1
|
Vanhala H, Junttila E, Kataja A, Huhtala H, Luostarinen T, Luoto T. Incidence and Associated Factors of Anemia in Patients with Acute Moderate and Severe Traumatic Brain Injury. Neurocrit Care 2022; 37:629-637. [PMID: 35915348 PMCID: PMC9671999 DOI: 10.1007/s12028-022-01561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022]
Abstract
Background Anemia might contribute to the development of secondary injury in patients with acute traumatic brain injury (TBI). Potential determinants of anemia are still poorly acknowledged, and reported incidence of declined hemoglobin concentration varies widely between different studies. The aim of this study was to investigate the incidence of severe anemia among patients with moderate to severe TBI and to evaluate patient- and trauma-related factors that might be associated with the development of anemia. Methods This retrospective cohort study involved all adult patients admitted to Tampere University Hospital’s emergency department for moderate to severe TBI (August 2010 to July 2012). Detailed information on patient demographics and trauma characteristics were obtained, including data on posttraumatic care, data on neurosurgical procedures, and all measured in-hospital hemoglobin values. Severe anemia was defined as a hemoglobin level less than 100 g/L. Both univariate and multivariable analyses were performed, and hemoglobin trajectories were created. Results The study included 145 patients with moderate to severe TBI (male 83.4%, mean age 55.0 years). Severe anemia, with a hemoglobin level less than 100 g/L, was detected in 66 patients (45.5%) and developed during the first 48 h after the trauma. In the univariate analysis, anemia was more common among women (odds ratio [OR] 2.84; 95% confidence interval [CI] 1.13–7.15), patients with antithrombotic medication prior to trauma (OR 3.33; 95% CI 1.34–8.27), patients with cardiovascular comorbidities (OR 3.12; 95% CI 1.56–6.25), patients with diabetes (OR 4.56; 95% CI 1.69–12.32), patients with extracranial injuries (OR 3.14; 95% CI 1.69–12.32), and patients with midline shift on primary head computed tomography (OR 2.03; 95% CI 1.03–4.01). In the multivariable analysis, midline shift and extracranial traumas were associated with the development of severe anemia (OR 2.26 [95% CI 1.05–4.48] and OR 4.71 [95% CI 1.74–12.73], respectively). Conclusions Severe anemia is common after acute moderate to severe TBI, developing during the first 48 h after the trauma. Possible anemia-associated factors include extracranial traumas and midline shift on initial head computed tomography.
Collapse
Affiliation(s)
- Heidi Vanhala
- Department of Anesthesia and Intensive Care, Tampere University Hospital, Tampere, Finland.
| | - Eija Junttila
- Department of Anesthesia and Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Anneli Kataja
- Medical Imaging Center, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Biostatistics Group, Tampere University, Tampere, Finland
| | - Teemu Luostarinen
- Division of Anesthesiology, Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teemu Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Dilken O, Ergin B, Ince C. Assessment of sublingual microcirculation in critically ill patients: consensus and debate. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:793. [PMID: 32647718 PMCID: PMC7333125 DOI: 10.21037/atm.2020.03.222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Collapse
Affiliation(s)
- Olcay Dilken
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bulent Ergin
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Aso T, Urayama S, Fukuyama H, Murai T. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals. PLoS One 2019; 14:e0222787. [PMID: 31545839 PMCID: PMC6756514 DOI: 10.1371/journal.pone.0222787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 01/24/2023] Open
Abstract
Perfusion-related information is reportedly embedded in the low-frequency component of a blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal. The blood-propagation pattern through the cerebral vascular tree is detected as an interregional lag variation of spontaneous low-frequency oscillations (sLFOs). Mapping of this lag, or phase, has been implicitly treated as a projection of the vascular tree structure onto real space. While accumulating evidence supports the biological significance of this signal component, the physiological basis of the “perfusion lag structure,” a requirement for an integrative resting-state fMRI-signal model, is lacking. In this study, we conducted analyses furthering the hypothesis that the sLFO is not only largely of systemic origin, but also essentially intrinsic to blood, and hence behaves as a virtual tracer. By summing the small fluctuations of instantaneous phase differences between adjacent vascular regions, a velocity response to respiratory challenges was detected. Regarding the relationship to neurovascular coupling, the removal of the whole lag structure, which can be considered as an optimized global-signal regression, resulted in a reduction of inter-individual variance while preserving the fMRI response. Examination of the T2* and S0, or non-BOLD, components of the fMRI signal revealed that the lag structure is deoxyhemoglobin dependent, while paradoxically presenting a signal-magnitude reduction in the venous side of the cerebral vasculature. These findings provide insight into the origin of BOLD sLFOs, suggesting that they are highly intrinsic to the circulating blood.
Collapse
Affiliation(s)
- Toshihiko Aso
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Shinnichi Urayama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Accounting for Tube Hematocrit in Modeling of Blood Flow in Cerebral Capillary Networks. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:4235937. [PMID: 31531122 PMCID: PMC6721022 DOI: 10.1155/2019/4235937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/03/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022]
Abstract
The aim of this paper consists in the derivation of an analytic formula for the hydraulic resistance of capillaries, taking into account the tube hematocrit level. The consistency of the derived formula is verified using Finite Element simulations. Such an effective formula allows for assigning resistances, depending on the hematocrit level, to the edges of networks modeling biological capillary systems, which extends our earlier models of blood flow through large capillary networks. Numerical simulations conducted for large capillary networks with random topologies demonstrate the importance of accounting for the hematocrit level for obtaining consistent results.
Collapse
|
5
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Abstract
PURPOSE OF REVIEW Microcirculatory alterations play a major role in the pathogenesis of shock. Monitoring tissue perfusion might be a relevant goal for shock resuscitation. The goal of this review was to revise the evidence supporting the monitoring of peripheral perfusion and microcirculation as goals of resuscitation. For this purpose, we mainly focused on skin perfusion and sublingual microcirculation. RECENT FINDINGS Although there are controversies about the reproducibility of capillary refill time in monitoring peripheral perfusion, it is a sound physiological variable and suitable for the ICU settings. In addition, observational studies showed its strong ability to predict outcome. Moreover, a preliminary study suggested that it might be a valuable goal for resuscitation. These results should be confirmed by the ongoing ANDROMEDA-SHOCK randomized controlled trial. On the other hand, the monitoring of sublingual microcirculation might also provide relevant physiological and prognostic information. On the contrary, methodological drawbacks mainly related to video assessment hamper its clinical implementation at the present time. SUMMARY Measurements of peripheral perfusion might be useful as goal of resuscitation. The results of the ANDROMEDA-SHOCK will clarify the role of skin perfusion as a guide for the treatment of shock. In contrast, the assessment of sublingual microcirculation mainly remains as a research tool.
