in individual behaviors may make the prone position advantageous, in terms of V-to-Q matching, in selected subjects.
Collapse
Affiliation(s)
- Guido Musch
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Harmegnies NF, Duvivier DH, Vandenput SN, Art T, Lekeux PM, Votion DM. Exercise-induced pulmonary perfusion redistribution in heaves. Equine Vet J 2002:478-84. [PMID: 12405737 DOI: 10.1111/j.2042-3306.2002.tb05469.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study aimed to compare exercise-induced pulmonary perfusion redistribution in healthy vs. 'heavey' horses using scintigraphy, a minimally invasive technique. Six healthy (A) and 5 'heavey' horses in remission (B(I)) and during clinical signs of disease (B(II)) were investigated. Dimensions of the exercising pulmonary perfusion (QE) images were expressed in percent of the resting perfusion (QR) images. Computed QE to QR ratios (QE/QR) images enabled the definition of the region more perfused at exercise than at rest (R1). In all groups, exercise induced a major enlargement of the Q image but a larger increase of the lung height was found in 'heavey' horses. Compared to A, 'heavey' horses showed a larger R1 region with a significantly higher QE/QR. Location of R1 pointed out the dorsal lung region as a major site of pulmonary perfusion redistribution for all groups. This work demonstrated (1) the feasibility of using scintigraphy for studying exercise-induced pulmonary perfusion redistribution; (2) perfusion redistribution to the dorsal lung with exercise and (3) an intensified redistribution in 'heavey' horses, either clinically affected or not.
Collapse
Affiliation(s)
- N F Harmegnies
- Equine Sports Medicine Centre, Faculty of Veterinary Medicine, Sart-Tilman, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
Kindig CA, McDonough P, Finley MR, Behnke BJ, Richardson TE, Marlin DJ, Erickson HH, Poole DC. NO inhalation reduces pulmonary arterial pressure but not hemorrhage in maximally exercising horses. J Appl Physiol (1985) 2001; 91:2674-8. [PMID: 11717233 DOI: 10.1152/jappl.2001.91.6.2674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In horses, the exercise-induced elevation of pulmonary arterial pressure (Ppa) is thought to play a deterministic role in exercise-induced pulmonary hemorrhage (EIPH), and thus treatment designed to lower Ppa might reasonably be expected to reduce EIPH. Five Thoroughbred horses were run on a treadmill to volitional fatigue (incremental step test) under nitric oxide (NO; inhaled 80 ppm) and control (N(2), same flow rate as per NO run) conditions (2 wk between trials; order randomized) to test the hypothesis that NO inhalation would reduce maximal Ppa but that this reduction may not necessarily reduce EIPH. Before each investigation, a microtipped pressure transducer was placed in the pulmonary artery 8 cm past the pulmonic valve to monitor Ppa. EIPH severity was assessed via bronchoalveolar lavage (BAL) 30 min postrun. Exercise time did not differ between the two trials (P > 0.05). NO administration resulted in a small but consistent and significant reduction in peak Ppa (N(2), 102.3 +/- 4.4; NO, 98.6 +/- 4.3 mmHg, P < 0.05). In the face of lowered Ppa, EIPH severity was significantly higher in the NO trial (N(2), 22.4 +/- 6.8; NO, 42.6 +/- 15.4 x 10(6) red blood cells/ml BAL fluid, P < 0.05). These findings support the notion that extremely high Ppa may reflect, in part, an arteriolar vasoconstriction that serves to protect the capillary bed from the extraordinarily high Ppa evoked during maximal exercise in the Thoroughbred horse. Furthermore, these data suggest that exogenous NO treatment during exercise in horses may not only be poor prophylaxis but may actually exacerbate the severity of EIPH.
