1
|
Zhao Z, Xiang X, Chen Q, Du J, Zhu S, Xu X, Shen Y, Wen S, Li Y, Xu W, Mai K, Ai Q. Sterol Regulatory Element Binding Protein 1: A Mediator for High-Fat Diet-Induced Hepatic Gluconeogenesis and Glucose Intolerance in Fish. J Nutr 2024; 154:1505-1516. [PMID: 38460786 DOI: 10.1016/j.tjnut.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Shunlang Wen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach. Molecules 2021; 26:molecules26247689. [PMID: 34946771 PMCID: PMC8707280 DOI: 10.3390/molecules26247689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.
Collapse
|
3
|
Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O'Leary DS, Zucker IH, Musch TI. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 2020; 318:H1100-H1138. [PMID: 32196357 DOI: 10.1152/ajpheart.00697.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - David L Allen
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Michael Sturek
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
4
|
Serrano A, Asnani-Kishnani M, Rodríguez AM, Palou A, Ribot J, Bonet ML. Programming of the Beige Phenotype in White Adipose Tissue of Adult Mice by Mild Resveratrol and Nicotinamide Riboside Supplementations in Early Postnatal Life. Mol Nutr Food Res 2018; 62:e1800463. [PMID: 30095217 DOI: 10.1002/mnfr.201800463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Indexed: 12/31/2022]
Abstract
SCOPE Resveratrol (RSV) and nicotinamide riboside (NR) are food compounds with anti-obesity actions in adult rodents. Here, the long-term effects of RSV and NR mild supplementation throughout lactation on adiposity-related parameters and the appearance of the beige phenotype in white adipose tissue (WAT) in adulthood are assessed. METHODS AND RESULTS Newborn mice received orally RSV or NR from day 2 to 20 of life. Control littermates received the vehicle. All animals are weaned onto a chow diet on day 21. On day 90, half the animals of each group are assigned to a high-fat diet (HFD) for 10 weeks, while the other remained on a normal-fat diet. Energy-balance-related parameters, blood parameters, and gene expression and immunohistochemical analysis of WAT are assessed. Treated male mice show an improved response to the HFD, such as delayed body weight gain, a blunted increase in the plasma leptin/adiponectin ratio, and a decreased lipolytic response, together with signs of white-to-brown fat remodeling in inguinal WAT. These effects are absent in female mice. CONCLUSION RSV and NR supplementations in early postnatal life affect WAT's thermogenic/oxidative transcriptional phenotype and metabolic responses in adulthood, with upregulatory and beneficial effects evidenced in male animals.
Collapse
Affiliation(s)
- Alba Serrano
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Madhu Asnani-Kishnani
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Ana María Rodríguez
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
5
|
Xiong XP, Song Q, Han CC, Gan W, He F, Wei SH, Liu HH, Xu HY. Insulin Promotes the Expression of the Gluconeogenic Rate-Limiting Enzymes Phosphoenolpyruvate Carboxykinase (Pepck) and Glucose 6-Phosphatase (G6pase) through PI3k/Akt/mTOR Signaling Pathway in Goose Hepatocytes. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2015-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- XP Xiong
- Sichuan Agricultural University, China
| | - Q Song
- Sichuan Agricultural University, China
| | - CC Han
- Sichuan Agricultural University, China
| | - W Gan
- Sichuan Agricultural University, China
| | - F He
- Sichuan Agricultural University, China
| | - SH Wei
- Sichuan Agricultural University, China
| | - HH Liu
- Sichuan Agricultural University, China
| | - HY Xu
- Sichuan Agricultural University, China
| |
Collapse
|
6
|
Kowalski GM, Hamley S, Selathurai A, Kloehn J, De Souza DP, O'Callaghan S, Nijagal B, Tull DL, McConville MJ, Bruce CR. Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis. Sci Rep 2016; 6:27541. [PMID: 27273128 PMCID: PMC4895138 DOI: 10.1038/srep27541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023] Open
Abstract
In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Steven Hamley
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Ahrathy Selathurai
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Joachim Kloehn
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Sean O'Callaghan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
7
|
Petrosino JM, Heiss VJ, Maurya SK, Kalyanasundaram A, Periasamy M, LaFountain RA, Wilson JM, Simonetti OP, Ziouzenkova O. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes. PLoS One 2016; 11:e0148010. [PMID: 26859763 PMCID: PMC4747552 DOI: 10.1371/journal.pone.0148010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- Biomedical Sciences Program, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Valerie J. Heiss
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Santosh K. Maurya
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Muthu Periasamy
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Richard A. LaFountain
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Jacob M. Wilson
- Department of Human Performance, The University of Tampa, Tampa, Florida, United States of America
| | - Orlando P. Simonetti
- Department of Radiology, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
- Department of Cardiovascular Medicine, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Influence of plasma macronutrient levels on hepatic metabolism: role of regulatory networks in homeostasis and disease states. RSC Adv 2016. [DOI: 10.1039/c5ra18128c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multilevel regulations by metabolic, signaling and transcription pathways form a complex network that works to provide robust metabolic regulation in the liver. This analysis indicates that dietary perturbations in these networks can lead to insulin resistance.