Collapse
|
7
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
8
|
Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y. Cerebral circulation in aging. Ageing Res Rev 2016; 30:49-60. [PMID: 27484894 DOI: 10.1016/j.arr.2016.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Cerebral circulation is known to be protected by the regulatory function against the hypoperfusion that will affect the cognitive function as a result of brain ischemia and energy failure. The regulatory function includes cerebrovascular autoregulation, chemical control, metabolic control, and neurogenic control, and those compensatory mechanisms can be influenced by hypertension, atherosclerosis, cardiac diseases, cerebrovascular diseases and aging. On the other hand, large and/or small infarction, intracranial hemorrhage, subarachnoid hemorrhage, atherosclerosis, amylod angiopathy are also more directly associated with cognitive decline not only in those with vascular cognitive impairment or vascular dementia but also those with Alzheimer's disease.
Collapse
Affiliation(s)
- Ken Nagata
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan.
| | - Takashi Yamazaki
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Daiki Takano
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Tetsuya Maeda
- Department of Neurology and Gerontology, Iwate Medical University, Morioka, Japan
| | - Yumi Fujimaki
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Taizen Nakase
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Yuichi Sato
- Department of Neurology, Noshiro Yamamoto Medical Association Hospital, Noshiro, Japan
| |
Collapse
|
9
|
Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci 2016; 10:82. [PMID: 27630556 PMCID: PMC5006088 DOI: 10.3389/fncom.2016.00082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.
Collapse
Affiliation(s)
- Louis Gagnon
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Amy F Smith
- Institut de Mécanique des Fluides de ToulouseToulouse, France; Department of Physiology, University of ArizonaTucson, AZ, USA
| | - David A Boas
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna Devor
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, USA; Departments of Neurosciences and Radiology, University of California, San DiegoLa Jolla, CA, USA
| | | | - Sava Sakadžić
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
10
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
11
|
Ferrara G, Kanoore Edul VS, Martins E, Canales HS, Canullán C, Murias G, Pozo MO, Estenssoro E, Ince C, Dubin A. Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage. J Appl Physiol (1985) 2016; 120:1132-40. [DOI: 10.1152/japplphysiol.00007.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/10/2016] [Indexed: 11/22/2022] Open
Abstract
The alterations in O2 extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O2 from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco2). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco2 in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution ( n = 8), hemorrhage ( n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O2 consumption (V̇o2) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco2 by air tonometry, and V̇o2 by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm2 and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm2 and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O2 extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco2 (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O2 extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco2 was not dependent on CO2 washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.
Collapse
Affiliation(s)
- Gonzalo Ferrara
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Vanina Siham Kanoore Edul
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Enrique Martins
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Héctor Saúl Canales
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Carlos Canullán
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Gastón Murias
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Mario Omar Pozo
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Elisa Estenssoro
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Can Ince
- Academic Medical Center, Department of Translational Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Dubin
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; and
| |
Collapse
|
12
|
Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the determinants in maintaining the CBF homeostasis. PROGRESS IN BRAIN RESEARCH 2016; 225:77-97. [PMID: 27130412 DOI: 10.1016/bs.pbr.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain.
Collapse
Affiliation(s)
- I Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - K Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
13
|
Turko AJ, Robertson CE, Bianchini K, Freeman M, Wright PA. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure. ACTA ACUST UNITED AC 2014; 217:3988-95. [PMID: 25267849 DOI: 10.1242/jeb.110601] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the abundance of oxygen in atmospheric air relative to water, the initial loss of respiratory surface area and accumulation of carbon dioxide in the blood of amphibious fishes during emersion may result in hypoxemia. Given that the ability to respond to low oxygen conditions predates the vertebrate invasion of land, we hypothesized that amphibious fishes maintain O2 uptake and transport while emersed by mounting a co-opted hypoxia response. We acclimated the amphibious fish Kryptolebias marmoratus, which are able to remain active for weeks in both air and water, for 7 days to normoxic brackish water (15‰, ~21kPa O2; control), aquatic hypoxia (~3.6kPa), normoxic air (~21 kPa) or aerial hypoxia (~13.6kPa). Angiogenesis in the skin and bucco-opercular chamber was pronounced in air- versus water-acclimated fish, but not in response to hypoxia. Aquatic hypoxia increased the O2-carrying capacity of blood via a large (40%) increase in red blood cell density and a small increase in the affinity of hemoglobin for O2 (P50 decreased 11%). In contrast, air exposure increased the hemoglobin O2 affinity (decreased P50) by 25% without affecting the number of red blood cells. Acclimation to aerial hypoxia both increased the O2-carrying capacity and decreased the hemoglobin O2 affinity. These results suggest that O2 transport is regulated both by O2 availability and also, independently, by air exposure. The ability of the hematological system to respond to air exposure independent of O2 availability may allow extant amphibious fishes, and may also have allowed primitive tetrapods to cope with the complex challenges of aerial respiration during the invasion of land.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Cayleih E Robertson
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kristin Bianchini
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Megan Freeman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Küblböck M, Woletz M, Höflich A, Sladky R, Kranz GS, Hoffmann A, Lanzenberger R, Windischberger C. Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI. Neuroimage 2014; 103:249-257. [PMID: 25251869 DOI: 10.1016/j.neuroimage.2014.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 08/22/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023] Open
Abstract
The (fractional) amplitudes of low-frequency fluctuations (f)ALFF are popular measures for the magnitude of low-frequency oscillations in resting-state fMRI (R-fMRI) data. Both measures can be directly derived from the spectral power of R-fMRI time courses. Numerous studies suggest that ALFF and fALFF might be used as biomarkers for a variety of diseases including schizophrenia, major depressive disorder, and obsessive-compulsive disorder. However, the temporal stability of (f)ALFF values, which is of great importance for the application of (f)ALFF both as a biomarker and scaling parameter, has not been studied in detail yet. Here, we quantify the temporal stability, robustness and reproducibility of both ALFF and fALFF maps obtained from R-fMRI data by performing statistical analyses over 55 minute resting-state scans which included a period of NaCl infusion. We also examine the differences of using either raw or standardised (f)ALFF maps. Our analyses show that no significant changes of (f)ALFF values over the 55minute period occur for both raw and standardised (f)ALFF maps. In addition, we demonstrate that raw (f)ALFF maps across subjects are correlated with head motion as quantified via frame-wise displacement, whereas no such correlation is present in standardised (f)ALFF maps. In conclusion, the results of our study show that both ALFF and fALFF qualify as potential biomarkers due to their high temporal stability.
