1
|
Honda M, Inoue R, Nishiyama K, Ueda T, Komuro A, Amano H, Sugisawa R, Dash S, Shirakawa J, Okada H. Vgll2 as an integrative regulator of mitochondrial function and contractility specific to skeletal muscle. J Cell Physiol 2024:e31436. [PMID: 39286968 DOI: 10.1002/jcp.31436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene-deficient mouse approach, our previous studies uncovered that vestigial-like family member 2 (Vgll2), a skeletal muscle-specific transcription cofactor activated by exercise, is essential for fast-to-slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.
Collapse
Affiliation(s)
- Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohma, Kanagawa, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Akiyoshi Komuro
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Hisayuki Amano
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryoichi Sugisawa
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Suman Dash
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Antiaging Center, Kindai University, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
2
|
Nappi A, Moriello C, Morgante M, Fusco F, Crocetto F, Miro C. Effects of thyroid hormones in skeletal muscle protein turnover. J Basic Clin Physiol Pharmacol 2024; 35:253-264. [PMID: 39297559 DOI: 10.1515/jbcpp-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 11/01/2024]
Abstract
Thyroid hormones (THs) are critical regulators of muscle metabolism in both healthy and unhealthy conditions. Acting concurrently as powerful anabolic and catabolic factors, THs are endowed with a vital role in muscle mass maintenance. As a result, thyroid dysfunctions are the leading cause of a wide range of muscle pathologies, globally identified as myopathies. Whether muscle wasting is a common feature in patients with hyperthyroidism and is mainly caused by THs-dependent stimulation of muscle proteolysis, also muscle growth is often associated with hyperthyroid conditions, linked to THs-dependent stimulation of muscle protein synthesis. Noteworthy, also hypothyroid status negatively impacts on muscle physiology, causing muscle weakness and fatigue. Most of these symptoms are due to altered balance between muscle protein synthesis and breakdown. Thus, a comprehensive understanding of THs-dependent skeletal muscle protein turnover might facilitate the management of physical discomfort or weakness in conditions of thyroid disease. Herein, we describe the molecular mechanisms underlying the THs-dependent alteration of skeletal muscle structure and function associated with muscle atrophy and hypertrophy, thus providing new insights for targeted modulation of skeletal muscle dynamics.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Caterina Moriello
- Department of Advanced Medical and Surgical Sciences, University of Naples "Luigi Vanvitelli", Naples, Italy
| | | | - Ferdinando Fusco
- Department of Women, Children and General and Specialist Surgery, University of Naples "Luigi Vanvitelli", Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Huang X, Chen M, Xiao Y, Zhu F, Chen L, Tian X, Hong L. The influence of biological sex in human skeletal muscle transcriptome during ageing. Biogerontology 2024; 25:461-478. [PMID: 37792135 DOI: 10.1007/s10522-023-10070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Sex is a crucial biological variable, and influence of biological sex on the change of gene expression in ageing skeletal muscle has not yet been fully revealed. In this study, the mRNA expression profiles were obtained from the Gene Expression Omnibus database. Key genes were identified by differential expression analysis and weighted gene co-expression network analysis. The gene set enrichment analysis software and Molecular Signatures Database were used for functional and enrichment analysis. A protein-protein interaction network was constructed using STRING and visualized in Cytoscape. The results were compared between female and male subgroups. Differentially expressed genes and enriched pathways in different sex subgroups shared only limited similarities. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The muscle myosin filament pathways were downregulated in the both aged female and male samples whereas transforming growth factor beta pathway and extracellular matrix-related pathways were upregulated. With muscle ageing, the metabolism-related pathways, protein synthesis and degradation pathways, results of predicted immune cell infiltration, and gene cluster associated with slow-type myofibers drastically different between the female and male subgroups. This finding may indicate that changes in muscle type with ageing may differ between the sexes in vastus lateralis muscle.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya Xiao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyi Zhu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Tian
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Pelvic Floor Research Centre of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Sung P, Park MS. Compensatory latency time delays during consecutive perturbations in older adults with and without kinesiophobia. Gait Posture 2024; 109:95-100. [PMID: 38290396 DOI: 10.1016/j.gaitpost.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Fear of movement has been related to lower limb activation patterns in older adults. However, insight into consecutive perturbations on stepping strategy while considering fall-related confidence is unknown. RESEARCH QUESTION Are there latency time delays following three consecutive slip perturbations between subjects with and without kinesiophobia when considering limb dominance and fall efficacy differences? METHODS There were 15 older adults with kinesiophobia and 15 age- and body mass index (BMI)-matched control subjects. The subjects stood on the platform during three consecutive perturbations (250, 300, and 400 msec excursions), which were produced by a Bertec device. The subjects completed questionnaires to evaluate the psychological features of their fall-related fear (Tampa Scale for Kinesiophobia: TSK) as well as the modified fall efficacy scale (FES). The latency times (msec) measured the time it took for a subject to respond to a translation. RESULTS Overall, the results of the FES demonstrated a moderate negative association with the TSK (r = -0.52, p = 0.004). There was a significant group difference for the FES (t = 2.78, p = 0.01). The FES demonstrated significant positive correlation coefficients (ranging from 0.40 to 0.51) and significant negative correlation coefficients (ranging from -0.41 to -0.61), except for the slow perturbations. The groups demonstrated a significant interaction on consecutive latency times and limb side (F = 5.84, p = 0.02). The latency time during the fast perturbations on the dominant limb (F = 5.53, p = 0.02) was significantly shorter in the kinesiophobia group. SIGNIFICANCE The control group demonstrated confidence during fall-related activities, but the latency times were significantly different between groups when considering the dominant limb following repeated slip perturbations. The kinesiophobia group demonstrated shorter latency times on the dominant limb to protect against potential fall-risks from perturbations. The group interactions on limb side and consecutive perturbations need to be considered with fall-related confidence and improved standing balance in older adults with kinesiophobia.
Collapse
Affiliation(s)
- Paul Sung
- Department of Physical Therapy, Indiana Wesleyan University, 4201 South Washington Street, Marion, IN 46953, USA.
| | - Moon Soo Park
- Department of Orthopaedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Medical College of Hallym University, 7, Keunjaebong-gil, 18450 Hwaseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
6
|
Tatsukawa T, Kano K, Nakajima KI, Yazawa T, Eguchi R, Kabara M, Horiuchi K, Hayasaka T, Matsuo R, Hasebe N, Azuma N, Kawabe JI. NG2-positive pericytes regulate homeostatic maintenance of slow-type skeletal muscle with rapid myonuclear turnover. Stem Cell Res Ther 2023; 14:205. [PMID: 37592340 PMCID: PMC10433572 DOI: 10.1186/s13287-023-03433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Skeletal muscle comprises almost 40% of the human body and is essential for movement, structural support and metabolic homeostasis. Size of multinuclear skeletal muscle is stably maintained under steady conditions with the sporadic fusion of newly produced myocytes to compensate for the muscular turnover caused by daily wear and tear. It is becoming clear that microvascular pericytes (PCs) exhibit myogenic activity. However, whether PCs act as myogenic stem cells for the homeostatic maintenance of skeletal muscles during adulthood remains uncertain. METHODS We utilized PC-fused myofibers using PC-specific lineage tracing mouse (NG2-CreERT/Rosa-tdTomato) to observe whether muscle resident PCs have myogenic potential during daily life. Genetic PC deletion mouse model (NG2-CreERT/DTA) was used to test whether PC differentiates to myofibers for maintenance of muscle structure and function under homeostatic condition. RESULTS Under steady breeding conditions, tdTomato-expressing PCs were infused into myofibers, and subsequently, PC-derived nuclei were incorporated into myofibers. Especially in type-I slow-type myofibers such as the soleus, tdTomato+ myofibers were already observed 3 days after PC labeling; their ratio reached a peak (approximately 80%) within 1 month and was maintained for more than 1 year. Consistently, the NG2+ PC-specific deletion induced muscular atrophy in a slow-type myofiber-specific manner under steady breeding conditions. The number of myonucleus per volume of each myofiber was constant during observation period. CONCLUSIONS These findings demonstrate that the turnover of myonuclei in slow-type myofibers is relatively fast, with PCs acting as myogenic stem cells-the suppliers of new myonuclei under steady conditions-and play a vital role in the homeostatic maintenance of slow-type muscles.
