1
|
Lu B, Yin J, Liu C, Lin W. Lipid droplet polarity decreases during the pathology of muscle injury as revealed by a polarity sensitive sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120149. [PMID: 34252741 DOI: 10.1016/j.saa.2021.120149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Revealing the relationship between lipid droplets (LDs)polarity and disease is indispensable in clinicopathological diagnosis. So far, muscle injury is often ignored as it is not life-threatening as cardiovascular and cerebrovascular diseases, making the exploration of the internal relationship between muscle injury and LDs polarity a gray area. Herein, a fluorescent probe (CCB) with powerful polar-sensitive as well as precise LDs targeting was designed for visualizing the LDs polarity in the pathology of muscle injury. By means of the probe CCB, the identification of cancer cells and the monitoring of LDs polarity changes in dysfunctional cells were successfully realized. Furthermore, the penetration ability of CCB in tissues of mice was tested to verify the applicability of the probe in organisms. Importantly, by CCB, the relationship between muscle damage and LDs polarity was explored, revealing that muscle damage caused a significant decrease in LDs polarity accompanied by a significant increase in fluorescence. Most importantly, it is the first time to reveal the relationship between muscle damage and LDs polarity. Therefore, the probe CCB will be a powerful monitoring platform for diagnosing related diseases caused by abnormal LDs polarity.
Collapse
Affiliation(s)
- Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Cong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
2
|
The Potential Role of Exercise-Induced Muscle Damage in Exertional Heat Stroke. Sports Med 2021; 51:863-872. [PMID: 33528800 DOI: 10.1007/s40279-021-01427-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Exertional heat stroke (EHS) is a life-threatening condition that affects mainly athletes, military personnel, firefighters, and occupational workers. EHS is frequently observed in non-compensable conditions (where the body is unable to maintain a steady thermal balance) as a result of heavy heat stress and muscle contraction associated with prolonged and strenuous physical and occupational activities, resulting in central nervous system dysfunction followed by multi-organ damage and failure. Since the pathophysiology of EHS is complex and involves multiple organs and systems, any condition that changes the interrelated systems may increase the risk for EHS. It has been suggested that exercise-induced muscle damage (EIMD) can lead to thermoregulatory impairment and systemic inflammation, which could be a potential predisposing factor for EHS. In this review article, we aim to (1) address the evidence of EIMD as a predisposing factor for EHS and (2) propose a possible mechanism of how performing muscle-damaging exercise in the heat may aggravate muscle damage and subsequent risk of EHS and acute kidney injury (AKI). Such an understanding could be meaningful to minimize the risks of EHS and AKI for individuals with muscle damage due to engaging in physical work in hot environments.
Collapse
|
3
|
Taylor NAS, Lee JY, Kim S, Notley SR. Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective. J Therm Biol 2021; 97:102858. [PMID: 33863427 DOI: 10.1016/j.jtherbio.2021.102858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
The Asia-Pacific contains over half of the world's population, 21 countries have a Gross Domestic Product <25% of the world's largest economy, many countries have tropical climates and all suffer the impact of global warming. That 'perfect storm' exacerbates the risk of occupational heat illness, yet first responders must perform physically demanding work wearing personal-protective clothing and equipment. Unfortunately, the Eurocentric emphasis of past research has sometimes reduced its applicability to other ethnic groups. To redress that imbalance, relevant contemporary research has been reviewed, to which has been added information applicable to people of Asian, Melanesian and Polynesian ancestry. An epidemiological triad is used to identify the causal agents and host factors of work intolerance within hot-humid climates, commencing with the size dependency of resting metabolism and heat production accompanying load carriage, followed by a progression from the impact of single-layered clothing through to encapsulating ensembles. A morphological hypothesis is presented to account for inter-individual differences in heat production and heat loss, which seems to explain apparent ethnic- and gender-related differences in thermoregulation, at least within thermally compensable states. The mechanisms underlying work intolerance, cardiovascular insufficiency and heat illness are reviewed, along with epidemiological data from the Asia-Pacific. Finally, evidence-based preventative and treatment strategies are presented and updated concerning moisture-management fabrics and barriers, dehydration, pre- and post-exercise cooling, and heat adaptation. An extensive reference list is provided, with >25 recommendations enabling physiologists, occupational health specialists, policy makers, purchasing officers and manufacturers to rapidly extract interpretative outcomes pertinent to the Asia-Pacific.