Collapse
Affiliation(s)
- Pramod R. Somvanshi
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Anilkumar K. Patel
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Sharad Bhartiya
- Control Systems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - K. V. Venkatesh
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| |
Collapse
|
9
|
Broderick TL, Wang D, Jankowski M, Gutkowska J. Unexpected effects of voluntary exercise training on natriuretic peptide and receptor mRNA expression in the ob/ob mouse heart. ACTA ACUST UNITED AC 2013; 188:52-9. [PMID: 24365091 DOI: 10.1016/j.regpep.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/30/2022]
Abstract
Regular exercise is generally recommended for the treatment of obesity and type 2 diabetes. Exercise reduces body weight, improves glycemic control and cardiovascular (CV) function. This study was designed to determine the impact of voluntary wheel running on the cardiac oxytocin (OT)-natriuretic peptide (NP) system and plasma CV risk factors in the ob/ob mouse, a model of insulin resistance coupled with severe obesity. Five-week-old male ob/ob mice and non-obese heterozygote control littermates were assigned to either a sedentary or running group. Voluntary running was performed using a wheel system for a period of 8 weeks. Compared to non-obese mice, daily running activity expressed in kilometers, was significantly lower in ob/ob mice. In these mice, voluntary running improved body weight, but exacerbated CV markers, including plasma glucose and triglyceride levels. OT receptor gene expression was decreased in hearts of ob/ob mice compared to non-obese mice, and no improvement in the expression of this receptor was observed after voluntary running. Hearts from ob/ob mice also expressed lower BNP mRNA, whereas no differences in A- and C-type NP were observed between non-obese and ob/ob mice. After voluntary running, a downregulation in the expression of all three NPs coupled with increased apoptosis was observed in ob/ob hearts. Our results show that voluntary exercise running activity was decreased in the ob/ob mouse. Surprisingly, this was associated with a worsening of common CV plasma markers, reduced expression of peptides linked to the cardioprotective OT-NP system, and increased expression of cardiac apoptotic markers.
Collapse
Affiliation(s)
- Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA.
| | - Donghao Wang
- Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de L'Université de Montréal-Hôtel-Dieu Research Centre, Montréal, Québec, Canada
| | - Marek Jankowski
- Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de L'Université de Montréal-Hôtel-Dieu Research Centre, Montréal, Québec, Canada
| | - Jolanta Gutkowska
- Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de L'Université de Montréal-Hôtel-Dieu Research Centre, Montréal, Québec, Canada
| |
Collapse
|
10
|
Jin ES, Beddow SA, Malloy CR, Samuel VT. Hepatic glucose production pathways after three days of a high-fat diet. Metabolism 2013; 62:152-62. [PMID: 22981137 PMCID: PMC3518721 DOI: 10.1016/j.metabol.2012.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVE A three-day high-fat diet induces hepatic steatosis and hepatic insulin resistance in rats without altering fasting plasma glucose concentration or the rate of glucose production. However, as the nutrient profile available to the liver is substantially altered by a high-fat diet, we hypothesized that the relative fluxes supporting hepatic glucose production would be altered. MATERIALS/METHODS To test this hypothesis, we used multiple tracers ([3,4-(13)C(2)]glucose, (2)H(2)O, and [U-(13)C(3)]propionate) followed by NMR analysis of blood glucose to quantify net glucose production and the contributions of glycogen and key gluconeogenesis precursors in 4-5-h fasted rats. RESULTS NMR analysis demonstrated that the majority of blood glucose was derived from glycogen and the citric acid cycle, while a smaller fraction of glucose was derived from glycerol in both controls and high-fat-fed animals. High-fat feeding was associated with a two-fold increase in plasma glycerol concentration and an increase in the contribution (both fractional and absolute) of glycerol-gluconeogenesis. The increase in gluconeogenesis from glycerol tended to be balanced by a decrease in glycogenolysis. The absolute fluxes associated with the citric acid cycle including gluconeogenesis from the cycle intermediates, pyruvate cycling and the citric acid cycle flux itself, were not altered by this short high-fat diet. CONCLUSIONS A short term high-fat diet altered the specific pathways for hepatic glucose production without influencing the overall rate of glucose production or flux in the citric acid cycle.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