Collapse
Affiliation(s)
- Takamitsu Tatsukawa
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Department of Vascular Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Kohei Kano
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Kei-Ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Ryoji Eguchi
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Maki Kabara
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Kiwamu Horiuchi
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Division of Cardiovascular, Respiratory and Neurology, Department of Medicine, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Taiki Hayasaka
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Division of Cardiovascular, Respiratory and Neurology, Department of Medicine, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Risa Matsuo
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Department of Dermatology, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
- Division of Cardiovascular, Respiratory and Neurology, Department of Medicine, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Jun-Ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, 2-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
| |
Collapse
|
7
|
Ahmad A, Dhanalekshmi UM, Koumaravelu K, Francis AP, Khan SA, Abuzinadah MF, Selvasudha N. A Study on Pharmacokinetic Functionalities and Safety Margins of an Optimized Simvastatin Nanoformulation. Pharmaceuticals (Basel) 2023; 16:ph16030380. [PMID: 36986480 PMCID: PMC10056947 DOI: 10.3390/ph16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
A pharmaceutical formulation with favorable pharmacokinetic parameters is more likely to be efficacious and safe to overcome the failures of the drug resulting from lack of efficacy, poor bioavailability, and toxicity. In this view, we aimed to evaluate the pharmacokinetic functionalities and safety margin of an optimized CS-SS nanoformulation (F40) by in vitro/in vivo methods. The everted sac technique was used to evaluate the improved absorption of a simvastatin formulation. In vitro protein binding in bovine serum and mice plasma was performed. The formulation’s liver and intestinal CYP3A4 activity and metabolic pathways were investigated by the qRT-PCR technique. The excretion of cholesterol and bile acids was measured to demonstrate the formulation’s cholesterol depletion effect. Safety margins were determined by histopathology as well as fiber typing studies. In vitro protein binding results revealed the existence of a high percentage of free drugs (22.31 ± 3.1%, 18.20 ± 1.9%, and 16.9 ± 2.2%, respectively) compared to the standard formulation. The controlled metabolism in the liver was demonstrated from CYP3A4 activity. The formulation showed enhanced PK parameters in rabbits such as a lower Cmax, clearance, and a higher Tmax, AUC, Vd, and t1/2. qRT-PCR screening further proved the different metabolic pathways followed by simvastatin (SREBP-2) and chitosan (PPAR-γ pathway) in the formulation. The results from qRT-PCR and histopathology confirmed the toxicity level. Hence, this pharmacokinetic profile of the nanoformulation proved it has a unique synergistic hypolipidemic modality.
Collapse
Affiliation(s)
- Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Unnikrishnan Meenakshi Dhanalekshmi
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: (U.M.D.); (N.S.)
| | | | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Mohammed F. Abuzinadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nandakumar Selvasudha
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
- Correspondence: (U.M.D.); (N.S.)
| |
Collapse
|
8
|
Kawata M, Luziga C, Miyata H, Sugiura T, Wada N. Differential expression of myosin heavy chain isoforms type II in skeletal muscles of polar and black bears. Anat Histol Embryol 2022; 52:363-372. [PMID: 36471656 DOI: 10.1111/ahe.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
In this study, the pattern of myosin heavy chain (MHC) isoforms expression in skeletal muscles of the trunk, forelimb and hindlimb in Polar Bear (PB) Ursus maritimus; American Black Bear (AmBB), Ursus americanus and Asian Black Bear (AsBB), Ursus thibetanus was analysed by immunohistochemistry and SDS-PAGE. Results showed that slow (MHC-I) and fast (MHC-II) isoforms exist in muscles of bears. Type II fibres were classified further into Type IIa and IIx in PB but not in AsBB and AmBB. The distribution of Type I and Type II fibres in the trunk, forelimb and hindlimb varied based on muscle type and animal species. The proportions of Type I fibres formed approximately one-third of muscle composition in PB (trunk, 32.0%; forelimb, 34.7%; hindlimb, 34.5%) and a half in both AsBB and AmBB whereas Type IIa and IIx formed approximately two-third in PB (trunk, 68.0%; forelimb, 65.3%; hindlimb, 65.5%) and a half of Type II in both AmBB and AsBB. PB is a good swimmer, lives in Arctic Ocean on slippery ice catching aquatic mammals such as seals and is larger in size compared to the medium sized AmBB (living in forest) and AsBB (arboreal). The results suggest that in bears, there is greater diversity in MHC isoforms II, being expressed in selected fast contracting skeletal muscles in response to variety of environments, weight bearing and locomotion.
Collapse
Affiliation(s)
- Mutsumi Kawata
- The United Veterinary Graduated School, Yamaguchi University, Yamaguchi City, Japan
| | - Claudius Luziga
- Department of Veterinary Anatomy and Pathology, College of Veterinary and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takao Sugiura
- Laboratory of Biomechanics and Physiology, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Wada
- Department of System Physiology, Yamaguchi University, Yamaguchi City, Japan
| |
Collapse
|
9
|
Comprehensive Analysis of Long Noncoding RNA Modified by m 6A Methylation in Oxidative and Glycolytic Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23094600. [PMID: 35562992 PMCID: PMC9105514 DOI: 10.3390/ijms23094600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Accumulating evidence shows m6A methylation plays vital roles in various biological processes, including muscle and fat differentiation. However, there is a lack of research on lncRNAs’ m6A modification in regulating pig muscle-fiber-type conversion. In this study, we identified novel and differentially expressed lncRNAs in oxidative and glycolytic skeletal muscles through RNA-seq, and further reported the m6A-methylation patterns of lncRNAs via MeRIP-seq. We found that most lncRNAs have one m6A peak, and the m6A peaks were preferentially enriched in the last exon of the lncRNAs. Interestingly, we found that lncRNAs’ m6A levels were positively correlated with their expression homeostasis and levels. Furthermore, we performed conjoint analysis of MeRIP-seq and RNA-seq data and obtained 305 differentially expressed and differentially m6A-modified lncRNAs (dme-lncRNAs). Through QTL enrichment analysis of dme-lncRNAs and PPI analysis for their cis-genes, we finally identified seven key m6A-modified lncRNAs that may play a potential role in muscle-fiber-type conversion. Notably, inhibition of one of the key lncRNAs, MSTRG.14200.1, delayed satellite cell differentiation and stimulated fast-to-slow muscle-fiber conversion. Our study comprehensively analyzed m6A modifications on lncRNAs in oxidative and glycolytic skeletal muscles and provided new targets for the study of pig muscle-fiber-type conversion.
Collapse
|
10
|
de Meeûs d'Argenteuil C, Boshuizen B, Vidal Moreno de Vega C, Leybaert L, de Maré L, Goethals K, De Spiegelaere W, Oosterlinck M, Delesalle C. Comparison of Shifts in Skeletal Muscle Plasticity Parameters in Horses in Three Different Muscles, in Answer to 8 Weeks of Harness Training. Front Vet Sci 2021; 8:718866. [PMID: 34733900 PMCID: PMC8558477 DOI: 10.3389/fvets.2021.718866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Training-induced follow-up of multiple muscle plasticity parameters in postural stability vs. locomotion muscles provides an integrative physiological view on shifts in the muscular metabolic machinery. It can be expected that not all muscle plasticity parameters show the same expression time profile across muscles. This knowledge is important to underpin results of metabolomic studies. Twelve non-competing Standardbred mares were subjected to standardized harness training. Muscle biopsies were taken on a non-training day before and after 8 weeks. Shifts in muscle fiber type composition and muscle fiber cross-sectional area (CSA) were compared in the m. pectoralis, the m. vastus lateralis, and the m. semitendinosus. In the m. vastus lateralis, which showed most pronounced training-induced plasticity, two additional muscle plasticity parameters (capillarization and mitochondrial density) were assessed. In the m. semitendinosus, additionally the mean minimum Feret's diameter was assessed. There was a significant difference in baseline profiles. The m. semitendinosus contained less type I and more type IIX fibers compatible with the most pronounced anaerobic profile. Though no baseline fiber type-specific and overall mean CSA differences could be detected, there was a clear post-training decrease in fiber type specific CSA, most pronounced for the m. vastus lateralis, and this was accompanied by a clear increase in capillary supply. No shifts in mitochondrial density were detected. The m. semitendinosus showed a decrease in fiber type specific CSA of type IIAX fibers and a decrease of type I fiber Feret's diameter as well as mean minimum Feret's diameter. The training-induced increased capillary supply in conjunction with a significant decrease in muscle fiber CSA suggests that the muscular machinery models itself toward an optimal smaller individual muscle fiber structure to receive and process fuels that can be swiftly delivered by the circulatory system. These results are interesting in view of the recently identified important fuel candidates such as branched-chain amino acids, aromatic amino acids, and gut microbiome-related xenobiotics, which need a rapid gut-muscle gateway to reach these fibers and are less challenging for the mitochondrial system. More research is needed with that respect. Results also show important differences between muscle groups with respect to baseline and training-specific modulation.