Collapse
Affiliation(s)
- C A Kindig
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Gerbino AJ, Altemeier WA, Schimmel C, Glenny RW. Endotoxemia increases relative perfusion to dorsal-caudal lung regions. J Appl Physiol (1985) 2001; 90:1508-15. [PMID: 11247953 DOI: 10.1152/jappl.2001.90.4.1508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the spatial distribution of perfusion during acute lung injury and their impact on gas exchange are poorly understood. We tested whether endotoxemia caused topographical differences in perfusion and whether these differences caused meaningful changes in regional ventilation-to-perfusion ratios and gas exchange. Regional ventilation and perfusion were measured in anesthetized, mechanically ventilated pigs in the prone position before and during endotoxemia with the use of aerosolized and intravenous fluorescent microspheres. On average, relative perfusion halved in ventral and cranial lung regions, doubled in caudal lung regions, and increased 1.5-fold in dorsal lung regions during endotoxemia. In contrast, there were no topographical differences in perfusion before endotoxemia and no topographical differences in ventilation at any time point. Consequently, endotoxemia increased regional ventilation-to-perfusion ratios in the caudal-to-cranial and dorsal-to-ventral directions, resulting in end-capillary PO2 values that were significantly lower in dorsal-caudal than ventral-cranial regions. We conclude that there are topographical differences in the pulmonary vascular response to endotoxin that may have important consequences for gas exchange in acute lung injury.
Collapse
Affiliation(s)
- A J Gerbino
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Berg JT, Deem S, Kerr ME, Swenson ER. Hemoglobin and red blood cells alter the response of expired nitric oxide to mechanical forces. Am J Physiol Heart Circ Physiol 2000; 279:H2947-53. [PMID: 11087251 DOI: 10.1152/ajpheart.2000.279.6.h2947] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expired nitric oxide (NO(e)) varies with hemodynamic or ventilatory perturbations, possibly due to shear stress- or stretch-stimulated NO production. Since hemoglobin (Hb) binds NO, NO(e) changes may reflect changes in blood volume and flow. To determine the role of blood and mechanical forces, we measured NO(e) in anesthetized rabbits, as well as rabbit lungs perfused with buffer, red blood cells (RBCs) or Hb following changes in flow, venous pressure (P(v)), and positive end-expiratory pressure (PEEP). In buffer-perfused lungs decreases in flow and P(v) reduced NO(e), but NO(e) rose when RBCs and Hb were present. These findings are consistent with changes in vascular NO production, whose detection is obscured in blood-perfused lungs by the more dominant effect of Hb NO scavenging. PEEP decreased NO(e) in all perfused lungs but increased NO(e) in live rabbits. The NO(e) fall with PEEP in isolated lungs is consistent with flow redistribution from alveolar septal capillaries to extra-alveolar vessels and decreased surface area or a direct, stretch-mediated depression of lung epithelial NO production. In live rabbits, increased NO(e) may reflect blood flow reduction and decreased Hb NO scavenging and/or autonomic responses that increase NO production. We conclude that blood and systemic responses render it difficult to use NO(e) changes as an accurate measure of lung tissue NO production.
Collapse
Affiliation(s)
- J T Berg
- Departments of Medicine and Anesthesiology, Veterans Affairs Puget Sound Health Care System and the University of Washington, Seattle, Washington 98108, USA.
| | | | | | | |
Collapse
|
36
|
Sinclair SE, McKinney S, Glenny RW, Bernard SL, Hlastala MP. Exercise alters fractal dimension and spatial correlation of pulmonary blood flow in the horse. J Appl Physiol (1985) 2000; 88:2269-78. [PMID: 10846045 DOI: 10.1152/jappl.2000.88.6.2269] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the changes in fractal dimensions and spatial correlations of regional pulmonary blood flow with increasing exercise in race horses (n = 4) by using 15-microm fluorescent microspheres. Fluorescence was measured to quantitate regional blood to 1.3-cm(3) samples (n = 1,621-2,503). Perfusion distributions were characterized with fractal dimensions (a measure of spatial variability) and spatial correlations. On average, the fractal dimension decreased with exercise (trot 1.216 to gallop 1.173; P < 0. 05) despite a variable fractal dimension at rest. Spatial correlation of flow to neighboring pieces increased with exercise (trot 0.57 +/- 0.074 to gallop 0.73 +/- 0.051) and was inversely correlated with fractal dimension, indicating better spatial correlation as blood flow distribution becomes more uniform. This is the first study to document a change in fractal dimension as a result of increasing pulmonary blood flow. Spatial differences in response to vasoregulatory mediators may play a role in this phenomenon.