11
|
Catalano KJ, Bergman RN, Ader M. Increased Susceptibility to Insulin Resistance Associated with Abdominal Obesity in Aging Rats**. ACTA ACUST UNITED AC 2012; 13:11-20. [PMID: 15761159 DOI: 10.1038/oby.2005.4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Recent data have suggested that the insulin resistance observed with aging may be more related to adiposity than aging per se. We asked whether the insulin resistance observed in aged rats was comparable (both in magnitude and location) to that of fat-fed rats. RESEARCH METHODS AND PROCEDURES We performed hyperinsulinemic (5 mU/min per kg) euglycemic clamps with tracer in conscious, 6-hour fasted young (YL), fat-fed young (YF), fat-fed old (OF), and calorically restricted old (OL) rats. RESULTS Intraabdominal fat measurements showed that OF and YF rats were more obese than YL (p<or=0.001; YF>OF>YL). Caloric restriction not only prevented age-related obesity but also reduced the ratio of intraabdominal fat to lean body mass (LBM) compared with YL (OL: 0.59+/-0.05 vs. YL: 1.07+/-0.04; p=0.017). Despite similar incremental insulin, YF and OF rats required 40% less infused glucose to maintain euglycemia than YL and OL rats (p<0.001). Insulin-stimulated glucose uptake (Si(Rd): DeltaRd/(DeltaInsulin x Glucose(SS)) was impaired in OF rats (OF: 14.03+/-1.79 vs. YL: 23.08+/-1.87x10(3) dL/min x kg LBM per pM; p=0.004) and improved in OL rats (29.41+/-1.84x10(3) dL/min x kg LBM per pM; p=0.031) compared with YL. Despite greater obesity, YF rats did not exhibit lower SiRd compared with OF rats (p=0.58). In contrast, the ability of insulin to suppress endogenous glucose production (EGP; Si(EGP): DeltaEGP/(DeltaInsulin x GlucoseSS) was not impaired in OF rats (OF vs. YL; p=0.61) but was markedly impaired in YF rats by approximately 75% (1.72+/-0.66x10(3) dL/min x kg per pM; p=0.013). Surprisingly, separate regression analysis for old and young animals revealed that old rats exhibited a significantly steeper regression between Si (Rd and EGP) and adiposity than young rats (p<0.05). Thus, older rats showed a proportionately greater decrement in insulin sensitivity with an equivalent increase in adiposity. DISCUSSION These data suggest that, in rodents, youth affords significant protection against obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Karyn J Catalano
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, 1333 San Pablo St., MMR 624, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
12
|
Catabolism of amino acids in livers from cafeteria-fed rats. Mol Cell Biochem 2012; 373:265-77. [PMID: 23117227 DOI: 10.1007/s11010-012-1499-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Abstract
Most studies using a hypercaloric diet to induce obesity have focused on the metabolism of fat and carbohydrates. Less concern has been given to the metabolism of amino acids, despite evidence of modifications in nitrogen metabolism during obesity. The aim of this study was to evaluate amino acid metabolism in livers from cafeteria diet-induced obese rats. Blood parameters were analysed, and histological sections of livers were stained with Sudan III. The enzymatic activities of some enzymes were determined in liver homogenates. Gluconeogenesis, ureagenesis, and oxygen consumption were evaluated in rat livers perfused with glutamine, alanine, or ammonium chloride. Compared to control rats, cafeteria-fed rats demonstrated higher levels of triacylglycerol and glucose in the blood and greater accumulation of fat in livers. Gluconeogenesis and urea production in livers perfused with glutamine and alanine at higher concentrations showed a substantial reduction in cafeteria-fed rats. However, no significant difference was observed among groups perfused with ammonium chloride. The activities of the enzymes alanine aminotransferase, glutaminase, and aspartate aminotransferase in the livers were reduced in cafeteria-fed rats. Taken together, these data are consistent with the hypothesis that livers from cafeteria diet-induced obese rats exhibit a limitation in their maximal capacity to metabolise glutamine and alanine to glucose, ammonia, and urea, not because of an impairment in gluconeogenesis and/or ureagenesis, but rather due to a depression in the activities of enzymes that catalyse the initial steps of amino acid metabolism.