Collapse
Affiliation(s)
- Constance de Meeûs d'Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Klara Goethals
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Research Group Biometrics, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
11
|
Sekunov AV, Protopopov VA, Skurygin VV, Shalagina MN, Bryndina IG. Muscle Plasticity under Functional Unloading: Effects of an Acid Sphingomyelinase Inhibitor Clomipramine. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Li W, Gong Y, Liu J, Guo Y, Tang H, Qin S, Zhao Y, Wang S, Xu Z, Chen B. Peripheral and Central Pathological Mechanisms of Chronic Low Back Pain: A Narrative Review. J Pain Res 2021; 14:1483-1494. [PMID: 34079363 PMCID: PMC8166276 DOI: 10.2147/jpr.s306280] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic low back pain (CLBP), lasting >3 months, is the end result of multiple pathogenic factors. Unfortunately, little is known about CLBP pathogenesis, which limits its advancements in clinical therapy and disease management. This paper summarizes the known pathological axes of CLBP, involving both peripheral and central systems. In particular, this paper details injurious nerve stimulation, inflammation-induced peripheral pathway, and central sensitization. Lumbar components, such as intervertebral disc (IVD), facet joints, muscles, fascia, ligaments, and joint capsules, contain pain receptors called nociceptors. Degeneration of the aforementioned lumbar components activates inflammatory pathways, which can directly damage nerves, lower nociceptor threshold to fire action potentials (AP), and cause pain. Additionally, damaged lumbar IVDs and endplates can also lead to the pathologic invasion of nerve growth and innervation, followed by the compression of herniated IVDs on nerve roots, thereby causing traumatic neuropathic pain. The central mechanism of CLBP involves alteration of the sensory processing of the brain and malfunction of the descending pain modulatory system, which facilitates pain amplification in the center nervous system (CNS). Lastly, abnormalities in the brain biochemical metabolism, activation of glial cells, and subsequent inflammation also play important roles in CLBP development. Taken together, inflammation plays an important role in both peripheral and central sensitization of CLBP. Due to the heterogeneity of CLBP, its pathological mechanism remains complex and difficult to understand. Therefore, it is a worthy field for future research into the subcomponents of CLBP pathogenesis, in order to distinguish the specific form of the disease, identify its origins, and develop corresponding highly effective comprehensive therapy against CLBP.
Collapse
Affiliation(s)
- Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Songtao Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| |
Collapse
|
13
|
Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochem Photobiol Sci 2021; 20:585-595. [PMID: 33864617 DOI: 10.1007/s43630-021-00042-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
This study evaluated the effect of photobiomodulation therapy (PBMt) before or after a high-intensity resistance exercise (RE) session on muscle oxidative stress. Female Wistar rats were assigned to one of the following groups: Sham (non-exercised, undergoing placebo-PBMt); NLRE (exercised, undergoing placebo-PBMt); PBMt + RE (pre-exercise PBMt); RE + PBMt (post-exercise PBMt). The RE comprised four climbs bearing the maximum load with a 2 min rest between each climb. An 830-nm aluminum gallium arsenide diode laser (100 mW; 0.028 cm2; 3.57 mW/cm2; 142.8 J/cm2; 4 J; Photon Laser III, DMC, São Paulo, Brazil) was applied 60 s before or after RE in gastrocnemius muscles. Analyses were performed at 24 h after RE: lipoperoxidation using malondialdehyde (MDA) and protein oxidation (OP) on Western blot. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity were spectrophotometrically assessed. Nitric oxide (NO) level was determined by the Griess reaction. The MDA and OP levels were significantly higher in the NLRE group. Increased OP was prevented in all PBMt groups; however, increased MDA was prevented only in the RE + PBMT group. The RE + PBMt group had higher SOD activity compared to all other groups. A higher GPx activity was observed only in the PBMT + RE compared to Sham group, and CAT activity was reduced by RE, without PBMt effect. NO levels were unchanged with RE or PBMt. Therefore, PBMt application after a RE section has a more potent antioxidant effect than previous PBMt. Rats submitted to post-RE PBMt illustrated prevention of increased lipoperoxidation and protein oxidation as well as increased SOD activity. The photobiomodulation can attenuate oxidative stress induced by resistance exercise. A more evident benefit shows to be obtained with the application after exercise, in which it has increased the activity of superoxide dismustase.
Collapse
|
14
|
Liu L, Ding C, Fu T, Feng Z, Lee JE, Xiao L, Xu Z, Yin Y, Guo Q, Sun Z, Sun W, Mao Y, Yang L, Zhou Z, Zhou D, Xu L, Zhu Z, Qiu Y, Ge K, Gan Z. Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. J Clin Invest 2021; 130:4710-4725. [PMID: 32544095 DOI: 10.1172/jci136155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle depends on the precise orchestration of contractile and metabolic gene expression programs to direct fiber-type specification and to ensure muscle performance. Exactly how such fiber type-specific patterns of gene expression are established and maintained remains unclear, however. Here, we demonstrate that histone monomethyl transferase MLL4 (KMT2D), an enhancer regulator enriched in slow myofibers, plays a critical role in controlling muscle fiber identity as well as muscle performance. Skeletal muscle-specific ablation of MLL4 in mice resulted in downregulation of the slow oxidative myofiber gene program, decreased numbers of type I myofibers, and diminished mitochondrial respiration, which caused reductions in muscle fatty acid utilization and endurance capacity during exercise. Genome-wide ChIP-Seq and mRNA-Seq analyses revealed that MLL4 directly binds to enhancers and functions as a coactivator of the myocyte enhancer factor 2 (MEF2) to activate transcription of slow oxidative myofiber genes. Importantly, we also found that the MLL4 regulatory circuit is associated with muscle fiber-type remodeling in humans. Thus, our results uncover a pivotal role for MLL4 in specifying structural and metabolic identities of myofibers that govern muscle performance. These findings provide therapeutic opportunities for enhancing muscle fitness to combat a variety of metabolic and muscular diseases.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Leilei Xu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Chen L, Hu Y. The correlation between serum thyroid hormone levels and hand grip among elderly male Chinese inpatients. Aging Male 2020; 23:928-933. [PMID: 31268380 DOI: 10.1080/13685538.2019.1634044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Thyroid dysfunction is closely associated with skeletal muscle weakness. However, data on the optimal serum range of thyroid hormones for maintaining muscle strength in the elderly is lacking. METHODS We conducted a cross-sectional analysis in male elderly inpatients from the Geriatric Department of Zhongshan Hospital (affiliated to Fudan University, Shanghai, China). Serum biochemical parameters and thyroid hormones were detected for each participant. Hand grip (HG) was measured, with low hand grip defined as HG <26 kg according to the standard of the Asian Working Group for Sarcopenia. Logistic regression was used to evaluate the effects of different serum thyroid hormone levels on HG. RESULTS The majority of the subjects were euthyroid. The prevalence of low hand grip was 48.5%. Stratified by the free thyroxine (FT4) quartiles, the results showed HG was the highest in the third quartile. Multiple logistic regression analysis showed that compared with those in the first quartile, subjects in the third quartile of FT4 had a significantly lower risk of low hand grip (OR = 0.133, 95%CI: 0.020-0.610, p = .009), after adjusting potential confounding factors. CONCLUSION In elderly male inpatients, maintaining a narrower serum range of thyroid hormone might be needed to protect skeletal muscle strength.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Raza SHA, Khan S, Amjadi M, Abdelnour SA, Ohran H, Alanazi KM, Abd El-Hack ME, Taha AE, Khan R, Gong C, Schreurs NM, Zhao C, Wei D, Zan L. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch Biochem Biophys 2020; 694:108543. [PMID: 32798459 DOI: 10.1016/j.abb.2020.108543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022]
Abstract
Genomic selection has an essential role in the livestock economy by increasing selection productivity. Genomics provides a mechanism to increase the rate of genetic gain using marker-assisted selection. Various quantitative trait loci (QTL) associated with body, carcass and meat quality traits in beef cattle have been found. It is widely accepted that QTL traits in livestock species are regulated by several genes and factors from the environment. Genome-wide association studies (GWAS) are a powerful approach in identifying QTL and to establish genomic regions harboring the genes and polymorphisms associated with specific characteristics in beef cattle. Due to their impact on economic returns, growth, carcass and meat quality traits of cattle are frequently used as essential criteria in selection in breeding programs., GWAS has been used in beef cattle breeding and genetic program and some progress has been made. Furthermore, numerous genes and markers related to productivity traits in beef cattle have been found. This review summarizes the advances in the use of GWAS in beef cattle production and outlines the associations with growth, carcass, and meat quality.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Samiullah Khan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Motahareh Amjadi
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hussien Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmajaod Bosne 90, 71000, Sarajevo, Bosnia and Herzegovina
| | - Khalid M Alanazi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Rezaei Nasab H, Habibi AH, Nikbakht M, Rashno M, Shakerian S. Changes in Serum Levels and Gene Expression of PGC-1α in The Cardiac Muscle of Diabetic Rats: The Effect of Dichloroacetate and Endurance Training. CELL JOURNAL 2020; 22:425-430. [PMID: 32347035 PMCID: PMC7211283 DOI: 10.22074/cellj.2021.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
Objective Physical activity leads to changes in the level of gene expression in different kinds of cells, including
changes in mitochondrial biogenesis in the myocardium in diabetic patients. Peroxisome proliferator-activated receptor
γ coactivator 1α (PGC-1α) is a gene that plays an important role in regulating mitochondrial biogenesis. The purpose
of this study was to investigate changes in serum levels and cardiac muscle expression of PGC-1α in diabetic rats in
response to the administration of dichloroacetate (DCA) and endurance training.