Collapse
Affiliation(s)
- Martin Küblböck
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Michael Woletz
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - André Hoffmann
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.
| |
Collapse
|
15
|
Koning NJ, Simon LE, Asfar P, Baufreton C, Boer C. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2014; 307:H967-75. [PMID: 25063797 DOI: 10.1152/ajpheart.00397.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously we showed that cardiopulmonary bypass (CPB) during cardiac surgery is associated with reduced sublingual microcirculatory perfusion and oxygenation. It has been suggested that impaired microcirculatory perfusion may be paralleled by increased heterogeneity of flow in the microvascular bed, possibly leading to arteriovenous shunting. Here we investigated our hypothesis that acute hemodynamic disturbances during extracorporeal circulation indeed lead to microcirculatory heterogeneity with hyperdynamic capillary perfusion and reduced systemic oxygen extraction. In this single-center prospective observational study, patients undergoing cardiac surgery with (n = 18) or without (n = 13) CPB were included. Perioperative microcirculatory perfusion was assessed sublingually with sidestream darkfield imaging, and recordings were quantified for microcirculatory heterogeneity and hyperdynamic capillary perfusion. The relationship with hemodynamic and oxygenation parameters was analyzed. Microcirculatory heterogeneity index increased substantially after onset of CPB [0.5 (0.0-0.9) to 1.0 (0.3-1.3); P = 0.031] but not during off-pump surgery. Median capillary red blood cell (RBC) velocity increased intraoperatively in the CPB group only [1,600 (913-2,500 μm/s) vs. 380 (190-480 μm/s); P < 0.001], with 31% of capillaries supporting high RBC velocities (>2,000 μm/s). Hyperdynamic microcirculatory perfusion was associated with reduced arteriovenous oxygen difference and systemic oxygen consumption during and after CPB. The current study provides the first direct human evidence for a microvascular shunting phenomenon through hyperdynamic capillaries following acute physiological disturbances after onset of CPB. The hypothesis of impaired systemic oxygen offloading caused by hyperdynamic capillaries was supported by reduced blood arteriovenous oxygen difference and low systemic oxygen extraction associated with CPB.
Collapse
Affiliation(s)
- Nick J Koning
- Department of Anesthesiology. Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands; Departments of Integrated Neurovascular Biology, Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique UMR 6214;
| | - Lotte E Simon
- Department of Anesthesiology. Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Pierre Asfar
- Departments of Integrated Neurovascular Biology, Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique UMR 6214; Réanimation Médicale et Médicine Hyperbare, LUNAM University, Université d'Angers, Angers, France
| | - Christophe Baufreton
- Cardiovascular Surgery, LUNAM University, Université d'Angers, Angers, France; and
| | - Christa Boer
- Department of Anesthesiology. Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Longitudinal Oxygen Tension Gradients in Small Cortical Microvessels in the Rat Brain on Development of Acute Anemia. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9804-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Tissue Oxygen Tension Profiles Close to Brain Arterioles and Venules in the Rat Cerebral Cortex during the Development of Acute Anemia. ACTA ACUST UNITED AC 2010; 40:723-31. [DOI: 10.1007/s11055-010-9318-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Indexed: 10/19/2022]
|
18
|
Lorsomradee S, Lorsomradee S. The use of a volatile anesthetic regimen protects against acute normovolemic hemodilution induced myocardial depression in patients with coronary artery disease. Asian J Transfus Sci 2009; 3:10-3. [PMID: 20041090 PMCID: PMC2798776 DOI: 10.4103/0973-6247.44474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Previous studies indicated that acute normovolemic hemodilution (ANH) was associated with a depression of myocardial function in coronary surgery patients with baseline heart rate faster than 90 bpm. It was suggested that this phenomenon could be explained by the occurrence of myocardial ischemia. In the present study, we hypothesized that the cardioprotective properties of a volatile anesthetic regimen might protect against the ANH related myocardial functional impairment. MATERIALS AND METHODS Forty elective coronary surgery patients with baseline heart rate faster than 90 bpm were randomly allocated to receive different anesthetic regimens. Group A (n = 20) received midazolam-based anesthesia. Group B (n = 20) received a sevoflurane-based anesthesia. Five-lead electrocardiogram, pulse oximetry, capnography, radial arterial pressure, and Swan Ganz continuous thermodilution cardiac output via right internal jugular vein were monitored. Measurements were obtained before and after ANH. Data were compared using paired t test. All data were expressed as mean +/- SD. Data were considered significant if P < 0.05. RESULTS After ANH, systemic vascular resistance was slightly decreased in group A while there was a significant decrease in group B. In group A, cardiac output was slightly decreased from 5.07+/-1.17 l/min to 5.02+/-1.28 l/min after ANH, whereas in group B, cardiac output was significantly increased from 4.84+/-1.21 l/min to 6.02+/-1.28 l/min after ANH. CONCLUSION In coronary surgery patients, with baseline heart rate faster than 90 bpm, anesthesia with sevoflurane during ANH was associated with an improvement in myocardial function after ANH, which was not present in patients anesthetized with midazolam.
Collapse
|
19
|
Nygren A, Thorén A, Ricksten SE. Vasopressin decreases intestinal mucosal perfusion: a clinical study on cardiac surgery patients in vasodilatory shock. Acta Anaesthesiol Scand 2009; 53:581-8. [PMID: 19239407 DOI: 10.1111/j.1399-6576.2008.01900.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Low to moderate doses of vasopressin have been used in the treatment of cathecholamine-dependent vasodilatory shock in sepsis or after cardiac surgery. We evaluated the effects of vasopressin on jejunal mucosal perfusion, gastric-arterial pCO2 gradient and the global splanchnic oxygen demand/supply relationship in patients with vasodilatory shock after cardiac surgery. METHODS Eight mechanically ventilated patients, dependent on norepinephrine to maintain mean arterial pressure (MAP) > or = 60 mmHg because of septic/post-cardiotomy vasodilatory shock and multiple organ failure after cardiac surgery, were included. Vasopressin was sequentially infused at 1.2, 2.4 and 4.8 U/h for 30-min periods. Norepinephrine was simultaneously decreased to maintain MAP at 75 mmHg. At each infusion rate of vasopressin, data on systemic hemodynamics, jejunal mucosal perfusion, jejunal mucosal hematocrit and red blood cell velocity (laser Doppler flowmetry) as well as gastric-arterial pCO2 gradient (gastric tonometry) and splanchnic oxygen and lactate extraction (hepatic vein catheter) were obtained. RESULTS The cardiac index, stroke volume index and systemic oxygen delivery decreased and systemic vascular resistance and systemic oxygen extraction increased significantly, while the heart rate or global oxygen consumption did not change with increasing vasopressin dose. Jejunal mucosal perfusion decreased and the arterial-gastric-mucosal pCO2 gradient increased, while splanchnic oxygen or lactate extraction or mixed venous-hepatic venous oxygen saturation gradient were not affected by increasing infusion rates of vasopressin. CONCLUSIONS Infusion of low to moderate doses of vasopressin in patients with norepinephrine-dependent vasodilatory shock after cardiac surgery induces an intestinal and gastric mucosal vasoconstriction.