Collapse
|
13
|
The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet. Amino Acids 2010; 40:1461-72. [PMID: 20890620 DOI: 10.1007/s00726-010-0756-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the contribution of dietary amino acids (AA) to energy metabolism under high protein (HP) diets, using a double tracer method to follow simultaneously the metabolic fate of α-amino groups and carbon skeletons. Sixty-seven male Wistar rats were fed a normal (NP) or HP diet for 14 days. Fifteen of them were equipped with a permanent catheter. On day 15, after fasting overnight, they received a 4-g meal extrinsically labeled with a mixture of 20 U-[(15)N]-[(13)C] AA. Energy metabolism, dietary AA deamination and oxidation and their transfer to plasma glucose were measured kinetically for 4 h in the catheterized rats. The transfer of dietary AA to liver glycogen was determined at 4 h. The digestive kinetics of dietary AA, their transfer into liver AA and proteins and the liver glycogen content were measured in the 52 other rats that were killed sequentially hourly over a 4-h period. [(15)N] and [(13)C] kinetics in the splanchnic protein pools were perfectly similar. Deamination increased fivefold in HP rats compared to NP rats. In the latter, all deaminated AA were oxidized. In HP rats, the oxidation rate was slower than deamination, so that half of the deaminated AA was non-oxidized within 4 h. Non-oxidized carbon skeletons were poorly sequestrated in glycogen, although there was a significant postprandial production of hepatic glycogen. Our results strongly suggest that excess dietary AA-derived carbon skeletons above the ATP production capacity, are temporarily retained in intermediate metabolic pools until the oxidative capacities of the liver are no longer overwhelmed by an excess of substrates.
Collapse
|
14
|
Sennott J, Morrissey J, Standley PR, Broderick TL. Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes. ACTA ACUST UNITED AC 2008; 15:173-9. [PMID: 18653321 DOI: 10.1016/j.pathophys.2008.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Regular exercise is recommended for the treatment of type 2 diabetes because of the benefits on body weight and glycemic control. The present study was designed to compare the impact of voluntary wheel and forced treadmill running on the metabolic state in the db/db mouse model of type 2 diabetes. Our hypothesis is that voluntary exercise training reduces body weight, blood glucose and insulin levels and restores GLUT4 levels in skeletal muscle, whereas forced exercise training produces a greater effect. STUDY DESIGN Male diabetic db/db mice were assigned to sedentary (DS), voluntary wheel running (DV), and forced treadmill running (DT) groups for 12 weeks. Nondiabetic heterozygote littermates served as control (CN). RESULTS Over the 12-week period, DV and DT mice ran a total of 4.24+/-0.18km and 11.8km, respectively. At week 12, fasting plasma glucose was decreased in DV mice compared to DS mice and occurred in the absence weight loss. In DT mice, body weight and fasting plasma glucose were not improved with exercise when compared to DS mice and were actually higher compared to DV mice. After training, fasting plasma insulin was increased in DS mice compared to CN mice and training failed to normalize plasma insulin levels. Gastrocnemius GLUT4 content was reduced in DS mice compared to CN mice and training had no effect in preventing this depression from occurring. CONCLUSION The results of this study indicate that while voluntary exercise improved only blood glucose, forced treadmill exercise training failed to restore body weight, blood glucose and insulin, and muscle GLUT4 content.
Collapse
Affiliation(s)
- Jacqueline Sennott
- Midwestern University, Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, 19555 North 59th Avenue, Glendale, AZ 85308, United States
| | | | | | | |
Collapse
|
15
|
Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab 2006; 291:E860-6. [PMID: 16705058 DOI: 10.1152/ajpendo.00366.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new chronic treatment for inherited disorders of long-chain fatty acid oxidation involves administering up to one-third of dietary calories as triheptanoin, a medium-odd-chain triglyceride (Roe CR, Sweetman L, Roe DS, David F, and Brunengraber H. J Clin Invest 110: 259-269, 2002). Heptanoate and C(5)-ketone bodies derived from its partial oxidation in liver are precursors of anaplerotic propionyl-CoA in peripheral tissues. It was hypothesized that increasing anaplerosis in peripheral tissues would boost energy production. In the present study, we tested the potential of a triheptanoin emulsion as an intravenous nutrient. Normal rats were infused with triheptanoin intravenously or intraduodenally at up to 40% of caloric requirement. The blood concentration ratio (heptanoate/C(5)-ketone bodies) was high with intravenous and low with intraduodenal triheptanoin infusion. During intravenous infusion of triheptanoin, lipolysis was stimulated but appeared compensated by fatty acid reesterification. During intraduodenal infusion of triheptanoin, lipolysis was not stimulated. Our data support the hypothesis that intravenous triheptanoin could be used to treat decompensated patients with long-chain fatty acid oxidation disorders.