Materials and Methods In this experimental study, 64 male Wistar rats were selected and randomly divided into eight
groups after induction of diabetes with streptozotocin (STZ). The endurance training protocol was performed on a
treadmill for 6 weeks. Intraperitoneal injection of DCA of 50 mg/ kg body weight was used for the inhibition of Pyruvate
Dehydrogenase Kinase 4 (PDK4) in the myocardium. Gene expression were measured using real-time polymerase
chain reaction (PCR). One-way ANOVA and Tukey’s test were used to statistically analyze the data.
Results The results of the study showed that PDK4 gene expression in the endurance training group, diabetes+endurance
training group, diabetes+endurance training+DCA group and endurance training+DCA group was higher compared to
the control group. Expression of PGC-1α was higher in the endurance training group compared to the control group
but was lower compared to the control group in diabetes+endurance training+DCA group and diabetes+DCA group
(P<0.05).
Conclusion Considering that PGC-1α plays an important role in mitochondrial biogenesis, it is likely that by inhibiting
PDK4 and subsequently controlling oxidation of fatty acid (FA) in the heart tissue, oxidative stress in the heart tissue of
diabetic patients will be reduced and cardiac efficiency will be increased.
Collapse
Affiliation(s)
- Hamed Rezaei Nasab
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address:
| | - Abdol Hamid Habibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Nikbakht
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Shakerian
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
18
|
Luu BE, Lefai E, Giroud S, Swenson JE, Chazarin B, Gauquelin-Koch G, Arnemo JM, Evans AL, Bertile F, Storey KB. MicroRNAs facilitate skeletal muscle maintenance and metabolic suppression in hibernating brown bears. J Cell Physiol 2020; 235:3984-3993. [PMID: 31643088 DOI: 10.1002/jcp.29294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Hibernating brown bears, Ursus arctos, undergo extended periods of inactivity and yet these large hibernators are resilient to muscle disuse atrophy. Physiological characteristics associated with atrophy resistance in bear muscle have been examined (e.g., muscle mechanics, neural activity) but roles for molecular signaling/regulatory mechanisms in the resistance to muscle wasting in bears still require investigation. Using quantitative reverse transcription PCR (RT-qPCR), the present study characterized the responses of 36 microRNAs linked with development, metabolism, and regeneration of skeletal muscle, in the vastus lateralis of brown bears comparing winter hibernating and summer active animals. Relative levels of mRNA of selected genes (mef2a, pax7, id2, prkaa1, and mstn) implicated upstream and downstream of the microRNAs were examined. Results indicated that hibernation elicited a myogenic microRNA, or "myomiR", response via MEF2A-mediated signaling. Upregulation of MEF2A-controlled miR-1 and miR-206 and respective downregulation of pax7 and id2 mRNA are suggestive of responses that promote skeletal muscle maintenance. Increased levels of metabolic microRNAs, such as miR-27, miR-29, and miR-33, may facilitate metabolic suppression during hibernation via mechanisms that decrease glucose uptake and fatty acid oxidation. This study identified myomiR-mediated mechanisms for the promotion of muscle regeneration, suppression of ubiquitin ligases, and resistance to muscle atrophy during hibernation mediated by observed increases in miR-206, miR-221, miR-31, miR-23a, and miR-29b. This was further supported by the downregulation of myomiRs associated with a muscle injury and inflammation (miR-199a and miR-223) during hibernation. The present study provides evidence of myomiR-mediated signaling pathways that are activated during hibernation to maintain skeletal muscle functionality in brown bears.
Collapse
Affiliation(s)
- Bryan E Luu
- Department of Biology, Carleton University, Ottawa, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Etienne Lefai
- Université d'Auvergne, INRA, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Blandine Chazarin
- Centre National d'Etudes Spatiales, CNES, Paris, France
- Université de Strasbourg, CNRS, IPHC, Strasbourg, France
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | | | | |
Collapse
|
19
|
Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes (Basel) 2020; 11:genes11020189. [PMID: 32053968 PMCID: PMC7074168 DOI: 10.3390/genes11020189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Improving the genetic process of growth traits is one of the major goals in the beef cattle industry, as it can increase meat production and reduce the cost of raising animals. Although several quantitative trait loci affecting growth traits in beef cattle have been identified, the genetic architecture of these economically important traits remains elusive. This study aims to map single nucleotide polymorphisms (SNPs) and genes associated with birth weight (BW), yearling weight (YW), average daily gain from birth to yearling (BYADG), and body weight at the age of 18 months (18MW) in a Chinese Simmental beef cattle population using a weighted, single-step, genome-wide association study (wssGWAS). Phenotypic and pedigree data from 6022 animals and genotypes from 744 animals (596,297 SNPs) were used for an association analysis. The results showed that 66 genomic windows explained 1.01-20.15% of the genetic variance for the four examined traits, together with the genes near the top SNP within each window. Furthermore, the identified genomic windows (>1%) explained 50.56%, 57.71%, 61.78%, and 37.82% of the genetic variances for BW, YW, BYADG, and 18MW, respectively. Genes with potential functions in muscle development and regulation of cell growth were highlighted as candidates for growth traits in Simmental cattle (SQOR and TBCB for BW, MYH10 for YW, RLF for BYADG, and ARHGAP31 for 18MW). Moreover, we found 40 SNPs that had not previously been identified as being associated with growth traits in cattle. These findings will further advance our understanding of the genetic basis for growth traits and will be useful for the molecular breeding of BW, YW, BYADG, and 18MW in the context of genomic selection in beef cattle.
Collapse
|
20
|
Lee J, Jo K, Ha J, Lim DJ, Lee JM, Chang SA, Kang MI, Kim MH. A Significant Association of Upper Limb Muscle Strength with Thyroid Function in Overweight and Obese Population: A Study of the Sixth Korea National Health and Nutrition Examination Survey (KNHANES 2014-2015). Int J Endocrinol 2020; 2020:7195846. [PMID: 33343661 PMCID: PMC7732406 DOI: 10.1155/2020/7195846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background. As skeletal muscle is one of main targets of thyroid hormone signalling, an association of thyroid function and muscle strength could be expected. The aim of study is to evaluate the association of free thyroxine (FT4) and thyrotropin (TSH) with upper limb muscle strength, measured by hand grip strength, in subjects with normal FT4 from national representative data. The study utilized the sixth edition of the Korea National Health and Nutrition Examination Survey. After exclusion of subjects with FT4 level out of normal range, a history of thyroid disease or cerebral disease, restricted activity, and incomplete data, a total of 3503 were recruited (age range 19-80 years, 51% male). FT4 positively correlated with upper limb muscle strength (β coefficient = -12.84, p < 0.001), while TSH did negatively (β coefficient = -0.37, p=0.002). After adjusting for confounding factors, statistical significance disappeared. However, among subjects with BMI above 23 kg/m2, a negative correlation of TSH with upper limb muscle strength was found in a younger age group (19-39 years old) (β coefficient = -0.56, p=0.021), while FT4 positively correlated with upper limb muscle strength (β coefficient = 3.24, p=0.019) in an older group (above 40 years old). In overweight and obese subjects, a significant association of thyroid function with upper limb muscle strength was observed in nation-wide representative data. High TSH in a younger group and low FT4 in an older group could be risk factors for decreased upper limb muscle strength in obese population.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Kwanhoon Jo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Min Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Sang-Ah Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Min-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| |
Collapse
|
21
|
Hyatt JPK, Brown EA, Deacon HM, McCall GE. Muscle-Specific Sensitivity to Voluntary Physical Activity and Detraining. Front Physiol 2019; 10:1328. [PMID: 31708796 PMCID: PMC6819312 DOI: 10.3389/fphys.2019.01328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022] Open
Abstract
Aerobic physical activity triggers adaptations in skeletal muscle including a fast-to-slow shift in myosin heavy chain (MHC) isoforms, an enhanced capillary network, and mitochondrial biogenesis to meet increased demands placed upon this tissue. Although the magnitude of these responses appears to be dependent on muscle phenotype as well as training volume and/or intensity, the whole-muscle response to detraining remains mostly unexplored. Here, we hypothesized that the shifts toward slower MHC phentotype and the increased capillarity and mitochondrial oxidative markers induced with training would return toward sedentary (SED) control levels sooner in the fast plantaris than in the slow soleus muscle as a result of detraining. Soleus and plantaris muscles from 8-week (TR 8wk) voluntarily running adult female Sprague–Dawley rats were compared to muscles from SED and detrained rats (DETR) (4 weeks voluntary running followed by 4 weeks of reduced activity), which were subdivided into low- (DETR Lo) and high-running-distance (DETR Hi) groups. We show that maintaining the fast-to-slow MHC isoform shift required consistent aerobic training in the soleus and plantaris muscles: detraining clearly abolished any fast-to-slow gains in the plantaris, whereas the training volume in DETR Hi rats appeared to influence the MHC return to basal levels in the soleus. Total capillary number (per mm2) in the plantaris increased in all groups compared to SED levels, but, in the soleus, this enhancement was observed only in the TR 8wk rats. Generally, increased mitochondrial markers for aerobicitiy were observed in TR 8wk plantaris, but not soleus, muscles. In a second experiment, we show that the muscle-specific adaptations were similar after 4 weeks of voluntary exercise (TR 4wk) as in 4 weeks (TR 8wk). Taken together, our findings suggest that the plantaris muscle is more sensitive to voluntary physical activity and detraining than the soleus muscle; these results also demonstrate that the soleus muscle requires a greater aerobic challenge (i.e., intensity, duration) to trigger phenotypic, angiogenic, or aerobic enzyme adaptations. Our findings generally suggest that muscular aerobic fitness to voluntary running, or its loss during detraining, manifests as changes occurring primarily within fast, rather than slow, muscle phenotypes.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Emily A Brown