Collapse
Affiliation(s)
- Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Joo-Young Lee
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Siyeon Kim
- Human Convergence Technology R&D Department, Korea Institute of Industrial Technology, Ansan, Republic of Korea
| | - Sean R Notley
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Doma K, Nicholls A, Gahreman D, Damas F, Libardi CA, Sinclair W. The Effect of a Resistance Training Session on Physiological and Thermoregulatory Measures of Sub-maximal Running Performance in the Heat in Heat-Acclimatized Men. SPORTS MEDICINE-OPEN 2019; 5:21. [PMID: 31165339 PMCID: PMC6548784 DOI: 10.1186/s40798-019-0195-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study examined the acute effects of a lower body resistance training (RT) session on physiological and thermoregulatory measures during a sub-maximal running protocol in the heat in heat-acclimatized men. Ten resistance-untrained men (age 27.4 ± 4.1 years; height 1.78 ± 0.06 m; body mass 76.8 ± 9.9 kg; peak oxygen uptake 48.2 ± 7.0 mL kg-1 min-1) undertook a high-intensity RT session at six-repetition maximum. Indirect muscle damage markers (i.e., creatine kinase [CK], delayed-onset muscle soreness [DOMS], and countermovement jump [CMJ]) were collected prior to, immediately post and 24 and 48 h after the RT session. The sub-maximal running protocol was performed at 70% of the ventilatory threshold, which was conducted prior to and 24 and 48 h following the RT session to obtain physiological and thermoregulatory measures. RESULTS The RT session exhibited significant increases in DOMS (p < 0.05; effect size [ES]: 1.41-10.53), whilst reduced CMJ (p < 0.05; ES: - 0.79-1.41) for 48 h post-exercise. There were no differences in CK (p > 0.05), although increased with moderate to large ES (0.71-1.12) for 48 h post-exercise. The physiological cost of running was increased for up to 48 h post-exercise (p < 0.05) with moderate to large ES (0.50-0.84), although no differences were shown in thermoregulatory measures (p > 0.05) with small ES (0.33). CONCLUSION These results demonstrate that a RT session impairs sub-maximal running performance for several days post-exercise, although thermoregulatory measures are unperturbed despite elevated muscle damage indicators in heat-acclimatized, resistance untrained men. Accordingly, whilst a RT session may not increase susceptibility to heat-related injuries in heat-acclimatized men during sub-maximal running in the heat, endurance sessions should be undertaken with caution for at least 48 h post-exercise following the initial RT session in resistance untrained men.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia.
| | - Anthony Nicholls
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| | - Daniel Gahreman
- Exercise and Sport Science, Charles Darwin University, Casuarina, Australia
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Wade Sinclair
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| |
Collapse
|
5
|
Casadio JR, Kilding AE, Cotter JD, Laursen PB. From Lab to Real World: Heat Acclimation Considerations for Elite Athletes. Sports Med 2018; 47:1467-1476. [PMID: 28035584 DOI: 10.1007/s40279-016-0668-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As major sporting events are often held in hot environments, increased interest in ways of optimally heat acclimating athletes to maximise performance has emerged. Heat acclimation involves repeated exercise sessions in hot conditions that induce physiological and thermoregulatory adaptations that attenuate heat-induced performance impairments. Current evidence-based guidelines for heat acclimation are clear, but the application of these recommendations is not always aligned with the time commitments and training priorities of elite athletes. Alternative forms of heat acclimation investigated include hot water immersion and sauna bathing, yet uncertainty remains around the efficacy of these methods for reducing heat-induced performance impairments, as well as how this form of heat stress may add to an athlete's overall training load. An understanding of how to optimally prescribe and periodise heat acclimation based on the performance determinants of a given event is limited, as is knowledge of how heat acclimation may affect the quality of concurrent training sessions. Finally, differences in individual athlete responses to heat acclimation need to be considered. This article addresses alternative methods of heat acclimation and heat exposure, explores gaps in literature around understanding the real world application of heat acclimation for athletes, and highlights specific athlete considerations for practitioners.
Collapse
Affiliation(s)
- Julia R Casadio
- Sports Performance Research Institute New Zealand (SPRINZ), School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.
- High Performance Sport New Zealand, PO Box 302 563, North Harbour, Auckland, 0751, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Paul B Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
- High Performance Sport New Zealand, PO Box 302 563, North Harbour, Auckland, 0751, New Zealand
| |
Collapse
|
6
|
Pasiakos SM, McClung HL, Margolis LM, Murphy NE, Lin GG, Hydren JR, Young AJ. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PLoS One 2015; 10:e0140863. [PMID: 26474292 PMCID: PMC4608805 DOI: 10.1371/journal.pone.0140863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Effects of conventional endurance (CE) exercise and essential amino acid (EAA) supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC) and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS) and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO2peak 4.0 ± 0.5 L∙min-1) were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L∙m-1) LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg) or CE (cycle ergometry performed at the same absolute VO2 as LC) exercise, during which EAA (10 g EAA, 3.6 g leucine) or control (CON, non-nutritive) drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P < 0.05), independent of dietary treatment. EAA enhanced mixed-muscle and sarcoplasmic MPS during exercise, regardless of mode (drink main effect, P < 0.05). Mixed-muscle and sarcoplasmic MPS were higher in recovery for LC than CE (mode main effect, P < 0.05). No other differences or interactions (mode x drink) were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P < 0.05). These data show that, although whole-body protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.