Collapse
Affiliation(s)
- A Nygren
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
20
|
Okazawa H, Kudo T. Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and 15O-labeled tracers. Ann Nucl Med 2009; 23:217-27. [PMID: 19353235 DOI: 10.1007/s12149-009-0235-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/17/2008] [Indexed: 10/20/2022]
|
21
|
|
22
|
Vovenko EP, Chuikin AE. Oxygen tension in rat cerebral cortex microvessels in acute anemia. ACTA ACUST UNITED AC 2008; 38:493-500. [DOI: 10.1007/s11055-008-9007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 11/25/2022]
|
23
|
|
24
|
Beck J, Stummer W, Lehmberg J, Baethmann A, Uhl E. Arteriovenous transit time as a measure for microvascular perfusion in cerebral ischemia and reperfusion. Neurosurgery 2007; 61:826-33; discussion 833-4. [PMID: 17986945 DOI: 10.1227/01.neu.0000298912.86506.b1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to measure microvascular perfusion (MVP) on the brain surface in global ischemia and reperfusion by means of intravital fluorescence microscopy. METHODS Global ischemia was induced in gerbils for 15 minutes with 3 hours of reperfusion. The passage of a rhodamine bolus (25 mul intravenously) from an arteriole to a venule was analyzed by intravital fluorescence microscopy through a cranial window. After the changes of fluorescence intensities in an arteriole and venule, the arteriovenous transit time and the MVP were calculated using the integral difference method. Additionally, regional cerebral blood flow was assessed by laser Doppler flowmetry and vessel diameters and blood pressure were recorded. RESULTS The baseline mean MVP was 2.21 +/- 0.89 sec(-1) in the control group, remaining stable throughout observation in sham operated animals. In ischemic animals, the MVP was 2.11 +/- 0.47 sec(-1) at baseline, showing a significant decrease during ischemia to 0.07 +/- 0.16 sec(-1) (3%; P < 0.01). There was postischemic maximum hyperperfusion of 2.72 +/- 0.40 sec(-1) (134 +/- 11%; P < 0.05) at 15.4 +/- 6.9 minutes and hypoperfusion of 1.63 +/- 0.57 sec(-1) (77 +/- 13%; P = 0.19) at 36.6 +/- 16.4 minutes. There was a strong, significant correlation between MVP and regional cerebral blood flow (R = 0.82; P < 0.0001). CONCLUSION MVP on the brain surface can be calculated from the transit time of a dye bolus from an arteriole to a venule. MVP shows a high correlation to regional cerebral blood flow. The assessment of MVP allows one to easily and repeatedly quantify perfusion changes of the microvascular network on the brain surface.
Collapse
Affiliation(s)
- Jürgen Beck
- Department of Neurosurgery, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
25
|
Li M, Ratcliffe SJ, Knoll F, Wu J, Ances B, Mardini W, Floyd TF. Aging: Impact Upon Local Cerebral Oxygenation and Blood Flow With Acute Isovolemic Hemodilution. J Neurosurg Anesthesiol 2006; 18:125-31. [PMID: 16628066 DOI: 10.1097/00008506-200604000-00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Data from the neurosurgical critical care arena demonstrate a correlation between cerebral oxygenation, survival, and cognitive function. Transfusion may increase and hemodilution decrease cerebral oxygenation. Both acute and chronic anemia have been associated with cognitive dysfunction. Aggressive blood conservation protocols have been instituted across all age groups without conclusive evidence for their impact upon outcome. Aged subjects are at the greatest risk of cognitive sequelae after major surgery associated with significant blood loss. We hypothesize that cerebral physiologic changes associated with "normal" aging may compromise cerebral oxygenation in the presence of severe anemia.Fischer 344 rats, the NIH National Institute of Aging normal aging rat model, underwent a stepwise isovolemic hemodilution protocol. Age groups (Age Grp) studied were as follows: Age Grp-A (3 months), n=14; Age Grp-B (9 to 12 months), n=14; and Age Grp-C (24 months), n=14. Brain oxygen tension (PBrO2), laser Doppler flow, and mean arterial pressure were measured. Final hemoglobin averaged 6.1+/-0.9 g/dL. PBrO2 levels decreased from a baseline of 18.1+/-4.1 to 17.5+/-6.8 mm Hg (P=0.49), and laser Doppler flow increased by 18+/-20% (P<0.0001) after hemodilution. Employing repeated measures multiple regression, Age Grp (P=0.30) was not a significant controlling covariate of PBrO2 in response to isovolemic hemodilution. PBrO2 levels were actually higher in Age Grp-C animals at all time points of the hemodilution protocol, although this was not statistically significant. Aged animals were also fully capable of mounting a robust local cerebral hyperemic response to the anemic challenge that was not separable from the response of younger animals.
Collapse
Affiliation(s)
- Min Li
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Nygren A, Thorén A, Ricksten SE. Vasopressors and intestinal mucosal perfusion after cardiac surgery: Norepinephrine vs. phenylephrine. Crit Care Med 2006; 34:722-9. [PMID: 16505658 DOI: 10.1097/01.ccm.0000201879.20281.c6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To evaluate the potential differential effects of norepinephrine, an alpha1-, beta1-, and beta2-receptor agonist, to the alpha1-agonist phenylephrine on jejunal mucosal perfusion, gastric-arterial PCO2 gradient, and the global splanchnic oxygen demand-supply relationship after cardiac surgery. DESIGN A randomized, prospective, interventional crossover study. SETTING A university cardiothoracic intensive care unit. PATIENTS Ten patients were studied during propofol sedation and mechanical ventilation after uncomplicated coronary artery bypass surgery. INTERVENTIONS Each patient received randomly and sequentially norepinephrine (0.052+/-0.009 microg/kg/min) and phenylephrine (0.50+/-0.22 microg/kg/min) to increase mean arterial blood pressure by 30%. MEASUREMENTS AND MAIN RESULTS Data on jejunal mucosal perfusion, jejunal mucosal hematocrit, and red blood cell velocity (laser Doppler flowmetry) as well as gastric-arterial Pco2 gradient (tonometry) and splanchnic oxygen extraction were obtained before (control) and during a 30-min drug infusion period after the target mean arterial blood pressure was reached. The procedure was sequentially repeated for the second vasopressor. Both drugs induced a 40-46% increase in systemic vascular resistance with no change in cardiac index. Neither jejunal mucosal perfusion, jejunal mucosal hematocrit, red blood cell velocity, nor gastric-arterial Pco2 gradient was affected by any of the vasopressors. Splanchnic oxygen extraction increased from 38.2% to 43.1% (p<.001) with norepinephrine and from 39.3% to 47.5% (p<.001) with phenylephrine. This increase was significantly more pronounced with phenylephrine compared with norepinephrine (p<.05). Mixed venous-hepatic vein oxygen saturation gradient increased with both drugs (p<.01), and the increase was more pronounced with phenylephrine (p<.05). Splanchnic lactate extraction was not significantly affected by any of the vasopressors. CONCLUSIONS Phenylephrine induced a more pronounced global alpha1-mediated splanchnic vasoconstriction compared with norepinephrine. Neither of the vasoconstrictors impaired perfusion of the gastrointestinal mucosa in postcardiac surgery patients. The lack of norepinephrine-induced, alpha1-mediated impairment of gastrointestinal perfusion is not explained by a beta2-mediated counteractive vasodilation but instead by possible mucosal autoregulatory escape.