Collapse
Affiliation(s)
- S E Sinclair
- Department of Medicine, University of Washington, Seattle 98195-6522, USA.
| | | | | | | | | |
Collapse
|
37
|
Johnson LR, Laughlin MH. Chronic exercise training does not alter pulmonary vasorelaxation in normal pigs. J Appl Physiol (1985) 2000; 88:2008-14. [PMID: 10846012 DOI: 10.1152/jappl.2000.88.6.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training increases acetylcholine-induced pulmonary vasorelaxation in pigs with coronary occlusion. The present study tested the hypothesis that chronic exercise training enhances endothelium-mediated vasorelaxation in pulmonary arteries from normal pigs. Yucatan miniswine exercised for 16 wk on a treadmill (Ex); control pigs (Sed) remained in pens. Pulmonary artery rings (2- to 3-mm OD) were studied using standard isometric techniques. Contractile responses to 80 mM KCl and norepinephrine (NE) were determined. Vessels were constricted with levels of NE that resulted in half-maximal contraction to examine endothelium-dependent relaxation to ACh and endothelium-independent relaxation to sodium nitroprusside in the presence and absence of nitric oxide synthase inhibition, cyclooxygenase inhibition, and endothelial denudation. Arteries from Ex pigs developed increased contraction to 80 mM KCl, but the response to NE did not differ between groups. Endothelium-dependent and endothelium-independent responses did not differ between Sed and Ex in the presence or absence of pharmacological inhibitors or denudation. We conclude that chronic exercise training does not alter endothelium-dependent or endothelium-independent vasorelaxation responses of pulmonary arteries from normal pigs.
Collapse
Affiliation(s)
- L R Johnson
- Department of Veterinary Biomedical Sciences, University of Missouri, Columbia 65211, USA.
| | | |
Collapse
|
38
|
Johnson LR, Dodam JR, Laughlin MH. Endothelium-dependent relaxation differs in porcine pulmonary arteries from the left and right caudal lobes. J Appl Physiol (1985) 2000; 88:827-34. [PMID: 10710375 DOI: 10.1152/jappl.2000.88.3.827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that pulmonary arteries (PA) from identical branch orders within left and right caudal lung lobes would exhibit similar vasomotor responses. Arterial rings from caudal lung lobes of female swine were examined in vitro. Vascular smooth muscle contraction to KCl and norepinephrine did not differ. Vascular relaxation to endothelium-dependent (bradykinin, acetylcholine, A-23187) and -independent (sodium nitroprusside, zero-calcium Krebs solution) vasodilators was assessed. Right PA exhibited less maximal relaxation to acetylcholine (50%) than did left PA (69%; P < 0.001). Maximal relaxation to sodium nitroprusside did not differ, although right PA had a lower drug concentration resulting in half-maximal relaxation (6.26 x 10(-8) M) than did left PA (9.57 x 10(-8) M; P < 0.05). Nitric oxide synthase inhibition with an arginine analog (N(omega)-nitro-L-arginine methyl ester) depressed acetylcholine-induced relaxation but the left vs. right difference persisted. Indomethacin enhanced relaxation to acetylcholine and abolished the difference between left and right. We conclude that endothelium-dependent vasorelaxation is less in porcine right than in left PA because of greater release of one or more constricting prostanoids in arteries from the right caudal lobe.
Collapse
Affiliation(s)
- L R Johnson
- Department of Veterinary Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|