Collapse
Affiliation(s)
- Stefan M. Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
- * E-mail:
| | - Holly L. McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Lee M. Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Nancy E. Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Gregory G. Lin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Jay R. Hydren
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Andrew J. Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
7
|
Repeated muscle damage blunts the increase in heat strain during subsequent exercise heat stress. Eur J Appl Physiol 2015; 115:1577-88. [PMID: 25736783 DOI: 10.1007/s00421-015-3143-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Exercise-induced muscle damage (EIMD) has recently been shown to increase heat strain during exercise heat stress (HS), and represents a risk factor for exertional heat illness (EHI). We hypothesised that a repeated bout of EIMD blunts the increase in rectal temperature (T re) during subsequent endurance exercise in the heat. METHODS Sixteen non-heat-acclimated males were randomly allocated to EIMD (n = 9) or control (CON, n = 7). EIMD performed a downhill running treatment at -10 % gradient for 60 min at 65 % [Formula: see text]O2max in 20 °C, 40 % RH. CON participants performed the same treatment but at +1 % gradient. Following treatment, participants rested for 30 min, then performed HS (+1 % gradient running for 40 min at 65 % [Formula: see text]O2max in 33 °C, 50 % RH) during which thermoregulatory measures were assessed. Both groups repeated the treatment and subsequent HS 14 days later. Isometric quadriceps strength was assessed at baseline, and 48 h post-treatment. RESULTS The decrease in leg strength 48 h post-EIMD trial 1 (-7.5 %) was absent 48 h post-EIMD trial 2 (+2.9 %) demonstrating a repeated bout effect. Final T re during HS was lower following EIMD trial 2 (39.25 ± 0.47 °C) compared with EIMD trial 1 (39.59 ± 0.49 °C, P < 0.01), with CON showing no difference. Thermal sensation and the T re threshold for sweating onset were also lower during HS on EIMD trial 2. CONCLUSION The repeated bout effect blunted the increase in heat strain during HS conducted after EIMD. Incorporating a muscle-damaging bout into training could be a strategy to reduce the risk of EHI and improve endurance performance in individuals undertaking heavy exercise with an eccentric component in the heat.
Collapse
|
8
|
Tuttle JA, Castle PC, Metcalfe AJ, Midgley AW, Taylor L, Lewis MP. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts. J Appl Physiol (1985) 2015; 118:996-1005. [PMID: 25722377 DOI: 10.1152/japplphysiol.00387.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom;
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom; School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill University, Ormskirk, United Kingdom; and
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
9
|
Margolis LM, Murphy NE, Martini S, Spitz MG, Thrane I, McGraw SM, Blatny JM, Castellani JW, Rood JC, Young AJ, Montain SJ, Gundersen Y, Pasiakos SM. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl Physiol Nutr Metab 2014; 39:1395-401. [DOI: 10.1139/apnm-2014-0212] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D218O) and intake were measured daily, and postabsorptive whole-body protein turnover ([15N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day−1) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg−1·day−1) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (–1.41 ± 1.11 (–1.98, –0.84) g·kg−1·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.
Collapse
Affiliation(s)
- Lee M. Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Nancy E. Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Svein Martini
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Marissa G. Spitz
- Thermal Mountain and Medicine Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Ingjerd Thrane
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Susan M. McGraw
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Janet-Martha Blatny
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - John W. Castellani
- Thermal Mountain and Medicine Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Jennifer C. Rood
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | - Andrew J. Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Scott J. Montain
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Yngvar Gundersen
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Stefan M. Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| |
Collapse
|
10
|
Joyce S, Sabapathy S, Bulmer AC, Minahan C. The effect of prior eccentric exercise on heavy-intensity cycling: the role of gender and oral contraceptives. Eur J Appl Physiol 2014; 114:995-1003. [PMID: 24504652 DOI: 10.1007/s00421-014-2832-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE To determine if gender and/or the use of oral contraceptives alter cycling performance with exercise-induced muscle damage (EiMD). METHODS Nine male adults (MEN), nine normally menstruating female adults (WomenNM), and nine female adults using oral contraceptives (WomenOC) participated. Gas exchange and time to exhaustion were measured during continuous cycling performed at three distinct power outputs before (pre) and 48 h after (post) 240 maximal effort eccentric contractions of the quadriceps muscles designed to induce muscle damage (i.e., EiMD). RESULTS The change in muscle damage (i.e., range of motion about the knee joint and serum creatine kinase activity) from pre- compared to post-EiMD was greater in MEN and WomenOC compared to the WomenNM. Time to exhaustion decreased after EiMD in MEN (5.19 ± 4.58 min, p = 0.01) and in WomenOC (2.86 ± 2.83 min, p = 0.02) but did not change in WomenNM (0.98 ± 2.28 min, p = 0.43). Accordingly, the slow component of O2 uptake, expressed relative to time to exhaustion (i.e., % min(-1)), was greater in post- compared to pre-EiMD for MEN (p = 0.02) and the WomenOC (p = 0.03), but not for the WomenNM (p = 0.12). CONCLUSION The preservation of exercise tolerance during heavy-intensity cycling performed after intense eccentric exercise is improved in women compared to men. Furthermore, the preservation of exercise tolerance is exclusive to 17β-estradiol and cannot be replicated with an exogenous synthetic estrogen replacement delivered in an oral contraceptive.