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| | - Hannah M Deacon
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Gary E McCall
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| |
Collapse
|
22
|
Shero MR, Reiser PJ, Simonitis L, Burns JM. Links between muscle phenotype and life history: differentiation of myosin heavy chain composition and muscle biochemistry in precocial and altricial pinniped pups. J Comp Physiol B 2019; 189:717-734. [DOI: 10.1007/s00360-019-01240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
|
23
|
Wu L, Ran L, Lang H, Zhou M, Yu L, Yi L, Zhu J, Liu L, Mi M. Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499. Nutr Metab (Lond) 2019; 16:27. [PMID: 31073320 PMCID: PMC6498703 DOI: 10.1186/s12986-019-0353-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background Reprogramming of fast-to-slow myofiber switch can improve endurance capacity and alleviate fatigue. Accumulating evidence suggests that a muscle-specific microRNA, miR-499 plays a crucial role in myofiber type transition. In this study, we assessed the effects of natural flavonoid myricetin on exercise endurance and muscle fiber constitution, and further investigated the underlying mechanism of myricetin in vivo and in vitro. Methods A total of 66 six-week-old male Sprague Dawley rats were divided into non-exercise or exercise groups with/without orally administered myricetin (50 or 150 mg/kg) for 2 or 4 weeks. Time-to-exhaustion, blood biochemical parameters, muscle fiber type proportion, the expression of muscle type decision related genes were measured. Mimic/ inhibitor of miR-499 were transfected into cultured L6 myotubes, the expressions of muscle type decision related genes and mitochondrial respiration capacity were investigated. Results Myricetin treatment significantly improved the time-to-exhaustion in trained rats. The enhancement of endurance capacity was associated with an increase of the proportion of slow-twitch myofiber in both soleus and gastrocnemius muscles. Importantly, myricetin treatment amplified the expression of miR-499 and suppressed the expression of Sox6, the down-stream target gene of miR-499, both in vivo and in vitro. Furthermore, inhibition of miR-499 overturned the effects of myricetin on down-regulating Sox6. Conclusions Myricetin promoted the reprogramming of fast-to-slow muscle fiber type switch and reinforced the exercise endurance capacity. The precise mechanisms responsible for the effects of myricetin are not resolved but likely involve regulating miR-499/Sox6 axis.
Collapse
Affiliation(s)
- Luting Wu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Ran
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hedong Lang
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Zhou
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Yu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Long Yi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jundong Zhu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Liu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mantian Mi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Fox MD, Carson VJ, Feng HZ, Lawlor MW, Gray JT, Brigatti KW, Jin JP, Strauss KA. TNNT1 nemaline myopathy: natural history and therapeutic frontier. Hum Mol Genet 2019; 27:3272-3282. [PMID: 29931346 DOI: 10.1093/hmg/ddy233] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023] Open
Abstract
We describe the natural history of 'Amish' nemaline myopathy (ANM), an infantile-onset, lethal disease linked to a pathogenic c.505G>T nonsense mutation of TNNT1, which encodes the slow fiber isoform of troponin T (TNNT1; a.k.a. TnT). The TNNT1 c.505G>T allele has a carrier frequency of 6.5% within Old Order Amish settlements of North America. We collected natural history data for 106 ANM patients born between 1923 and 2017. Over the last two decades, mean age of molecular diagnosis was 16 ± 27 days. TNNT1 c.505G>T homozygotes were normal weight at birth but failed to thrive by age 9 months. Presenting neonatal signs were axial hypotonia, hip and shoulder stiffness, and tremors, followed by progressive muscle weakness, atrophy and contractures. Affected children developed thoracic rigidity, pectus carinatum and restrictive lung disease during infancy, and all succumbed to respiratory failure by 6 years of age (median survival 18 months, range 0.2-66 months). Muscle histology from two affected children showed marked fiber size variation owing to both Type 1 myofiber smallness (hypotrophy) and Type 2 fiber hypertrophy, with evidence of nemaline rods, myofibrillar disarray and vacuolar pathology in both fiber types. The truncated slow TNNT1 (TnT) fragment (p.Glu180Ter) was undetectable in ANM muscle, reflecting its rapid proteolysis and clearance from sarcoplasm. Similar functional and histological phenotypes were observed in other human cohorts and two transgenic murine models (Tnnt1-/- and Tnnt1 c.505G>T). These findings have implications for emerging molecular therapies, including the suitably of TNNT1 gene replacement for newborns with ANM or other TNNT1-associated myopathies.
Collapse
Affiliation(s)
- Michael D Fox
- Clinic for Special Children, Strasburg, PA, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Diagnostic Referral Division, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
25
|
Iresjö BM, Engström C, Smedh U, Lundholm K. Overnight Steady-State Infusions of Parenteral Nutrition on Myosin Heavy Chain Transcripts in Rectus Abdominis Muscle Related to Amino Acid Transporters, Insulin-like Growth Factor 1, and Blood Amino Acids in Patients Aimed at Major Surgery. JPEN J Parenter Enteral Nutr 2018; 43:497-507. [PMID: 30350380 DOI: 10.1002/jpen.1458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evaluation of improvements by nutrition support to severely ill patients requires sensitive methods to demonstrate activation of protein synthesis in various tissues from groups with a limited number of patients to be statistically efficient. This study examines effects of standard parenteral nutrition (PN) on abdominal muscle transcripts of amino acid (AA) transporters, myosin heavy chains (MHCs), and the insulin-like growth factor 1 and its receptor (IGF-1/IGF-1R) in patients aimed at major surgery. METHODS Twenty-two randomized patients received steady-state PN (0.16 gN/kg/d, 30 kcal/kg/d) or saline infusions for 12 hours before operation. Blood samples and muscle biopsies were obtained at operation start. Muscle messenger RNA (mRNA) levels of AA transporters (solute carrier family members SNAT2, LAT1, LAT3, LAT4, TAUT, PAT1, CD98), IGF-1, IGF-1R, MHC isoforms (MHC1, MHC2A, MHC2X), and LAT3 protein were quantified and related to concentrations of AA, IGF-1, insulin, and metabolic substrates in blood. RESULTS Muscle mRNA LAT3, LAT4, IGF-1R, and MHC2A increased by PN infusion, with correlations to specific AA transporters and MHC isoforms (P < .01-.05). TAUT and LAT3 correlated to slow (MHC1) and fast (MHC2A, MHC2X) isoforms (P < .001-.02). Muscle IGF-1 mRNA correlated to plasma essential AAs, whereas IGF-1R mRNA was related to LAT3, MHC2A, and serum IGF-1 (P < .001-.03). CONCLUSIONS The results confirm that short-term preoperative PN activates transcription of AA transporters and myosin isoforms. Thus, combinations of methods on gene transcription and translation of muscle proteins can be applied to define efficient combinations of nutrition and hormones to catabolic patients in preoperative and postoperative settings.
Collapse
Affiliation(s)
- Britt-Marie Iresjö
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Cecilia Engström
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ulrika Smedh
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kent Lundholm
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
26
|
Shorter recovery time following high-intensity interval training induced higher body fat loss among overweight women. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0505-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018; 62. [PMID: 30043597 PMCID: PMC6065050 DOI: 10.4081/ejh.2018.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fastto- slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-toslow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.
Collapse
Affiliation(s)
- Vika Smerdu
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy.
| | | |
Collapse
|
28
|
Cappelli K, Capomaccio S, Viglino A, Silvestrelli M, Beccati F, Moscati L, Chiaradia E. Circulating miRNAs as Putative Biomarkers of Exercise Adaptation in Endurance Horses. Front Physiol 2018; 9:429. [PMID: 29740341 PMCID: PMC5928201 DOI: 10.3389/fphys.2018.00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Endurance exercise induces metabolic adaptations and has recently been reported associated with the modulation of a particular class of small noncoding RNAs, microRNAs, that act as post-transcriptional regulators of gene expression. Released into body fluids, they termed circulating miRNAs, and they have been recognized as more effective and accurate biomarkers than classical serum markers. This study examined serum profile of miRNAs through massive parallel sequencing in response to prolonged endurance exercise in samples obtained from four competitive Arabian horses before and 2 h after the end of competition. MicroRNA identification, differential gene expression (DGE) analysis and a protein-protein interaction (PPI) network showing significantly enriched pathways of target gene clusters, were assessed and explored. Our results show modulation of more than 100 miRNAs probably arising from tissues involved in exercise responses and indicating the modulation of correlated processes as muscle remodeling, immune and inflammatory responses. Circulating miRNA high-throughput sequencing is a promising approach for sports medicine for the discovery of putative biomarkers for predicting risks related to prolonged activity and monitoring metabolic adaptations.