Collapse
Affiliation(s)
- Andreas Nygren
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
27
|
Licker M, Ellenberger C, Sierra J, Kalangos A, Diaper J, Morel D. Cardioprotective Effects of Acute Normovolemic Hemodilution in Patients Undergoing Coronary Artery bypass Surgery. Chest 2005; 128:838-47. [PMID: 16100176 DOI: 10.1378/chest.128.2.838] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES We hypothesized that lowering blood viscosity with acute normovolemic hemodilution (ANH) would confer additional cardioprotection in patients undergoing coronary artery bypass surgery (CABG) with aortic cross-clamping. DESIGN In a prospective, randomized controlled trial, we studied the efficacy of ANH in anesthetized patients prior to cardiopulmonary bypass for the prevention of myocardial injuries. SETTING Cardiac surgical center in a university hospital. PATIENTS AND METHODS Patients scheduled to undergo elective CABG entered the study protocol and were randomly allocated to one of two groups: ANH (n = 43 patients) or standard care management (n = 41 patients). In the ANH group, the whole-blood/colloid exchange was aimed to achieve a hematocrit value of 28%. All patients were managed with standard myocardial preservation techniques including cold-blood cardioplegia and anesthetic preconditioning. The outcome measures included the release of myocardial enzymes (plasma troponin I and creatinine phosphokinase), perioperative hemodynamic changes, need for pharmacologic cardiovascular support, and cardiac complications. RESULTS In the hemodilution group, the postoperative release of troponin I (mean peak plasma concentration, 1.4 ng/mL; 95% confidence interval, 1.0 to 1.8) and myocardial fraction of creatine kinase (mean, 29 U/L; 95% confidence interval, 23 to 35) were significantly lower than in the control group (mean, 3.8 ng/mL; 95% confidence interval, 3.2 to 4.5; and 71 U/L; 95% confidence interval, 53 to 89). Requirement for inotropic support was significantly lower in the protocol patients (7 of 41 patients vs 15 of 39 patients), and fewer patients presented with either atrial fibrillation, atrioventricular conduction blockade, or combined disorders (12 of 41 patients vs 26 of 39 patients, p < 0.05). CONCLUSIONS In addition to conventional myocardial preservation techniques, preoperative ANH achieved further cardiac protection in patients undergoing on-pump myocardial revascularization.
Collapse
Affiliation(s)
- Marc Licker
- Department of Anesthesiology, Pharmacology, and Surgical Intensive Care, University Hospital of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Thorén A, Nygren A, Houltz E, Ricksten SE. Cardiopulmonary bypass in humans--jejunal mucosal perfusion increases in parallel with well-maintained microvascular hematocrit. Acta Anaesthesiol Scand 2005; 49:502-9. [PMID: 15777298 DOI: 10.1111/j.1399-6576.2005.00627.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND An imbalance between splanchnic oxygen supply and demand occurs during cardiopulmonary bypass (CPB) in man, which might disrupt the intestinal mucosal barrier function. The aim of the present study was to evaluate the effects of mild hypothermic CPB on intestinal mucosal perfusion in man undergoing cardiac surgery. Additionally we aimed to identify variables, which independently could predict changes of intestinal mucosal microcirculatory variables during CPB. METHODS Jejunal mucosal perfusion (JMP), jejunal mucosal hematocrit (JMHt), red blood cell (RBC) velocity and arteriolar vasomotion using endoluminal jejunal laser Doppler flow metry were studied in eight cardiac surgical patients before and during CPB at a temperature of 34 degrees C. RESULTS Cardiopulmonary bypass and the accompanied hemodilution (25-30%) induced a 44% increase in JMP (P < 0.05) and a 42% increase in RBC velocity (P < 0.01), with no change in JMHt. The oscillation amplitude of JMP, at a fundamental frequency of 2.8 cycles min(-1), increased with 175% (P < 0.05) during CPB. Splanchnic oxygen extraction increased by 64% during CPB (P < 0.05). Stepwise multiple regression analysis identified systemic hematocrit, arterial O2 and CO2 tension and splanchnic oxygen extraction as independent predictors of RBC velocity during CPB (R2=0.63, P < 0.001). The oscillation amplitude of JMP was predicted by RBC velocity and splanchnic oxygen extraction (R2= 0.68, P <0.0001). CONCLUSIONS The increase in RBC velocity and enhanced arteriolar vasomotion, as well as maintained jejunal mucosal hematocrit, are microcirculatory, compensatory mechanisms for the splanchic oxygen supply/demand mismatch seen during cardiopulmonary bypass in humans.
Collapse
Affiliation(s)
- A Thorén
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | |
Collapse
|
29
|
Licker M, Ellenberger C, Sierra J, Christenson J, Diaper J, Morel D. Cardiovascular response to acute normovolemic hemodilution in patients with coronary artery diseases: Assessment with transesophageal echocardiography. Crit Care Med 2005; 33:591-7. [PMID: 15753752 DOI: 10.1097/01.ccm.0000156446.03285.e0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Preoperative acute normovolemic hemodilution induces an increase in circulatory output that is thought to be limited in patients with cardiac diseases. Using multiple-plane transesophageal echocardiography, we investigated the mechanisms of cardiovascular adaptation during acute normovolemic hemodilution in patients with severe coronary artery disease. DESIGN Prospective case-control study. SETTING Operating theater in a university hospital. PATIENTS Consecutive patients treated with beta-blockers, scheduled to undergo coronary artery bypass (n = 50). INTERVENTIONS After anesthesia induction, blood withdrawal and isovolemic exchange with iso-oncotic starch (1:1.15 ratio) to achieve a hematocrit value of 28%. MEASUREMENTS AND MAIN RESULTS In addition to heart rate and intravascular pressures, echocardiographic recordings were obtained before and after acute normovolemic hemodilution to assess cardiac preload, afterload, and contractility. In a control group, not subjected to acute normovolemic hemodilution, hemodynamic variables remained stable during a 20-min anesthesia period. Following acute normovolemic hemodilution, increases in cardiac stroke volume (+28 +/- 4%; mean +/- sd) were correlated with increases in central venous pressure (+2.0 +/- 1.3 mm Hg; R = .56) and in left ventricular end-diastolic area (+18 +/- 5%, R = .39). The unchanged left ventricular end-systolic wall stress and preload-adjusted maximal power indicated that neither left ventricular afterload nor contractility was affected by acute normovolemic hemodilution. Diastolic left ventricular filling abnormalities (15 of 22 cases) improved in 11 patients and were stable in the remaining four patients. Despite reduction in systemic oxygen delivery (-20.5 +/- 7%, p < .05), there was no evidence for myocardial ischemia (electrocardiogram, left ventricular wall motion abnormalities). CONCLUSIONS In anesthetized patients with coronary artery disease, moderate acute normovolemic hemodilution did not compromise left ventricular systolic and diastolic function. Lowering blood viscosity resulted in increased stroke volume that was mainly related to increased venous return and higher cardiac preload.