Collapse
Affiliation(s)
- Sarah Joyce
- Griffith University Sports Science, Gold Coast campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | | | | | | |
Collapse
|
11
|
FORTES MATTHEWBENJAMIN, DI FELICE UMBERTO, DOLCI ALBERTO, JUNGLEE NAUSHADA, CROCKFORD MICHAELJ, WEST LIAM, HILLIER-SMITH RYAN, MACDONALD JAMIEHUGO, WALSH NEILPETER. Muscle-Damaging Exercise Increases Heat Strain during Subsequent Exercise Heat Stress. Med Sci Sports Exerc 2013; 45:1915-24. [DOI: 10.1249/mss.0b013e318294b0f8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Junglee NA, Di Felice U, Dolci A, Fortes MB, Jibani MM, Lemmey AB, Walsh NP, Macdonald JH. Exercising in a hot environment with muscle damage: effects on acute kidney injury biomarkers and kidney function. Am J Physiol Renal Physiol 2013; 305:F813-20. [DOI: 10.1152/ajprenal.00091.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unaccustomed strenuous physical exertion in hot environments can result in heat stroke and acute kidney injury (AKI). Both exercise-induced muscle damage and AKI are associated with the release of interleukin-6, but whether muscle damage causes AKI in the heat is unknown. We hypothesized that muscle-damaging exercise, before exercise in the heat, would increase kidney stress. Ten healthy euhydrated men underwent a randomized, crossover trial involving both a 60-min downhill muscle-damaging run (exercise-induced muscle damage; EIMD), and an exercise intensity-matched non-muscle-damaging flat run (CON), in random order separated by 2 wk. Both treatments were followed by heat stress elicited by a 40-min run at 33°C. Urine and blood were sampled at baseline, after treatment, and after subjects ran in the heat. By design, EIMD induced higher plasma creatine kinase and interleukin-6 than CON. EIMD elevated kidney injury biomarkers (e.g., urinary neutrophil gelatinase-associated lipocalin (NGAL) after a run in the heat: EIMD-CON, mean difference [95% CI]: 12 [5, 19] ng/ml) and reduced kidney function (e.g., plasma creatinine after a run in the heat: EIMD-CON, mean difference [95% CI]: 0.2 [0.1, 0.3] mg/dl), where CI is the confidence interval. Plasma interleukin-6 was positively correlated with plasma NGAL ( r = 0.9, P = 0.001). Moreover, following EIMD, 5 of 10 participants met AKIN criteria for AKI. Thus for the first time we demonstrate that muscle-damaging exercise before running in the heat results in a greater inflammatory state and kidney stress compared with non-muscle-damaging exercise. Muscle damage should therefore be considered a risk factor for AKI when performing exercise in hot environments.