Collapse
Affiliation(s)
- Katia Cappelli
- Dipartimento di Medicina Veterinaria, Centro di Studio del Cavallo Sportivo, University of Perugia, Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Centro di Studio del Cavallo Sportivo, University of Perugia, Perugia, Italy
| | - Andrea Viglino
- Facoltà di Scienze Agrarie, Alimentari e Ambientali, Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maurizio Silvestrelli
- Dipartimento di Medicina Veterinaria, Centro di Studio del Cavallo Sportivo, University of Perugia, Perugia, Italy
| | - Francesca Beccati
- Dipartimento di Medicina Veterinaria, Centro di Studio del Cavallo Sportivo, University of Perugia, Perugia, Italy
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Elisabetta Chiaradia
- Dipartimento di Medicina Veterinaria, Centro di Studio del Cavallo Sportivo, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Abstract
Thyroid hormone is a major determinant of tissue functions in vivo. The deiodinase family controls the tissue-specific activation or inactivation of intracellular thyroid hormones. Precise control of the T3-dependent transcriptional program is required by multiple cell systems, including the stem cell. In this context, the identification of a close connection between thyroid hormones and different signal pathways involved in the control of stem cell functions suggested that the deiodinases may play a role in the definition of stem cell biology and physiology. Stem cells have an unlimited self-renewal capacity and the potential to differentiate into different types of mature cells. Deciphering how all these events are achieved, how the T3 signal is controlled and integrated in stem cells and their niches, and how it can impact on them is essentially unknown and represents a challenge for coming years. In this review, I will explore the role played by the deiodinases in the modulation of the TH signal in stem cells of adult tissues, namely muscle and intestine, and how their actions control the delicate balance among self-renewal, proliferation and differentiation. Elucidation of the molecular mechanisms presiding thyroid hormone action in stem cells may reveal therapeutic potential, for example in the fields of regenerative diseases and cancer.
Collapse
Affiliation(s)
- D Salvatore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
31
|
Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 2018; 236:R57-R68. [PMID: 29051191 DOI: 10.1530/joe-16-0611] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.
Collapse
Affiliation(s)
- Flavia F Bloise
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Friedrich O, Diermeier S, Larsson L. Weak by the machines: muscle motor protein dysfunction - a side effect of intensive care unit treatment. Acta Physiol (Oxf) 2018; 222. [PMID: 28387014 DOI: 10.1111/apha.12885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Intensive care interventions involve periods of mechanical ventilation, sedation and complete mechanical silencing of patients. Critical illness myopathy (CIM) is an ICU-acquired myopathy that is associated with limb muscle weakness, muscle atrophy, electrical silencing of muscle and motor proteinopathy. The hallmark of CIM is a preferential muscle myosin loss due to increased catabolic and reduced anabolic activity. The ubiquitin proteasome pathway plays an important role, apart from recently identified novel mechanisms affecting non-lysosomal protein degradation or autophagy. CIM is not reproduced by pure disuse atrophy, denervation atrophy, steroid-induced atrophy or septic myopathy, although combinations of high-dose steroids and denervation can mimic CIM. New animal models of critical illness and ICU treatment (i.e. mechanical ventilation and complete immobilization) provide novel insights regarding the time course of protein synthesis and degradation alterations, and the role of protective chaperone activities in the process of myosin loss. Altered mechano-signalling seems involved in triggering a major part of myosin loss in experimental CIM models, and passive loading of muscle potently ameliorates the CIM phenotype. We provide a systematic overview of similarities and distinct differences in the signalling pathways involved in triggering muscle atrophy in CIM and isolated trigger factors. As preferential myosin loss is mostly determined from biochemistry analyses providing no spatial resolution of myosin loss processes within myofibres, we also provide first results monitoring myosin signal intensities during experimental ICU intervention using multi-photon Second Harmonic Generation microscopy. Our results confirm that myosin loss is an evenly distributed process within myofibres rather than being confined to hot spots.
Collapse
Affiliation(s)
- O. Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - S. Diermeier
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - L. Larsson
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
- Section of Clinical Neurophysiology; Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
- Department of Biobehavioral Health; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
33
|
Expression of MyHC isoforms mRNA transcripts in different regions of the masseter and medial pterygoid muscles in chimpanzees. Arch Oral Biol 2017; 83:63-67. [DOI: 10.1016/j.archoralbio.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
|
34
|
Belavý DL, Gast U, Felsenberg D. Exercise and Transversus Abdominis Muscle Atrophy after 60-d Bed Rest. Med Sci Sports Exerc 2017; 49:238-246. [PMID: 27685010 DOI: 10.1249/mss.0000000000001096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate atrophy in the deep abdominal muscles, spinal extensors, and the effect of high-load resistive exercise with and without whole-body vibration after 60 d of strict bed rest. METHODS Twenty-four subjects underwent 60 d of head-down tilt bed rest and performed either resistive vibration exercise (RVE), resistive exercise only (RE), or no exercise control (2nd Berlin BedRest Study). The thickness of the transversus abdominis, internal oblique, and erector spinae muscles and the area of the multifidus muscle were measured bilaterally via real-time ultrasound. Intention-to-treat analysis was implemented, and P values were adjusted by the false discovery rate method. RESULTS At the end of the bed rest, transversus abdominis thickness was reduced by 18.3% in the inactive group (P = 0.00011) with no significant change in the RVE (-4.0%; P = 0.014 vs control) or RE (-5.0%; P = 0.10 vs control) groups. In the inactive subjects, internal oblique thickness reduced by 10.6% (P = 0.0025) and by 7% (P > 0.05) in each of the training groups. The lengthening of the lumbar spine was greatest on day 1 (+7.4%, P = 0.004) and day 2 (+6.3%, P = 0.004; day 54: +4.1%, P = 0.023). A 4.7% reduction of multifidus area was observed on day 1 of bed rest (P = 0.0049) and a 4.2% reduction of erector spinae thickness was observed on day 2 (P = 0.0011). Extensor atrophy and spinal lengthening was not affected by exercise. No significant difference was seen between RVE and RE. CONCLUSION Bed rest leads to atrophy of the transversus abdominis and internal oblique muscles. The exercise program, which implemented lower-limb and back extension exercises against shoulder restraints, was able to reduce atrophy seen in transversus abdominis in bed rest.
Collapse
Affiliation(s)
- Daniel Ludovic Belavý
- 1Center for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, GERMANY; and 2School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, AUSTRALIA
| | | | | |
Collapse
|
35
|
Smerdu V, Perše M. Effect of carcinogen 1,2-dimethylhydrazine treatment on fiber types in skeletal muscles of male Wistar rats. Physiol Res 2017; 66:845-858. [PMID: 28730826 DOI: 10.33549/physiolres.933508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cancerogen 1,2-dimethylhydrazine (DMH), widely used in the experimental animal model of carcinogenesis, affects various organs, but its effect on muscle fibers is unknown. To evaluate the effect of 15-week DMH treatment on the fiber size and myosin heavy chain (MyHC) isoforms, which substantially determine fiber types and their contractile characteristics, pure and hybrid fiber types were immunohistochemically determined according to the MyHC isoform expression in soleus, extensor digitorum longus, gastrocnemius medialis and lateralis muscles of DMH-treated and control male Wistar rats. Whereas the size of fibers was mostly unaffected, the MyHC isoform expression was partially affected in both gastrocnemius samples, but not in the soleus and extensor digitorum longus of DMH-treated rats. The lower proportions of hybrid fiber types and especially that of type 1/2x in most gastrocnemius samples of DMH-treated rats resulted in a shift towards a single MyHC isoform expression, but the extent and pattern of the MyHC isoform shift varied across the different gastrocnemius samples. Such variable response to DMH treatment across muscles indicates that each muscle possesses its own adaptive range. These findings are essential for an accurate evaluation of skeletal muscle characteristics in DMH animal model.