Collapse
Affiliation(s)
- Renée P Kinman
- Department of Pediatrics, Case Western Reserve University, Euclid Ave., Cleveland, OH 44106-4954, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Davidson SR, Burnett M, Hoffman-Goetz L. Training effects in mice after long-term voluntary exercise. Med Sci Sports Exerc 2006; 38:250-5. [PMID: 16531892 DOI: 10.1249/01.mss.0000183179.86594.4f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mice are an important animal model in exercise studies on the immune system, cancer, and aging. There is limited research about the training effects of long-term voluntary exercise in this species. PURPOSE To describe the training effects in mice given long-term aerobic voluntary exercise. METHODS Female C57BL/6 mice were randomly assigned to 1) individual cages with in-cage running wheels with 24-h access (WR; N = 31), or 2) individual cages without running wheels for 16 wk (NR; N = 20). Run-to-exhaustion (RTE) times, VO2peak, speed at VO2peak, and citrate synthase (CS), succinate dehydrogenase (SDH), and phosphofructokinase (PFK) activity in the soleus, plantaris, and red and white gastrocnemius were assessed. RESULTS Final body weight and speed at VO2peak did not differ by training condition. WR mice had significantly longer RTE times (P < 0.001) and higher VO2peak (P < 0.05) compared with NR mice. Higher CS and SDH activities were found in WR compared with NR mice for soleus (P < 0.01), red gastrocnemius (P < 0.01), and plantaris (P < 0.01) muscles. PFK activity was higher in WR mice in white gastrocnemius compared with NR mice (P < 0.01). CONCLUSIONS Voluntary running wheel activity for 16 wk in female C57BL/6 mice resulted in longer run times to exhaustion, higher VO2peak, and higher SDH and CS activities in oxidative muscles. These findings suggest that wheel running in female C57BL/6 mice: 1) produces a measurable aerobic training effect and 2) is an effective exercise modality for long-term training studies.
Collapse
Affiliation(s)
- Sara R Davidson
- Department of Health Studies and Gerontology, Faculty of Applied Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
17
|
Saitoh M, Ishii T, Takewaki T, Nishimura M. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions. J Vet Med Sci 2005; 67:653-8. [PMID: 16082112 DOI: 10.1292/jvms.67.653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.
Collapse
Affiliation(s)
- Masaji Saitoh
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | |
Collapse
|
18
|
Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 2005; 288:E454-61. [PMID: 15522994 DOI: 10.1152/ajpendo.00203.2004] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanism by which increased central adiposity causes hepatic insulin resistance is unclear. The "portal hypothesis" implicates increased lipolytic activity in the visceral fat and therefore increased delivery of free fatty acids (FFA) to the liver, ultimately leading to liver insulin resistance. To test the portal hypothesis at the transcriptional level, we studied expression of several genes involved in glucose and lipid metabolism in the fat-fed dog model with visceral adiposity vs. controls (n = 6). Tissue samples were obtained from dogs after 12 wk of either moderate fat (42% calories from fat; n = 6) or control diet (35% calories from fat). Northern blot analysis revealed an increase in the ratio of visceral to subcutaneous (v/s ratio) mRNA expression of both lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor-gamma (PPARgamma). In addition, the ratio for sterol regulatory element-binding transcription factor-1 (SREBP-1) tended to be higher in fat-fed dogs, suggesting enhanced lipid accumulation in the visceral fat depot. The v/s ratio of hormone-sensitive lipase (HSL) increased significantly, implicating a higher rate of lipolysis in visceral adipose despite hyperinsulinemia in obese dogs. In fat-fed dogs, liver SREBP-1 expression was increased significantly, with a tendency for increased fatty acid-binding protein (FABP) expression. In addition, glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) increased significantly, consistent with enhanced gluconeogenesis. Liver triglyceride content was elevated 45% in fat-fed animals vs. controls. Moreover, insulin receptor binding was 50% lower in fat-fed dogs. Increased gene expression promoting lipid accumulation and lipolysis in visceral fat, as well as elevated rate-limiting gluconeogenic enzyme expression in the liver, is consistent with the portal theory. Further studies will need to be performed to determine whether FFA are involved directly in this pathway and whether other signals (either humoral and/or neural) may contribute to the development of hepatic insulin resistance observed with visceral obesity.
Collapse
Affiliation(s)
- Morvarid Kabir
- Dept. of Physiology and Biophysics, University of Southern California Keck School of Medicine, 1333 San Pablo Street, MMR 626, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zderic TW, Schenk S, Davidson CJ, Byerley LO, Coyle EF. Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade. Am J Physiol Endocrinol Metab 2004; 287:E1195-201. [PMID: 15315908 DOI: 10.1152/ajpendo.00302.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently reported that, during moderate intensity exercise, low muscle glycogen concentration and utilization caused by a high-fat diet is associated with a marked increase in fat oxidation with no effect on plasma glucose uptake (R(d) glucose). It is our hypothesis that this increase in fat oxidation compensates for low muscle glycogen, thus preventing an increase in R(d) glucose. Therefore, the purpose of this study was to determine whether low muscle glycogen availability increases R(d) glucose under conditions of impaired fat oxidation. Six cyclists exercised at 50% peak O(2) consumption (Vo(2 peak)) for 1 h after 2 days on either a high-fat (HF, 60% fat, 24% carbohydrate) or control (CON, 22% fat, 65% carbohydrate) diet to manipulate muscle glycogen to low and normal levels, respectively. Two hours before the start of exercise, subjects ingested 80 mg of propanolol (betaB), a nonselective beta-adrenergic receptor blocker, to impair fat oxidation during exercise. HF significantly decreased calculated muscle glycogen oxidation (P < 0.05), and this decrease was partly compensated for by an increase in fat oxidation (P < 0.05), accompanied by an increase in whole body lipolysis (P < 0.05), despite the presence of betaB. Although HF increased fat oxidation, plasma glucose appearance rate, R(d) glucose, and glucose clearance rate were also significantly increased by 13, 15, and 26%, respectively (all P < 0.05). In conclusion, when lipolysis and fat oxidation are impaired, in this case by betaB, fat oxidation cannot completely compensate for a reduction in muscle glycogen utilization, and consequently plasma glucose turnover increases. These findings suggest that there is a hierarchy of substrate compensation for reduced muscle glycogen availability after a high-fat, low-carbohydrate diet, with fat being the primary and plasma glucose the secondary compensatory substrate. This apparent hierarchy likely serves to protect against hypoglycemia when endogenous glucose availability is low.