Collapse
Affiliation(s)
- Naushad A. Junglee
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Department of Nephrology, Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, Wales, United Kingdom; and
| | - Umberto Di Felice
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Department of Biomedical Sciences and Technologies, University of L'Aquila, Coppito, Italy
| | - Alberto Dolci
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Matthew B. Fortes
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Mahdi M. Jibani
- Department of Nephrology, Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, Wales, United Kingdom; and
| | - Andrew B. Lemmey
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Neil P. Walsh
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Jamie H. Macdonald
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| |
Collapse
|
13
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Campi-Azevedo AC, Cleto LS, Silva RSD, Sousa-Franco JD, Magalhães JCD, Penaforte CL, Castro Pinto KMD, Rocha-Vieira E. Divergent cytokine response following maximum progressive swimming in hot water. Cell Biochem Funct 2011; 29:610-6. [PMID: 21887695 DOI: 10.1002/cbf.1795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/21/2011] [Accepted: 07/07/2011] [Indexed: 11/08/2022]
Abstract
Exercise promotes transitory alterations in cytokine secretion, and these changes are affected by exercise duration and intensity. Considering that exercise responses also are affected by environmental factors, the goal of the present study was to investigate the effect of water temperature on the cytokine response to maximum swimming. Swiss mice performed a maximum progressive swimming exercise at 31 or 38°C, and plasma cytokine levels were evaluated immediately or 1, 6 or 24 h after exercise. The cytokine profile after swimming at 31°C was characterized by increased interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) levels, which peaked 1 h after exercise, suggesting an adequate inflammatory milieu to induce muscle regeneration. Transitory reductions in IL-10 and IL-12 levels also were observed after swimming at 31°C. The cytokine response to swimming was modified when the water temperature was increased to 38°C. Although exercise at 38°C also led to IL-6 secretion, the peak in IL-6 production occurred 6 h after exercise, and IL-6 levels were significantly lower than those observed after maximum swimming at 31°C (p = 0·030). Furthermore, MCP-1 levels were lower and tumour necrosis factor-α levels were higher immediately after swimming at 38°C, suggesting a dysregulated pro-inflammatory milieu. These alterations in the cytokine profile can be attributed in part to reduced exercise total work because exhaustion occurred sooner in mice swimming at 38°C than in those swimming at 31°C.
Collapse
|
15
|
|
16
|
Exercise, Heat Stress and the Interleukin-6 Response: Support for Temperature-Mediated Neuroendocrine Regulatory Mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.2478/v10036-010-0018-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bergeron MF. Youth sports in the heat: recovery and scheduling considerations for tournament play. Sports Med 2009; 39:513-22. [PMID: 19530749 DOI: 10.2165/00007256-200939070-00001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
One of the biggest challenges facing numerous young athletes is attempting to perform safely and effectively in the heat. An even greater performance challenge and risk for incurring exertional heat injury is encountered when a young athlete has to compete multiple times on the same day, with only a short rest period between rounds of play, during a hot-weather tournament. Within the scope of the rules, tournament directors frequently provide athletes with only the minimum allowable time between same-day matches or games. Notably, prior same-day exercise has been shown to increase cardiovascular and thermal strain and perception of effort in subsequent activity bouts, and the extent of earlier exercise-heat exposure can affect performance and competition outcome. Incurred water and other nutrient deficits are often too great to offset during short recovery periods between competition bouts, and the athletes are sometimes 'forced' to compete again not sufficiently replenished. Providing longer rest periods between matches and games can significantly improve athlete safety and performance, by enhancing recovery and minimizing the 'carryover' effects from previous competition-related physical activity and heat exposure that can negatively affect performance and safety. Governing bodies of youth sports need to address this issue and provide more specific, appropriate and evidence-based guidelines for minimum rest periods between same-day contests for all levels of tournament play in the heat. Youth athletes are capable of tolerating the heat and performing reasonably well and safely in a range of hot environments if they prepare well, manage hydration sufficiently, and are provided the opportunity to recover adequately between contests.
Collapse
Affiliation(s)
- Michael F Bergeron
- National Institute for Athletic Health and Performance and Center for Youth Sports and Health, Sanford USD Medical Center, Sioux Falls, South Dakota, USA.
| |
Collapse
|
18
|
Abstract
An important safety concern when exercising burned patients is the potential for an excessive increase in core body temperature (hyperthermia=body core temperature>39 degrees C) during exercise. We examined the thermoregulatory response to exercise in the heat (31 degrees C, relative humidity 40%) in a 17-year-old boy with a 99% TBSA burn. A 30-minute exercise test was performed at an intensity of 75% of his peak aerobic capacity. Intestinal temperature was assessed via telemetry with an ingestible capsule. Intestinal temperature was measured before, during, and postexercise. The patient completed 12 minutes of the 30-minute exercise test. Starting core temperature was 36.98 degrees C and increased 0.69 degrees C during exercise. After exercise, intestinal temperature continued to increase, but no hyperthermia was noted. It has been reported that burned children can safely exercise at room temperature; however, the response in the heat is unknown. This patient did not develop exertional hyperthermia, which we propose is due to his low-fitness level and heat intolerance. However, the potential for hyperthermia would be increased if he was forced to maintain a high relative workload in the heat. We propose that severely burned individuals should be able to safely participate in physical activities. However, the decision to stop exercising should be accepted to avoid development of exertional hyperthermia.