Collapse
Affiliation(s)
- V Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
36
|
Zhang D, Li Y, Liu S, Wang YC, Guo F, Zhai Q, Jiang J, Ying H. microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell Biosci 2017; 7:14. [PMID: 28331574 PMCID: PMC5359910 DOI: 10.1186/s13578-017-0141-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/08/2017] [Indexed: 01/18/2023] Open
Abstract
Thyroid hormone (TH) signaling plays critical roles in the differentiation, growth, metabolism, and physiological function of all organs or tissues, including heart and skeletal muscle. Due to the significant progress in our understanding of the molecular mechanisms that underlie TH action, it's widely accepted that TH signaling is regulated at multiple levels. A growing number of discoveries suggest that microRNAs (miRNAs) act as fine-tune regulators of gene expression and adds sophisticated regulatory tiers to signaling pathways. Recently, some pioneering studies in cardiac and skeletal muscle demonstrating the interplay between miRNAs and TH signaling suggest that miRNAs might mediate and/or modulate TH signaling. This review presents recent advances involving the crosstalk between miRNAs and TH signaling and current evidence showing the importance of miRNA in TH signaling with particular emphasis on the study of muscle-specific miRNAs (myomiRs) in cardiac and skeletal muscle. Although the research of the reciprocal regulation of miRNAs and TH signaling is only at the beginning stage, it has already contributed to our current understanding of both TH action and miRNA biology. We also encourage further investigations to address the relative contributions of miRNAs in TH signaling under physiological and pathological conditions and how a group of miRNAs are coordinated to integrate into the complex hierarchical regulatory network of TH.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yu-Cheng Wang
- Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai Xuhui Central Hospital, 966 Middle Huaihai Road, Shanghai, 200031 China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute for Nutritional Sciences, Room A1912, New Life Science Building, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
37
|
Xue Q, Zhang G, Li T, Ling J, Zhang X, Wang J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One 2017; 12:e0173824. [PMID: 28291821 PMCID: PMC5349469 DOI: 10.1371/journal.pone.0173824] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022] Open
Abstract
The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development.
Collapse
Affiliation(s)
- Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jiaojiao Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| |
Collapse
|
38
|
Sindoni A, Rodolico C, Pappalardo MA, Portaro S, Benvenga S. Hypothyroid myopathy: A peculiar clinical presentation of thyroid failure. Review of the literature. Rev Endocr Metab Disord 2016; 17:499-519. [PMID: 27154040 DOI: 10.1007/s11154-016-9357-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abnormalities in thyroid function are common endocrine disorders that affect 5-10 % of the general population, with hypothyroidism occurring more frequently than hyperthyroidism. Clinical symptoms and signs are often nonspecific, particularly in hypothyroidism. Muscular symptoms (stiffness, myalgias, cramps, easy fatigability) are mentioned by the majority of patients with frank hypothyroidism. Often underestimated is the fact that muscle symptoms may represent the predominant or the only clinical manifestation of hypothyroidism, raising the issue of a differential diagnosis with other causes of myopathy, which sometimes can be difficult. Elevated serum creatine kinase, which not necessarily correlates with the severity of the myopathic symptoms, is certainly suggestive of muscle impairment, though it does not explain the cause. Rare muscular manifestations, associated with hypothyroidism, are rhabdomyolysis, acute compartment syndrome, Hoffman's syndrome and Kocher-Debré-Sémélaigne syndrome. Though the pathogenesis of hypothyroid myopathy is not entirely known, proposed mechanisms include altered glycogenolytic and oxidative metabolism, altered expression of contractile proteins, and neuro-mediated damage. Correlation studies of haplotype, muscle gene expression and protein characterization, could help understanding the pathophysiological mechanisms of this myopathic presentation of hypothyroidism.
Collapse
Affiliation(s)
- Alessandro Sindoni
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy.
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria, 1, 98125, Messina, Italy.
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Simona Portaro
- IRCCS Centro Neurolesi "Bonino Pulejo", SS 113, Via Palermo, c.da Casazza, Messina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, Messina, Italy
- Interdepartmental Program of Clinical and Molecular Endocrinology & Women's Endocrine Health, A.O.U. Policlinico "G. Martino", Messina, Italy
| |
Collapse
|
39
|
Loureiro ACC, do Rêgo-Monteiro IC, Louzada RA, Ortenzi VH, de Aguiar AP, de Abreu ES, Cavalcanti-de-Albuquerque JPA, Hecht F, de Oliveira AC, Ceccatto VM, Fortunato RS, Carvalho DP. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6738701. [PMID: 27847553 PMCID: PMC5101397 DOI: 10.1155/2016/6738701] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 01/24/2023]
Abstract
NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.
Collapse
Affiliation(s)
- Adriano César Carneiro Loureiro
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Igor Coutinho do Rêgo-Monteiro
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ruy A Louzada
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victor Hugo Ortenzi
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Angélica Ponte de Aguiar
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Ewerton Sousa de Abreu
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | | | - Fabio Hecht
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ariclécio Cunha de Oliveira
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, Fu T, Kong Y, Zhou Q, Vega RB, Zhu MS, Kelly DP, Gao X, Gan Z. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med 2016; 8:1212-1228. [PMID: 27506764 PMCID: PMC5048369 DOI: 10.15252/emmm.201606372] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upon adaption of skeletal muscle to physiological and pathophysiological stimuli, muscle fiber type and mitochondrial function are coordinately regulated. Recent studies have identified pathways involved in control of contractile proteins of oxidative-type fibers. However, the mechanism for coupling of mitochondrial function to the muscle contractile machinery during fiber type transition remains unknown. Here, we show that the expression of the genes encoding type I myosins, Myh7/Myh7b and their intronic miR-208b/miR-499, parallels mitochondrial function during fiber type transitions. Using in vivo approaches in mice, we found that miR-499 drives a PGC-1α-dependent mitochondrial oxidative metabolism program to match shifts in slow-twitch muscle fiber composition. Mechanistically, miR-499 directly targets Fnip1, an AMP-activated protein kinase (AMPK)-interacting protein that negatively regulates AMPK, a known activator of PGC-1α. Inhibition of Fnip1 reactivated AMPK/PGC-1α signaling and mitochondrial function in myocytes. Restoration of the expression of miR-499 in the mdx mouse model of Duchenne muscular dystrophy (DMD) reduced the severity of DMD Thus, we have identified a miR-499/Fnip1/AMPK circuit that can serve as a mechanism to couple muscle fiber type and mitochondrial function.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xijun Liang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Ling Lai
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Rick B Vega
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Daniel P Kelly
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Łochyński D, Kaczmarek D, Mrówczyński W, Warchoł W, Majerczak J, Karasiński J, Korostyński M, Zoladz JA, Celichowski J. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training. J Appl Physiol (1985) 2016; 121:858-869. [PMID: 27539495 DOI: 10.1152/japplphysiol.00330.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca2+-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca2+-handling genes.
Collapse
Affiliation(s)
- Dawid Łochyński
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland; Department of Motor Rehabilitation, Poznan University of Physical Education, Poznań, Poland;
| | - Dominik Kaczmarek
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland; Department of Physiology, Biochemistry, and Hygiene, Poznan University of Physical Education, Poznań, Poland
| | | | - Wojciech Warchoł
- Chair of Biophysics, Poznan University of Medical Sciences, Poznań, Poland
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Janusz Karasiński
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland; and
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| |
Collapse
|
42
|
Güth R, Chaidez A, Samanta MP, Unguez GA. Properties of skeletal muscle in the teleost Sternopygus macrurus are unaffected by short-term electrical inactivity. Physiol Genomics 2016; 48:699-710. [PMID: 27449658 DOI: 10.1152/physiolgenomics.00068.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is distinguished from other tissues on the basis of its shape, biochemistry, and physiological function. Based on mammalian studies, fiber size, fiber types, and gene expression profiles are regulated, in part, by the electrical activity exerted by the nervous system. To address whether similar adaptations to changes in electrical activity in skeletal muscle occur in teleosts, we studied these phenotypic properties of ventral muscle in the electric fish Sternopygus macrurus following 2 and 5 days of electrical inactivation by spinal transection. Our data show that morphological and biochemical properties of skeletal muscle remained largely unchanged after these treatments. Specifically, the distribution of type I and type II muscle fibers and the cross-sectional areas of these fiber types observed in control fish remained unaltered after each spinal transection survival period. This response to electrical inactivation was generally reflected at the transcript level in real-time PCR and RNA-seq data by showing little effect on the transcript levels of genes associated with muscle fiber type differentiation and plasticity, the sarcomere complex, and pathways implicated in the regulation of muscle fiber size. Data from this first study characterizing the acute influence of neural activity on muscle mass and sarcomere gene expression in a teleost are discussed in the context of comparative studies in mammalian model systems and vertebrate species from different lineages.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | - Alexander Chaidez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | | | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| |
Collapse
|
43
|
Derbré F, Droguet M, Léon K, Troadec S, Pennec JP, Giroux-Metges MA, Rannou F. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases. PLoS One 2016; 11:e0158630. [PMID: 27383612 PMCID: PMC4934689 DOI: 10.1371/journal.pone.0158630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. METHODS The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. RESULTS MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill's model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1-36.0) and 39.3% (95% CI 37.0-41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. CONCLUSIONS Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization.