Collapse
Affiliation(s)
- Theodore W Zderic
- Dept. of Kinesiology and Health Education, Bellmont Hall 222, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
20
|
Nikolaidis MG, Petridou A, Matsakas A, Schulz T, Michna H, Mougios V. Effect of chronic wheel running on the fatty acid composition of phospholipids and triacylglycerols in rat serum, skeletal muscle and heart. ACTA ACUST UNITED AC 2004; 181:199-208. [PMID: 15180792 DOI: 10.1111/j.1365-201x.2004.01277.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM The purpose of this study was to examine the effects of long-term wheel running on the fatty acid composition of phospholipids (PL) and triacylglycerols (TG) in rat serum, skeletal muscle (soleus and extensor digitorum longus) and heart. METHODS To this end, the relevant tissues of 11 trained male Wistar rats were compared with those of 14 untrained ones. RESULTS There were several significant differences between the two groups regarding the concentrations and percentages of individual fatty acids in serum PL and TG, with most differences appearing in the fatty acid distribution of PL. Monounsaturated fatty acids of muscle PL were significantly lower in the trained rats. Estimated elongase activity was significantly higher, whereas Delta(9)-desaturase activity was significantly lower in the trained muscles. Monounsaturated fatty acids of PL were also significantly lower in the trained hearts. The fatty acid composition of PL in the skeletal muscles and the heart adapted to training in a comparable manner, whereas most of the changes in the fatty acid profile of TG were tissue-dependent. Judging from the magnitude of the effect sizes and the percentage differences between trained and untrained animals, there were many large effects of chronic exercise on the fatty acid composition of the tissues examined. CONCLUSION Long-term wheel running modified the fatty acid profile of PL and TG in rat serum, skeletal muscle and heart, and could thus be considered as a modulator of tissue fatty acid composition.
Collapse
Affiliation(s)
- M G Nikolaidis
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Barash V, Sampson SR, Meyerovitch J. Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus. Metabolism 2004; 53:836-41. [PMID: 15254873 DOI: 10.1016/j.metabol.2004.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have shown that physical exercise enhances insulin sensitivity of skeletal muscle in diabetes-prone Psammomys-obesus. In this study, we examined the effect of physical exercise on the liver of these animals. Three groups of animals were exposed to a 4-week protocol; high-energy diet (CH), high-energy diet and exercising (EH), and low-energy diet (CL). Different groups were studied either in a fed state or after an overnight fast, 30 minutes after intraperitoneal (IP) injection of 1 U insulin. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) activity was measured. Insulin signaling response was examined after insulin injection in the fast state by analyzing tyrosine phosphorylation of insulin receptor (IR) and the association between insulin receptor substrate-1 (IRS-1) and IRS-2 with phosphatidylinositol 3 kinase (PI3-K). After 4 weeks, none of the EH animals became diabetic, whereas all the CH animals became diabetic. PEPCK activity in the fed state was higher in the CH group compared with the CL and EH groups (480 +/- 28 nmol/min/mg protein, 280 +/- 30 nmol/min/mg protein, and 208 +/- 13 nmol/min/mg protein, respectively) (P < .02). G6Pase activity was higher in the CH and EH groups compared with the CL group (261 +/- 54 nmol/min/mg protein, 251 +/- 34 nmol/min/mg protein, and 75 +/- 32 nmol/min/mg protein, respectively) (P < .01). After insulin administration in the fast state, tyrosine phosphorylation of IR and association of IRS-2 with PI3-K were higher in the EH and CL groups than in the CH group. We conclude that exercise improves in vivo hepatic insulin sensitivity in diabetes-prone Psammomys-obesus.