Collapse
Affiliation(s)
- Marc Licker
- Department of Anesthesiology, Pharmacology and Surgical Intensive Care, University Hospital of Geneva
| | | | | | | | | | | |
Collapse
|
30
|
Yoshitani K, Kawaguchi M, Iwata M, Sasaoka N, Inoue S, Kurumatani N, Furuya H. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth 2005; 94:341-6. [PMID: 15591331 DOI: 10.1093/bja/aei046] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND A severe reduction in haemoglobin concentration can lead to a decrease in jugular venous bulb oxygen saturation (Sj(O(2))). However, recent evidences suggests that cerebral oxygen saturation (Sc(O(2))) measured by near infrared spectroscopy decreased during even mild haemodilution. We therefore tested the hypothesis that the changes in Sc(O(2)) may not be parallel to those in Sj(O(2)) during haemodilution. In addition, as cerebral oxygen balance during the operation can vary depending on the anaesthetics used, the changes in Sj(O(2)) and Sc(O(2)) during haemodilution were compared between patients under propofol and isoflurane/nitrous oxide anaesthesia. METHODS Forty-two patients with pre-donated autologous blood were randomly assigned to receive propofol (Group P) or sevoflurane/nitrous oxide (Group S) anaesthesia. A fibreoptic catheter was placed in the jugular bulb to measure Sj(O(2)). A cerebral oximeter, INVOS 4100S was used to monitor Sc(O(2)). Arterial and jugular bulb blood samples were drawn simultaneously at: (i) 10 min after the start of operation, (ii) after 400 ml of blood loss, (iii) after 800 ml of blood loss, (iv) just before the transfusion of pre-donated autologous blood, and (v) after 400 ml transfusion. RESULTS Mean (sd) control values of Sj(O(2)) in Group P were significantly lower than those in Group S (55 (8)% vs 71 (10)%, respectively; P<0.05), whereas there was no significant difference in control values of Sc(O(2)) between the two groups. During the operation, haemoglobin (Hb) concentrations significantly deceased in the both groups compared with control values (from 9.8 to 7.6 g dl(-1) in Group P and from 9.9 to 8.0 g dl(-1) in Group S). During a reduction in Hb concentration, Sj(O(2)) values remained unchanged in both groups, whereas Sc(O(2)) values significantly decreased in both groups (from 57 to 51% in Group P and from 59 to 52% in Group S). CONCLUSION The results indicated that, although the changes in Sj(O(2)) and Sc(O(2)) during a reduction in haemoglobin concentration were similar under propofol and sevoflurane/nitrous oxide anaesthesia, the changes in Sc(O(2)) were not parallel to those in Sj(O(2)). The discrepancy of the results in Sj(O(2)) and Sc(O(2)) may make the interpretation of their values difficult during haemodilution.
Collapse
Affiliation(s)
- K Yoshitani
- Department of Anaesthesiology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Tonnesen J, Pryds A, Larsen EH, Paulson OB, Hauerberg J, Knudsen GM. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp Physiol 2005; 90:349-55. [PMID: 15653714 DOI: 10.1113/expphysiol.2004.029512] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laser Doppler flowmetry (LDF) is a recent technique that is increasingly being used to monitor relative changes in cerebral blood flow whereas the intra-arterial 133xenon injection technique is a well-established method for repeated absolute measurements of cerebral blood flow. The aim of this study was to validate LDF for assessment of cerebral autoregulation and CO2 reactivity with the 133xenon injection technique as the gold standard. Simultaneous measurements of cerebral blood flow (CBF) were collected by LDF (CBF(LDF)) and the 133xenon method (CBF(Xe)) while (1) cerebral autoregulation was challenged by controlled systemic haemorrhage, or (2) cerebral blood flow was varied by manipulating the arterial partial pressure of CO2 (P(a,CO2)). LDF slightly overestimated CBF under conditions of haemorrhagic shock and haemodilution caused by controlled haemorrhage (paired t test, P < 0.05). However for pooled data, the autoregulation lower limit was similar when determined with the 133xenon and the LDF techniques: 65 +/- 3.9 mmHg and 60 +/- 5.6 mmHg, respectively. Linear regression analysis yielded CBF(Xe) = (1.02 x CBF(LDF)) + 9.1 and r = 0.90. Even for substantial changes in P(a,CO2), the two methods resulted in similar results. We conclude that even though LDF overestimated CBF during haemorrhagic shock caused by controlled haemorrhage, the lower limit autoregulation was correctly identified. The laser Doppler technique provides a reliable method for detection of a wide range of cerebral blood flow changes under CO2 challenge. Haemodilution influences the two methods differently causing relative overestimation of blood flow by the laser Doppler technique compared to the 1(33)xenon method.
Collapse
Affiliation(s)
- Jan Tonnesen
- Neurobiology Research Unit, N9201, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK- 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Swartz HM, Dunn J. The Difficulties in Comparing In Vivo Oxygen Measurements. OXYGEN TRANSPORT TO TISSUE XXVI 2005; 566:295-301. [PMID: 16594165 DOI: 10.1007/0-387-26206-7_39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
There has been rapid development of effective new tools that provide information on oxygenation in vivo and an increased recognition of how valuable such information can be. Consequently, there also has been considerable interest in comparing and evaluating the accuracy and usefulness of the different types of measurements. The various types of measurements usually do not measure the same thing. They may measure PO2 or [O2] or something less directly related, such as hemoglobin saturation. They may make measurements in different compartments (e.g. intracellular, extracellular, vascular) in the volume that they sample, the time span over which they average, the local perturbation that they may cause, etc. They also differ in their sensitivity, accuracy, ability to measure repetitively. However, these potentially confounding and confusing differences can be made into an outstanding virtue, if their nature is considered carefully. Then a proper model can relate them to each other. The ability to relate the various measurements to each other can be a powerful tool to test the validity of models that attempt to explain fully the distribution of oxygen in real systems and the factors that affect this. We then could have a major advancement in our understanding of oxygen transport in tissues, with an ability to determine accurately the effects of physiological and pathophysiological perturbations on oxygenation at all levels of cells and tissues in vivo.
Collapse
|
33
|
Nemoto M, Sheth S, Guiou M, Pouratian N, Chen JWY, Toga AW. Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex. J Neurosci 2004; 24:3850-61. [PMID: 15084666 PMCID: PMC6729349 DOI: 10.1523/jneurosci.4870-03.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear relationships between synaptic activity and hemodynamic responses are critically dependent on functional signal etiology and paradigm. To investigate these relationships, we simultaneously measured local field potentials (FPs) and optical intrinsic signals in rat somatosensory cortex while delivering a small number of electrical pulses to the hindpaw with varied stimulus intensity, number, and interstimulus interval. We used 570 and 610 nm optical signals to estimate cerebral blood volume (CBV) and oxygenation, respectively. The spatiotemporal evolution patterns and trial-by-trial correlation analyses revealed that CBV-related optical signals have higher fidelity to summed evoked FPs (SigmaFPs) than oxygenation-derived signals. CBV-related signals even correlated with minute SigmaFP fluctuations within trials of the same stimulus condition. Furthermore, hemodynamic signals (CBV and late oxygenation signals) increased linearly with SigmaFP while varying stimulus number, but they exhibited a threshold and steeper gradient while varying stimulus intensity, suggesting insufficiency of the homogeneity property of linear systems and the importance of spatiotemporal coherence of neuronal population activity in hemodynamic response formation. These stimulus paradigm-dependent linear and nonlinear relationships demonstrate that simple subtraction-based analyses of hemodynamic signals produced by complex stimulus paradigms may not reflect a difference in SigmaFPs between paradigms. Functional signal- and paradigm-dependent linearity have potentially profound implications for the interpretation of perfusion-based functional signals.