Collapse
|
19
|
Bergeron MF, Laird MD, Marinik EL, Brenner JS, Waller JL. Repeated-bout exercise in the heat in young athletes: physiological strain and perceptual responses. J Appl Physiol (1985) 2008; 106:476-85. [PMID: 19023026 DOI: 10.1152/japplphysiol.00122.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A short recovery period between same-day competitions is common practice in organized youth sports. We hypothesized that young athletes will experience an increase in physiological strain and perceptual discomfort during a second identical exercise bout in the heat, with 1 h (21 degrees C) between bouts, even with ample hydration. Twenty-four athletes (6 boys and 6 girls: 12-13 yr old, 47.7 +/- 8.3 kg; 6 boys and 6 girls: 16-17 yr old, 61.0 +/- 8.6 kg) completed two 80-min intermittent exercise bouts (treadmill 60%, cycle 40% peak oxygen uptake) in the heat (33 degrees C, 48.9 +/- 6.1% relative humidity). Sweat loss during each bout was similar within each age group (12-13 yr old: bout 1, 943.6 +/- 237.1 ml; bout 2, 955.5 +/- 250.3 ml; 16-17 yr old: bout 1, 1,382.2 +/- 480.7 ml; bout 2, 1,373.1 +/- 472.2 ml). Area under the curve (AUC) was not statistically different (P > 0.05) between bouts for core body temperature (12-13 yr old: bout 1 peak, 38.6 +/- 0.4 degrees C; bout 2, 38.4 +/- 0.2 degrees C; 16-17 yr old: bout 1 peak, 38.8 +/- 0.7 degrees C; bout 2, 38.7 +/- 0.6 degrees C), physiological strain index (12-13 yr old: bout 1 peak, 7.9 +/- 0.9; bout 2, 7.5 +/- 0.7; 16-17 yr old: bout 1 peak, 8.1 +/- 1.5; bout 2, 7.9 +/- 1.4), or thermal sensation for any age/sex subgroup or for all subjects combined. However, rating of perceived exertion AUC and peak were higher (P = 0.0090 and 0.0004, respectively) during bout 2 in the older age group. Notably, four subjects experienced consistently higher responses throughout bout 2. With these healthy, fit, young athletes, 1 h of complete rest, cool down, and rehydration following 80 min of strenuous exercise in the heat was generally effective in eliminating any apparent carryover effects that would have resulted in greater thermal and cardiovascular strain during a subsequent identical exercise bout.
Collapse
|
20
|
Immunological changes after a single bout of moderate-intensity exercise in a hot environment. J Physiol Biochem 2008; 64:197-204. [DOI: 10.1007/bf03178842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Bradford CD, Cotter JD, Thorburn MS, Walker RJ, Gerrard DF. Exercise can be pyrogenic in humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R143-9. [PMID: 17197641 DOI: 10.1152/ajpregu.00926.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise increases mean body temperature (T̄body) and cytokine concentrations in plasma. Cytokines facilitate PG production via cyclooxygenase (COX) enzymes, and PGE2 can mediate fever. Therefore, we used a COX-2 inhibitor to test the hypothesis that PG-mediated pyrogenicity may contribute to the raised T̄body in exercising humans. In a double-blind, cross-over design, 10 males [age: 23 yr (SD 5), V̇o2 max: 53 ml·kg−1·min−1 (SD 5)] consumed rofecoxib (50 mg/day; NSAID) or placebo (PLAC) for 6 days, 2 wk apart. Exercising thermoregulation was measured on day 6 during 45-min running (∼75% V̇o2 max) followed by 45-min cycling and 60-min seated recovery (28°C, 50% relative humidity). Plasma cytokine (TNF-α, IL-10) concentrations were measured at rest and 30-min recovery. T̄body was similar at rest in PLAC (35.59°C) and NSAID (35.53°C) and increased similarly during running, but became 0.33°C (SD 0.26) lower in NSAID during cycling (37.39°C vs. 37.07°C; P = 0.03), and remained lower throughout recovery. Sweating was initiated at T̄body of ∼35.6°C in both conditions but ceased at higher T̄body in PLAC than NSAID during recovery [36.66°C (SD 0.36) vs. 36.39°C (SD 0.27); P = 0.03]. Cardiac frequency averaged 6·min−1 higher in PLAC ( P < 0.01), whereas exercising metabolic rate was similar (505 vs. 507 W·m−2; P = 0.56). A modest increase in both cytokines across exercise was similar between conditions. COX-2 specific NSAID lowered exercising heat and cardiovascular strain and the sweating (offset) threshold, independently of heat production, indicating that PGE-mediated inflammatory processes may contribute to exercising heat strain during endurance exercise in humans.