Collapse
Affiliation(s)
- Yuval Heled
- Heller Institute of Medical Research and Pediatric Division, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Davidoff AJ, Mason MM, Davidson MB, Carmody MW, Hintz KK, Wold LE, Podolin DA, Ren J. Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 2004; 286:E718-24. [PMID: 15102617 DOI: 10.1152/ajpendo.00358.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently identified cardiomyocyte dysfunction in the early stage of type 2 diabetes (i.e., diet-induced insulin resistance). The present investigation was designed to determine whether a variety of clinically relevant interventions are sufficient to prevent and reverse cardiomyocyte dysfunction in sucrose (SU)-fed insulin-resistant rats. Subsets of animals were allowed to exercise (free access to wheel attached to cage) or were treated with bezafibrate in drinking water to determine whether these interventions would prevent the adverse effects of SU feeding on cardiomyocyte function. After 6-8 wk on diet and treatment, animals were surgically prepared to assess whole body insulin sensitivity (intravenous glucose tolerance test), and isolated ventricular myocyte mechanics were evaluated (video edge recording). SU feeding produced hyperinsulinemia and hypertriglyceridemia, with euglycemia, and induced characteristic whole body insulin resistance. Both exercise and bezafibrate treatment prevented these metabolic abnormalities. Ventricular myocyte shortening and relengthening were slower in SU-fed rats (42-63%) compared with starch (ST)-fed controls, and exercise or bezafibrate completely prevented cardiomyocyte dysfunction in SU-fed rats. In separate cohorts of animals, after 5 wk of SU feeding, animals were either switched back to an ST diet or given menhaden oil for an additional 7-9 wk to determine whether the cardiomyocyte dysfunction was reversible. Both interventions have previously been shown to have favorable metabolic effects, and both improved myocyte mechanics, but only the ST diet reversed all indications of cardiomyocyte dysfunction induced by SU feeding. Thus phenotypic changes in cardiomyocyte mechanics associated with early stages of type 2 diabetes were found to be both preventable and reversible with clinically relevant treatments, suggesting that the cellular processes contributing to this dysfunction are modifiable.
Collapse
Affiliation(s)
- Amy J Davidoff
- Univ. of New England, College of Osteopathic Medicine, 11 Hills Beach Rd., Biddeford, ME 04005, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab 2004; 286:E217-25. [PMID: 14559721 DOI: 10.1152/ajpendo.00159.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined the role of intramuscular triglyceride (IMTG) and adipose lipolysis in the elevated fat oxidation during exercise caused by a high-fat diet. In four separate trials, six endurance-trained cyclists exercised at 50% peak O2 consumption for 1 h after a two-day control diet (22% fat, CON) or an isocaloric high-fat diet (60% fat, HF) with or without the ingestion of acipimox, an adipose lipolysis inhibitor, before exercise. During exercise, HF elevated fat oxidation by 72% and whole body lipolysis [i.e., the appearance rate of glycerol in plasma (Ra glycerol)] by 79% compared with CON (P < 0.05), and this was associated with a 36% increase (P < 0.05) in preexercise IMTG concentration. Although acipimox lowered plasma free fatty acid (FFA) availability, HF still increased fat oxidation and Ra glycerol to the same magnitude above control as the increase caused by HF without acipimox (i.e., both increased fat oxidation 13-14 micromol.kg(-1).min(-1)). In conclusion, the marked increase in fat oxidation after a HF diet is associated with elevated IMTG concentration and whole body lipolysis and does not require increased adipose tissue lipolysis and plasma FFA concentration during exercise. This suggests that altered substrate storage in skeletal muscle is responsible for increased fat oxidation during exercise after 2 days of an HF diet.
Collapse
Affiliation(s)
- Theodore W Zderic
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
By far the largest energy reserve in the human body is adipose tissue triglycerides, and these reserves are an important source of fuel during prolonged endurance exercise. To use this rich source of potential energy during exercise, adipose tissue triglycerides must first be hydrolyzed and the resultant fatty acids delivered to the working muscles. The aims of this review are to describe how exercise alters lipid mobilization from adipose tissue, to identify alternative sources of lipids and to discuss some of the key factors regulating fatty acid mobilization, uptake and oxidation during exercise. The impact of understanding factors involved in the coordinated regulation of lipid mobilization and oxidation during exercise goes far beyond its relevance for endurance exercise performance. A better understanding of the regulation of these processes will facilitate the development of more effective treatment modalities for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jeffrey F Horowitz
- Division of Kinesiology, The University of Michigan, Ann Arbor, MI 48109-2214, USA.