Collapse
Affiliation(s)
- Masahito Nemoto
- Laboratory of Neuroimaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90024, USA
| | | | | | | | | | | |
Collapse
|
34
|
Vovenko E, Golub A, Pittman R. Microvascular PO2 and blood velocity measurements in rat brain cortex during hemodilution with a plasma expander (Hespan) and a hemoglobin-based oxygen carrier (DCLHb). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 540:215-20. [PMID: 15174623 DOI: 10.1007/978-1-4757-6125-2_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Eugene Vovenko
- Pavlov Institute of Physiology, nab. Makarova, bld.6, St. Petersburg 199034, Russia.
| | | | | |
Collapse
|
35
|
Hare GMT, Mazer CD, Mak W, Gorczynski RM, Hum KM, Kim SY, Wyard L, Barr A, Qu R, Baker AJ. Hemodilutional anemia is associated with increased cerebral neuronal nitric oxide synthase gene expression. J Appl Physiol (1985) 2003; 94:2058-67. [PMID: 12533500 DOI: 10.1152/japplphysiol.00931.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Severe hemodilutional anemia may reduce cerebral oxygen delivery, resulting in cerebral tissue hypoxia. Increased nitric oxide synthase (NOS) expression has been identified following cerebral hypoxia and may contribute to the compensatory increase in cerebral blood flow (CBF) observed after hypoxia and anemia. However, changes in cerebral NOS gene expression have not been reported after acute anemia. This study tests the hypothesis that acute hemodilutional anemia causes cerebral tissue hypoxia, triggering changes in cerebral NOS gene expression. Anesthetized rats underwent hemodilution when 30 ml/kg of blood were exchanged with pentastarch, resulting in a final hemoglobin concentration of 51.0 +/- 1.2 g/l (n = 7 rats). Caudate tissue oxygen tension (Pbr(O(2))) decreased transiently from 17.3 +/- 4.1 to 14.4 +/- 4.1 Torr (P < 0.05), before returning to baseline after approximately 20 min. An increase in CBF may have contributed to restoring Pbr(O(2)) by improving cerebral tissue oxygen delivery. An increase in neuronal NOS (nNOS) mRNA was detected by RT-PCR in the cerebral cortex of anemic rats after 3 h (P < 0.05, n = 5). A similar response was observed after exposure to hypoxia. By contrast, no increases in mRNA for endothelial NOS or interleukin-1beta were observed after anemia or hypoxia. Hemodilutional anemia caused an acute reduction in Pbr(O(2)) and an increase in cerebral cortical nNOS mRNA, supporting a role for nNOS in the physiological response to acute anemia.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anaesthesia, University of Toronto, St. Michael's Hospital, Toronto M5B 1W8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pearce LB, Gawryl MS. The Pharmacology of Tissue Oxygenation by Biopure’s Hemoglobin-Based Oxygen Carrier, Hemopure® (HBOC-201). OXYGEN TRANSPORT TO TISSUE XXIV 2003; 530:261-70. [PMID: 14562723 DOI: 10.1007/978-1-4615-0075-9_25] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Biopure's hemoglobin-based oxygen carrier, HBOC-201 (Hemopure), enhances oxygen transport by promoting both the convective and diffusive components of transport in the microcirculation. Convective transport is modified by HBOC-201 in three ways; (i) volume expansion promotes organ and tissue perfusion, (ii) the low viscosity of HBOC-201 improves flow to tissues, and (iii) oxygen delivery by HBOC Hb in the plasma is relatively insensitive to mechanisms regulating RBC distribution in the microcirculation. Diffusive oxygen transport is increased by the higher P50 compared with native RBC Hb which increases the off-loading of oxygen to tissues. Oxygen transport is also increased by reducing the diffusional barrier to oxygen transport associated with the plasma, in which oxygen is sparingly soluble. Biopure's HBOC solutions have been shown in vitro and in vivo to take up and off-load oxygen more efficiently than RBC Hb, and when added to blood can increase the efficiency of RBC oxygen transport.
Collapse
Affiliation(s)
- L Bruce Pearce
- Biopure Corporation, 11 Hurley Street, Cambridge, Massachusetts 02141, USA
| | | |
Collapse
|
37
|
Hudetz AG. The Cerebral Microcirculation in Ischemia and Hypoxemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 530:347-57. [PMID: 14562730 DOI: 10.1007/978-1-4615-0075-9_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebral capillary circulation exhibits heterogenous perfusion and undergoes characteristic changes in the distribution of RBC flow in response to systemic physiological stimuli. Hypoxemia, hypercapnia and hypotension increase the homogeneity of capillary perfusion, which is thought to preserve or enhance transcapillary exchange. Redistribution of capillary RBC flow between nutritive capillaries and preferential channels may contribute to this response. Selective changes in capillary flow may be brought about by non-smooth muscle-based contractile or blood-borne mechanisms. Isovolemic hemodilution anemia increases RBC velocity and supply rate with no decrease in capillary hematocrit. The effect of cerebral ischemia on microvascular patency depends on the severity and time course of the insult and whether the injury is global or focal. Capillary plugging is not observed following transient forebrain ischemia in the rat cerebral cortex but may contribute to tissue injury prior to reperfusion and during prolonged and severe ischemia. In the future, a better understanding of the functional architecture of the cerebral capillary network and its significance in the adaptation to altered circulatory conditions will continue to be an important goal of research. More work will have to be done to (i) substantiate the postulated physiological regulation of cerebral capillary flow, (ii) determine the cellular mechanism of integration of flow-dependent and neuronal activity-dependent signals, and (iii) identify the principal mediators, their cellular sources and molecular targets. The final answer to these questions will in a large part depend on our ability to directly, i.e. microscopically, visualize microvascular, neuronal and molecular phenomena as they occur in the brain in a spatially and temporally distributed manner.