Collapse
Affiliation(s)
- Carl D Bradford
- School of Physical Education, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
22
|
Sonna LA, Sawka MN, Lilly CM. Exertional heat illness and human gene expression. PROGRESS IN BRAIN RESEARCH 2007; 162:321-46. [PMID: 17645926 DOI: 10.1016/s0079-6123(06)62016-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness. Here we discuss the systemic physiology of exertional hyperthermia and exertional heat illness, and compare the results of several recent microarray studies performed in vitro on human cells subjected to heat shock and in vivo on samples obtained from subjects performing exercise or suffering from exertional heat injury. From these comparisons, a concept of overlapping component responses emerges. Namely, some of the gene expression changes observed in peripheral blood mononuclear cells during exertional heat injury can be accounted for by normal cellular responses to heat, exercise, or both; others appear to be specific to the disease state itself. If confirmed in future studies, these component responses might provide a better understanding of adaptive and pathological responses to exercise and exercise-induced hyperthermia, help find new ways of identifying individuals at risk for exertional heat illness, and perhaps even help find rational molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Larry A Sonna
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
23
|
Abstract
Athletes, military personnel, fire fighters, mountaineers and astronauts may be required to perform in environmental extremes (e.g. heat, cold, high altitude and microgravity). Exercising in hot versus thermoneutral conditions (where core temperature is > or = 1 degrees C higher in hot conditions) augments circulating stress hormones, catecholamines and cytokines with associated increases in circulating leukocytes. Studies that have clamped the rise in core temperature during exercise (by exercising in cool water) demonstrate a large contribution of the rise in core temperature in the leukocytosis and cytokinaemia of exercise. However, with the exception of lowered stimulated lymphocyte responses after exercise in the heat, and in exertional heat illness patients (core temperature > 40 degrees C), recent laboratory studies show a limited effect of exercise in the heat on neutrophil function, monocyte function, natural killer cell activity and mucosal immunity. Therefore, most of the available evidence does not support the contention that exercising in the heat poses a greater threat to immune function (vs thermoneutral conditions). From a critical standpoint, due to ethical committee restrictions, most laboratory studies have evoked modest core temperature responses (< 39 degrees C). Given that core temperature during exercise in the field often exceeds levels associated with fever and hyperthermia (approximately 39.5 degrees C) field studies may provide an opportunity to determine the effects of severe heat stress on immunity. Field studies may also provide insight into the possible involvement of immune modulation in the aetiology of exertional heat stroke (core temperature > 40.6 degrees C) and identify the effects of acclimatisation on neuroendocrine and immune responses to exercise-heat stress. Laboratory studies can provide useful information by, for example, applying the thermal clamp model to examine the involvement of the rise in core temperature in the functional immune modifications associated with prolonged exercise. Studies investigating the effects of cold, high altitude and microgravity on immunity and infection incidence are often hindered by extraneous stressors (e.g. isolation). Nevertheless, the available evidence does not support the popular belief that short- or long-term cold exposure, with or without exercise, suppresses immunity and increases infection incidence. In fact, controlled laboratory studies indicate immuno-stimulatory effects of cold exposure. Although some evidence shows that ascent to high altitude increases infection incidence, clear conclusions are difficult to make because of some overlap with the symptoms of acute mountain sickness. Studies have reported suppressed cell-mediated immunity in mountaineers at high altitude and in astronauts after re-entering the normal gravity environment; however, the impact of this finding on resistance to infection remains unclear.
Collapse
Affiliation(s)
- Neil P Walsh
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
24
|
Starkie RL, Hargreaves M, Rolland J, Febbraio MA. Heat stress, cytokines, and the immune response to exercise. Brain Behav Immun 2005; 19:404-12. [PMID: 16061150 DOI: 10.1016/j.bbi.2005.03.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/28/2005] [Accepted: 03/08/2005] [Indexed: 02/06/2023] Open
Abstract
To examine the effect of exercise and heat stress on cytokine production, seven males (77 +/- 2 kg; VO(2peak) = 4.7 +/- 0.4 L min(-1)) completed two (15 degrees C; CON or 35 degrees C; HEAT) 90 min cycling trials at 70% VO(2peak). Blood samples were collected throughout and analysed for spontaneous, and LPS-stimulated intracellular monocyte cytokine production, plasma cytokine levels, and circulating stress hormone concentration. Plasma epinephrine, norepinephrine, and cortisol concentration were elevated (P < .05) as a result of exercise in CON. HEAT increased (P < .05) epinephrine and norepinephrine levels, however, cortisol concentration was not different between the two trials. Exercise had no effect on the concentration of circulating monocytes spontaneously producing IL-6, TNF-alpha or IL-1alpha, however, there was a decrease in the amount of TNF-alpha per cell post-compared with pre-exercise. HEAT had no effect on spontaneous intracellular cytokine production. Circulating levels of both IL-6 and TNF-alpha were elevated in HEAT, but not in CON. Upon stimulation with LPS, the concentration of monocytes positive for IL-6, TNF-alpha, and IL-1alpha production was elevated (P < .01) post- and 2 h post-compared with pre-exercise. Stimulated cells, however, produced less (P < .05) TNF-alpha post-exercise and less (P < .05) TNF-alpha and IL-6 2 h post-exercise. HEAT resulted in an increase (P < .05) in the concentration of stimulated cells positive for TNF-alpha and IL-1alpha, however, did not affect the amount of cytokine produced by stimulated monocytes. These results demonstrate that exercise decreases the amount of cytokine produced by LPS-stimulated monocytes, possibly due to elevated levels of circulating stress hormones. Heat stress did not, however, augment the suppression in the amount of cytokine produced by circulating monocytes upon stimulation, despite elevated catecholamines.