Collapse
Affiliation(s)
- Frédéric Derbré
- Laboratory “Movement Sport and health Sciences”(M2S) -EA1274, University Rennes 2-ENS Rennes, Rennes, France
| | - Mickaël Droguet
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Karelle Léon
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Samuel Troadec
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | | | | | - Fabrice Rannou
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| |
Collapse
|
44
|
Bachasson D, Decorte N, Wuyam B, Millet GY, Verges S. Original Research: Central and peripheral quadriceps fatigue in young and middle-aged untrained and endurance-trained men: A comparative study. Exp Biol Med (Maywood) 2016; 241:1844-52. [PMID: 27287015 DOI: 10.1177/1535370216654225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compare quadriceps function (i.e. strength, endurance, central, and peripheral fatigue) of young (Young-UnTr) and middle-aged (MidAge-UnTr) untrained men and young endurance-trained men (Young-Tr). Twenty-four male subjects (eight Young-UnTr (26 ± 4 yr), eight Young-Tr (29 ± 3 yr), and eight MidAge-UnTr (56 ± 4 yr) performed a maximal cycling test to assess their fitness level. On a separate visit, subjects performed sets of 10 intermittent (5-s on/5-s off) isometric contractions starting at 10% maximum voluntary contraction (MVC), with 10% MVC increments from one set to another until exhaustion. Electrophysiological and mechanical (e.g. twitch) evoked responses elicited with magnetic femoral nerve stimulation in the relaxed muscle and during MVC (i.e. estimation of voluntary activation using the interpolated twitch technique) were measured at baseline and after each set to assess peripheral and central fatigue, respectively. Endurance (= total number of contractions) was also evaluated. Young-UnTr exhibited larger reductions in evoked quadriceps mechanical responses than MidAge-UnTr and Young-Tr after identical standardized muscle loading (e.g. after the 50% MVC set, reduction in single potentiated twitch was -36 ± 9%, -21±16%, and -2 ± 4%, respectively). At both 50% MVC set and exhaustion, MidAge-UnTr exhibited similar reduction in maximal voluntary activation and displayed similar endurance compared to Young-UnTr. Young-Tr exhibited greater endurance than Young-UnTr without significant changes in maximal voluntary activation throughout the test. This study provides robust comparative data regarding the influence of chronic exposure to endurance training and middle-aged on central and peripheral quadriceps fatigability and endurance. Endurance-trained subjects showed smaller level of peripheral fatigue and displayed no significant central fatigue, even at exhaustion and despite greater endurance performance. Our findings also demonstrate that men in the sixth decade exhibit significant alterations in quadriceps function typically observed in much older subjects. These data emphasize the need for developing normative data for both central and peripheral quadriceps fatigability.
Collapse
Affiliation(s)
- Damien Bachasson
- Grenoble Alpes University, HP2 Laboratory, Grenoble 38000, France INSERM, Grenoble 38000, France Institute of Myology, Paris 75013, France
| | - Nicolas Decorte
- Grenoble Alpes University, HP2 Laboratory, Grenoble 38000, France INSERM, Grenoble 38000, France
| | - Bernard Wuyam
- Grenoble Alpes University, HP2 Laboratory, Grenoble 38000, France INSERM, Grenoble 38000, France
| | - Guillaume Y Millet
- INSERM, Grenoble 38000, France Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne 42023, France Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - Samuel Verges
- Grenoble Alpes University, HP2 Laboratory, Grenoble 38000, France INSERM, Grenoble 38000, France
| |
Collapse
|
45
|
Postnatal training of 129/Sv mice confirms the long-term influence of early exercising on the motor properties of mice. Behav Brain Res 2016; 310:126-34. [PMID: 27130139 DOI: 10.1016/j.bbr.2016.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
A previous study showed that motor experiences during critical periods of development durably affect the motor properties of adult C57BL/6J mice. However, dependence on early environmental features may vary with the genetic profile. To evaluate the contribution of the genetic background on external influences to motricity, we performed the same experiment in a 129/Sv mouse strain that show a strongly different motor profile. Mice were subjected to endurance training (enriched environment or forced treadmill), hypergravity (chronic centrifugation), or simulated microgravity (hindlimb unloading) between postnatal days 10 and 30. They were then returned to standard housing until testing at the age of nine months. The endurance-trained mice showed a fast-slow shift in the deep zone of the tibialis. In addition, mice reared in the enriched environment showed a modified gait and body posture, and improved performance on the rotarod, whereas forced treadmill training did not affect motor output. Hypergravity induced a fast-slow shift in the superficial zone of the tibialis, with no consequence on motor output. Hindlimb unloading provoked an increased percentage of immature hybrid fibres in the tibialis and a shift in the soleus muscle. When compared with similarly reared C57BL/6J mice, 129/Sv mice showed qualitative differences attributable to the lower efficiency of early training due to their lower basal motor activity level. Nevertheless, the results are essentially consistent in both strains, and support the hypothesis that early motor experience influences the muscle phenotype and motor output.
Collapse
|
46
|
Lu Q, Powles RL, Wang Q, He BJ, Zhao H. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies. PLoS Genet 2016; 12:e1005947. [PMID: 27058395 PMCID: PMC4825932 DOI: 10.1371/journal.pgen.1005947] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.
Collapse
Affiliation(s)
- Qiongshi Lu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan Lee Powles
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Qian Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Beixin Julie He
- Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
47
|
Ghosh M, Sodhi SS, Sharma N, Mongre RK, Kim N, Singh AK, Lee SJ, Kim DC, Kim SW, Lee HK, Song KD, Jeong DK. An integrated in silico approach for functional and structural impact of non- synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet 2016; 17:35. [PMID: 26847462 PMCID: PMC4741023 DOI: 10.1186/s12863-016-0341-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association. RESULTS The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes. CONCLUSIONS The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Neelesh Sharma
- Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India.
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-governing Province, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Administration, Namwon, Republic of Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| |
Collapse
|
48
|
Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 2016; 18:762-73. [PMID: 26800032 DOI: 10.1002/ejhf.467] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022] Open
Abstract
Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction.
Collapse
Affiliation(s)
- Magdalena Stugiewicz
- Students' Scientific Association, Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Tkaczyszyn
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Waldemar Banasiak
- Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa A Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| |
Collapse
|
49
|
Liu W, Wei-LaPierre L, Klose A, Dirksen RT, Chakkalakal JV. Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. eLife 2015; 4. [PMID: 26312504 PMCID: PMC4579298 DOI: 10.7554/elife.09221] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous. We employed mice with an inducible Cre, and conditionally expressed DTA to deplete or GFP to track SCs. We found SC depletion exacerbated muscle atrophy and type transitions connected to neuromuscular disruption. Also, elevated fibrosis and further declines in force generation were specific to SC depletion and neuromuscular disruption. Fate analysis revealed SC activity near regenerating NMJs. Moreover, SC depletion aggravated deficits in reinnervation and post-synaptic morphology at regenerating NMJs. Therefore, our results propose a mechanism whereby further NMJ and skeletal muscle decline ensues upon SC depletion and neuromuscular disruption. DOI:http://dx.doi.org/10.7554/eLife.09221.001 New muscle fibers are made throughout our lives to replace those that have been damaged by normal wear and tear, and to meet new physical demands. These new muscle fibers develop from a pool of muscle stem cells. To create and maintain fully working muscles, nerve cells called motor neurons must also properly attach to the muscle fibers. These nerve cells transmit messages from the brain that tell the muscles what to do. If the muscle-nerve connections do not form correctly, or are severed, muscles can waste away. This may occur as part of a neuromuscular disease, and also happens to some extent as a normal part of aging. It was thought that muscle stem cells do not affect how the muscle-nerve connections form. By studying genetically engineered mice, Liu et al. now show that this is not the case. These mice had modifications to their muscle stem cells that allowed the number of these cells to be artificially reduced, and some cells also produced a fluorescent protein that allowed them to be tracked. Surgically severing some of the muscle-nerve connections in the mice triggered the rebuilding of the connections, but also weakened the muscles and caused some disease-related changes in the muscle tissue. During the healing process, the muscle stem cells are active near the regenerating connections. Reducing the number of muscle stem cells in the mice while these broken connections were healing further weakened the muscles. Closer inspection of the muscle-nerve connections also revealed poorer quality connections were formed in the stem-cell deficient mice. Further study of how stem cells help to form strong nerve-muscle connections may allow scientists to develop new treatments for age- or disease-related muscle loss. DOI:http://dx.doi.org/10.7554/eLife.09221.002
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
50
|
Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. JOURNAL OF ONCOLOGY 2015; 2015:917606. [PMID: 26339243 PMCID: PMC4539168 DOI: 10.1155/2015/917606] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Thanks to increasingly effective treatment, breast cancer mortality rates have significantly declined over the past few decades. Following the increase in life expectancy of women diagnosed with breast cancer, it has been recognized that these women are at an elevated risk for cardiovascular disease due in part to the cardiotoxic side effects of treatment. This paper reviews evidence for the role of exercise in prevention of cardiovascular toxicity associated with chemotherapy used in breast cancer, and in modifying cardiovascular risk factors in breast cancer survivors. There is growing evidence indicating that the primary mechanism for this protective effect appears to be improved antioxidant capacity in the heart and vasculature and subsequent reduction of treatment-related oxidative stress in these structures. Further clinical research is needed to determine whether exercise is a feasible and effective nonpharmacological treatment to reduce cardiovascular morbidity and mortality in breast cancer survivors, to identify the cancer therapies for which it is effective, and to determine the optimal exercise dose. Safe and noninvasive measures that are sensitive to changes in cardiovascular function are required to answer these questions in patient populations. Cardiac strain, endothelial function, and cardiac biomarkers are suggested outcome measures for clinical research in this field.
Collapse
|