Collapse
Affiliation(s)
- Antal G Hudetz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
38
|
Venturini G, Colasanti M, Persichini T, Fioravanti E, Ascenzi P, Palomba L, Cantoni O, Musci G. Beta-amyloid inhibits NOS activity by subtracting NADPH availability. FASEB J 2002; 16:1970-2. [PMID: 12397094 DOI: 10.1096/fj.02-0186fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The amyloid peptides Abeta1-42 and Abeta25-35 strongly inhibited the activity of constitutive neuronal and endothelial nitric oxide synthases (i.e., NOS-I and NOS-III, respectively) in cell-free assays. The molecular mechanism of NOS inhibition by Ab fragments was studied in detail with Abeta25-35. The inhibitory ability was mostly NADPH-dependent and specific for the soluble form of Abeta25-35. Optical, fluorescence, and NMR spectroscopy showed that the soluble, but not aggregated, Abeta25-35 interacted with NADPH, thus suggesting that a direct recruitment of NADPH may result in diminished availability of the redox cofactor for NOS functioning. To assess the physiological relevance of our findings, rat neuronal-like PC12 and glioma C6 cell lines were used as cellular models. After Abeta25-35 internalization into cells was verified, the activity of constitutive NOS was measured using the DAF-2DA detection system and found to be severely impaired upon Abeta25-35 uptake. Consistent with previous results on the molecular cross-talk between NOS isoforms, repression of constitutive NOS by Abeta25-35 resulted in enhanced expression of inducible NOS (NOS-II) mRNA in C6 cells. Our results represent the first evidence that amyloid fragments impair constitutive NOS activity in cell-free and cellular systems, providing a possible molecular mechanism for the onset and/or maintenance of Alzheimer's disease.
Collapse
|
39
|
Kalisch R, Elbel GK, Gössl C, Czisch M, Auer DP. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 Tesla: implications for pharmacologic mri. Neuroimage 2001; 14:891-8. [PMID: 11554808 DOI: 10.1006/nimg.2001.0890] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) using the blood oxygenation level-dependent (BOLD) contrast is now increasingly applied for measuring drug effects on brain activity. A possible confound in pharmacologic fMRI (phMRI) is that the BOLD signal may be sensitive to systemic cardiovascular or respiratory parameters, which can themselves be modulated by a drug. To assess whether abrupt changes in arterial blood pressure (BP) as may be observed in phMRI experiments influence the BOLD signal, a hemorrhage model was studied in anesthesized rats at 7 T using spin-echo EPI. BP and BOLD signal time courses were found to be significantly correlated (P < 0.01). This effect was detected under the three different anesthetic regimens employed (isoflurane, halothane, and propofol). The regional pattern of BP-BOLD correlations was heterogeneous and may reflect vascular density. In physiological terms, a BOLD decrease during a decrease in BP may result from an increase in mostly venous cerebral blood volume (CBV) as an autoregulatory response to maintain cerebral blood flow (CBF) during decreased perfusion pressure. The observed influence of BP on BOLD may complicate qualitative and quantitative description of drug effects.
Collapse
Affiliation(s)
- R Kalisch
- Max-Planck-Institute of Psychiatry, NMR, Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
The aging of the central nervous system and the development of incapacitating neurological diseases like Alzheimer's disease (AD) are generally associated with a wide range of histological and pathophysiological changes eventually leading to a compromised cognitive status. Although the diverse triggers of the neurodegenerative processes and their interactions are still the topic of extensive debate, the possible contribution of cerebrovascular deficiencies has been vigorously promoted in recent years. Various forms of cerebrovascular insufficiency such as reduced blood supply to the brain or disrupted microvascular integrity in cortical regions may occupy an initiating or intermediate position in the chain of events ending with cognitive failure. When, for example, vasoconstriction takes over a dominating role in the cerebral vessels, the perfusion rate of the brain can considerably decrease causing directly or through structural vascular damage a drop in cerebral glucose utilization. Consequently, cerebral metabolism can suffer a setback leading to neuronal damage and a concomitant suboptimal cognitive capacity. The present review focuses on the microvascular aspects of neurodegenerative processes in aging and AD with special attention to cerebral blood flow, neural metabolic changes and the abnormalities in microvascular ultrastructure. In this context, a few of the specific triggers leading to the prominent cerebrovascular pathology, as well as the potential neurological outcome of the compromised cerebral microvascular system are also going to be touched upon to a certain extent, without aiming at total comprehensiveness. Finally, a set of animal models are going to be presented that are frequently used to uncover the functional relationship between cerebrovascular factors and the damage to neural networks.
Collapse
Affiliation(s)
- E Farkas
- Department of Animal Physiology, Graduate School of Behavioral and Cognitive Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
41
|
Vavilala MS, Lee LA, Morris GP, Lam AM. Cerebral autoregulation before and after blood transfusion in a child. J Neurosurg Anesthesiol 2001; 13:233-6. [PMID: 11426098 DOI: 10.1097/00008506-200107000-00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors present the case of an anemic 22-month-old child undergoing lower extremity surgery in whom the lower limit of cerebral autoregulation was shifted to the right.
Collapse
Affiliation(s)
- M S Vavilala
- Department of Anesthesiology, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
42
|
de la Torre JC, Stefano GB. Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:119-36. [PMID: 11113503 DOI: 10.1016/s0165-0173(00)00043-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Evidence is fast accumulating which indicates that Alzheimer's disease is a vascular disorder with neurodegenerative consequences rather than a neurodegenerative disorder with vascular consequences. It is proposed that two factors need to be present for AD to develop: (1) advanced ageing, (2) presence of a condition that lowers cerebral perfusion, such as a vascular-risk factor. The first factor introduces a normal but potentially insidious process that lowers cerebral blood flow in inverse relation to increased ageing; the second factor adds a crucial burden which further lowers brain perfusion and places vulnerable neurons in a state of high energy compromise leading to a cascade of neuronal metabolic turmoil. Convergence of the two factors above will culminate in a critically attained threshold of cerebral hypoperfusion (CATCH). CATCH is a hemodynamic microcirculatory insufficiency that will destabilize neurons, synapses, neurotransmission and cognitive function, creating in its wake a neurodegenerative state characterized by the formation of senile plaques, neurofibrillary tangles, amyloid angiopathy and in some cases, Lewy bodies. Since any of a considerable number of vascular-related conditions must be present in the ageing individual for cognition to be disturbed, CATCH identifies an important aspect of the heterogeneic disease profile assumed to be present in the AD syndrome. It is proposed that CATCH initiates AD by distorting regional brain capillary structure involving endothelial cell shape changes and impairment of nitric oxide (NO) release which affect signaling between the immune, cardiovascular and nervous systems. Evidence is presented that in many tissues there is a basal level of NO being produced and that the actions of several signaling molecules may initiate increases in basal NO levels. Moreover, these temporary increases in basal NO levels exert inhibitory cellular actions, via cellular conformational changes. Findings indicate that (a) constitutive NO is responsible for a basal or 'tonal' level of NO; (b) this NO keeps particular types of cells in a state of inhibition and (c) activation of these cells occurs through disinhibition. Consequently, tissues not maintaining a basal NO level are more prone to excitatory, immune, vascular and neural influences. Under such circumstances, these tissues cannot be down-regulated to normal basal levels, thus prolonging their excitatory state. Thus, the clinical convergence of advanced ageing in the presence of a chronic, pre-morbid vascular risk factor, can, in time, contribute to an endotheliopathy involving basal NO deficit, to the degree where regional metabolic dysfunction leads to cognitive meltdown and to progressive neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Pathology, University of California, San Diego, 1363 Shinly, Suite 100, Escondido, CA 92026, USA.
| | | |
Collapse
|