Collapse
Affiliation(s)
- R L Starkie
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
25
|
Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 2004; 34:49-69. [PMID: 14715039 DOI: 10.2165/00007256-200434010-00005] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exercise-induced muscle damage is a well documented phenomenon particularly resulting from eccentric exercise. When eccentric exercise is unaccustomed or is performed with an increased intensity or duration, the symptoms associated with muscle damage are a common outcome and are particularly associated with participation in athletic activity. Muscle damage results in an immediate and prolonged reduction in muscle function, most notably a reduction in force-generating capacity, which has been quantified in human studies through isometric and dynamic isokinetic testing modalities. Investigations of the torque-angular velocity relationship have failed to reveal a consistent pattern of change, with inconsistent reports of functional change being dependent on the muscle action and/or angular velocity of movement. The consequences of damage on dynamic, multi-joint, sport-specific movements would appear more pertinent with regard to athletic performance, but this aspect of muscle function has been studied less often. Reductions in the ability to generate power output during single-joint movements as well as during cycling and vertical jump movements have been documented. In addition, muscle damage has been observed to increase the physiological demand of endurance exercise and to increase thermal strain during exercise in the heat. The aims of this review are to summarise the functional decrements associated with exercise-induced muscle damage, relate these decrements to theoretical views regarding underlying mechanisms (i.e. sarcomere disruption, impaired excitation-contraction coupling, preferential fibre type damage, and impaired muscle metabolism), and finally to discuss the potential impact of muscle damage on athletic performance.
Collapse
Affiliation(s)
- Christopher Byrne
- Centre for Human Performance, Defence Medical and Environmental Research Institute, DSO National Laboratories, Republic of Singapore
| | | | | |
Collapse
|
26
|
Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM. Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol (1985) 2004; 96:1943-53. [PMID: 14978005 DOI: 10.1152/japplphysiol.00886.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined gene expression changes associated with exertional heat injury (EHI) in vivo and compared these changes to in vitro heat shock responses previously reported by our laboratory. Peripheral blood mononuclear cell (PBMC) RNA was obtained from four male Marine recruits (ages 17-19 yr) who presented with symptoms consistent with EHI, core temperatures ranging from 39.3 to 42.5°C, and elevations in serum enzymes such as creatine kinase. Controls were age- and gender-matched Marines from whom samples were obtained before and several days after an intense field-training exercise in the heat (“The Crucible”). Expression analysis was performed on Affymetrix arrays (containing ∼12,600 sequences) from pooled samples obtained at three times for EHI group (at presentation, 2-3 h after cooling, and 1-2 days later) and compared with control values (average signals from two chips representing pre- and post-Crucible samples). After post hoc filtering, the analysis identified 361 transcripts that had twofold or greater increases in expression at one or more of the time points assayed and 331 transcripts that had twofold or greater decreases in expression. The affected transcripts included sequences previously shown to be heat-shock responsive in PBMCs in vitro (including both heat shock proteins and non-heat shock proteins), a number of sequences whose changes in expression had not previously been noted as a result of in vitro heat shock in PBMCs (including several interferon-induced sequences), and several nonspecific stress response genes (including ubiquitin C and dual-specificity phosphatase-1). We conclude that EHI produces a broad stress response that is detectable in PBMCs and that heat stress per se can only account for some of the observed changes in transcript expression. The molecular evidence from these patients is thus consistent with the hypothesis that EHI can result from cumulative effects of multiple adverse interacting stimuli.
Collapse
Affiliation(s)
- Larry A Sonna
- Thermal and Mountain Medicine Div., United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bourdon L, Canini F, Saïssy JM, d’Aléo P, Koulmann N, Aubert M, Bigard AX. Le coup de chaleur d’exercice : II – Physiopathologie. Sci Sports 2003. [DOI: 10.1016/s0765-1597(03)00146-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|