| |
Collapse
|
25
|
Commerford SR, Ferniza JB, Bizeau ME, Thresher JS, Willis WT, Pagliassotti MJ. Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am J Physiol Endocrinol Metab 2002; 283:E545-55. [PMID: 12169448 DOI: 10.1152/ajpendo.00120.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-fat (HFD) and high-sucrose diets (HSD) reduce insulin suppression of glucose production in vivo, increase the capacity for gluconeogenesis in vitro, and increase glucose-6-phosphatase (G-6-Pase) activity in whole cell homogenates. The present study examined the effects of HSD and HFD on in vivo gluconeogenesis, the catalytic and glucose-6-phosphate translocase subunits of G-6-Pase, glucokinase (GK) translocation, and glucose cycling. Rats were fed a high-starch control diet (STD; 68% cornstarch), HSD (68% sucrose), or HFD (45% fat) for 7-13 days. The ratio of 3H in C6:C2 of glucose after 3H2O injection into 6- to 8-h-fasted rats was significantly increased in HSD (0.68 +/- 0.07) and HFD (0.71 +/- 0.08) vs. STD (0.40 +/- 0.10). G-6-Pase activity was significantly higher in HSD and HFD vs. STD in both intact and disrupted liver microsomes. HSD and HFD significantly increased the amount of the p36 catalytic subunit protein, whereas the p46 glucose-6-phosphate translocase protein was increased in HSD only. Despite increased nonglycerol gluconeogenesis and increased G-6-Pase, basal glucose and insulin levels as well as glucose production were not significantly different among groups. Hepatocyte cell suspensions were used to ascertain whether diet-induced adaptations in glucose phosphorylation and GK might serve to compensate for upregulation of G-6-Pase. Tracer-estimated glucose phosphorylation and glucose cycling (glucose <--> glucose 6-phosphate) were significantly higher in cells isolated from HSD only. After incubation with either 5 or 20 mM glucose and no insulin, GK activity (nmol. mg protein(-1). min(-1)) in digitonin-treated eluates (translocated GK) was significantly higher in HSD (32 +/- 4 and 146 +/- 6) vs. HFD (4 +/- 1 and 83 +/- 10) and STD (9 +/- 2 and 87 +/- 9). Thus short-term, chronic exposure to HSD and HFD increase in vivo gluconeogenesis and the G-6-Pase catalytic subunit. Exposure to HSD diet also leads to adaptations in glucose phosphorylation and GK translocation.
Collapse
Affiliation(s)
- S Renee Commerford
- Exercise Science Research Institute, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | |
Collapse
|
26
|
Commerford SR, Bizeau ME, McRae H, Jampolis A, Thresher JS, Pagliassotti MJ. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1380-9. [PMID: 11641106 DOI: 10.1152/ajpregu.2001.281.5.r1380] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.
Collapse
Affiliation(s)
- S R Commerford
- Arizona State University, Exercise Science Research Institute, Tempe, Arizona 85287-0404, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, Pagliassotti MJ. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am J Physiol Regul Integr Comp Physiol 2001; 281:R427-33. [PMID: 11448844 DOI: 10.1152/ajpregu.2001.281.2.r427] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
High-fat (HF) and high-sucrose (SU) diets increase gluconeogenesis. The present study was designed to determine the contributions of pyruvate dehydrogenase, pyruvate carboxylase, phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate kinase fluxes to this accelerated gluconeogenesis (GNEO) in the absence and presence of fatty acids. Male Sprague-Dawley rats were fed an HF, SU, or starch (ST) diet for 1 wk, and hepatocytes or mitochondria were isolated. In the absence of palmitate, the tracer estimated rates of GNEO (nmol. min(-1). mg(-1)) were elevated in hepatocytes isolated from SU (32.3 +/- 1.8) and HF (35.4 +/- 1.8) vs. ST (22.8 +/- 1.5). Pyruvate carboxylase and PEPCK flux rates (nmol. min(-1). mg(-1)) were increased in the SU (47.5 +/- 2.2 and 34.8 +/- 1.5) and HF (49.4 +/- 1.8 and 38.2 +/- 1.8) groups compared with the ST group (32.8 +/- 3.2 and 44.3 +/- 2.0). Palmitate (250-1,000 microM) stimulation of these fluxes was not significantly different among groups. Bromopalmitate, an inhibitor of fat oxidation, abolished differences in GNEO, pyruvate carboxylase, and PEPCK fluxes in HF and SU vs. ST. In isolated mitochondria, pyruvate carboxylation and palmitoyl carnitine oxidation were not significantly different among groups. The results of this study suggest that the increased gluconeogenic flux observed with HF and SU diets is associated with an increased pyruvate flux through pyruvate carboxylase and PEPCK. Moreover, the ability of bromopalmitate to normalize gluconeogenic fluxes suggests that endogenous fatty acids contribute to diet-induced increases in GNEO.
Collapse
Affiliation(s)
- M E Bizeau
- Exercise Science Research Institute, Arizona State University, Tempe, AZ 85287-0404, USA.
| | | | | | | | | | | |
Collapse
|