1
|
Ex Vivo Evaluation of Glutamine Treatment in Sepsis and Trauma in a Human Peripheral Blood Mononuclear Cells Model. Nutrients 2023; 15:nu15010252. [PMID: 36615909 PMCID: PMC9824313 DOI: 10.3390/nu15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the lipopolysaccharide (LPS), or heat shock (HS) induction, and glutamine-modulating effects on heat shock protein-90α (HSP90α) and cytokines in an ex vivo model using peripheral blood mononuclear cells (PBMCs). The PBMCs of patients with septic shock, trauma-related systemic inflammatory response syndrome (SIRS), and healthy subjects were incubated with 1 μg/mL LPS at 43 °C (HS). Glutamine 10 mM was added 1 hour before or after induction or not at all. We measured mRNA HSP90α, monocyte (m) and lymphocyte (l) HSP90α proteins, interleukin (IL)-1b, -6, -8, -10, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) supernatant levels. Heat shock increased the HSP90α mRNA and mHSP90α in all groups (10-fold in sepsis, p < 0.001 and p = 0.047, respectively). LPS induced the mHSP90α and lHSP90α in healthy (p < 0.001) and mHSP90α in SIRS (p = 0.004) but not in sepsis. LPS induced the cytokines at 24 and 48 h in all groups, especially in trauma (p < 0.001); HS only induced the IL-8 in healthy (p = 0.003) and septic subjects (p = 0.05). Glutamine at 10 mM before or after stimulation did not alter any induction effect of LPS or HS on HSP90α mRNA and mHSP90α protein in sepsis. In SIRS, glutamine before LPS decreased the mHSP90α but increased it when given after HS (p = 0.018). Before or after LPS (p = 0.049) and before HS (p = 0.018), glutamine decreased the lHSP90α expression in sepsis but increased it in SIRS when given after HS (p = 0.003). Regarding cytokines, glutamine enhanced the LPS-induced MCP-1 at 48 h in healthy (p = 0.011), SIRS (p < 0.001), and sepsis (p = 0.006). In conclusion, glutamine at 10 mM, before or after LPS and HS, modulates mHSP90α and lHSP90α in sepsis and SIRS differently and unpredictably. Although it does not alter the stimulation effect on interleukins, glutamine enhances the LPS induction effect on supernatant MCP-1 in all groups. Future research should seek to elucidate better the impact of glutamine and temperature modulation on HSP90α and MCP-1 pathways in sepsis and trauma.
Collapse
|
2
|
Yang M, Zhang X, Zhao S, Shao R, Fan K, Hu K, Zhang L, Yang Y. Protective effects of glutamine on lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Exp Biol Med (Maywood) 2023; 248:70-78. [PMID: 36259626 PMCID: PMC9989145 DOI: 10.1177/15353702221126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fulminant hepatitis remains a critical health problem owing to its high mortality rate and the lack of effective therapies. An increasing number of studies have shown that glutamine supplementation provides protective benefits in inflammation-related disorders, but the pharmacological significance of glutamine in lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced fulminant hepatitis remains unclear. In the present study, the potential effects of glutamine on LPS/D-Gal-induced fulminant hepatitis were investigated. Pretreatment with glutamine decreased plasma activities of alanine and aspartate aminotransferases, and ameliorated hepatic morphological abnormalities in LPS/D-Gal-exposed mice. Glutamine pretreatment also inhibited LPS/D-Gal-induced tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production. In addition, glutamine pretreatment decreased the level of cleaved cysteinyl aspartate-specific proteinase 3 (caspase-3), suppressed the activities of caspase-3, caspase-8, and caspase-9, and reduced the number of cells positive for TdT-mediated dUTP nick-end labeling in LPS/D-Gal-challenged mice. Interestingly, post-treatment with glutamine also provided protective benefits against LPS/D-Gal-induced acute liver injury, although these effects were less robust than those of glutamine pre-treatment. Thus, glutamine may have potential value as a pharmacological intervention in fulminant hepatitis.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, Chongqing 400016, China
| | - Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Hasani M, Mansour A, Asayesh H, Djalalinia S, Mahdavi Gorabi A, Ochi F, Qorbani M. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC Cardiovasc Disord 2021; 21:190. [PMID: 33865313 PMCID: PMC8053267 DOI: 10.1186/s12872-021-01986-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background Evidence exists that glutamine plays multiple roles in glucose metabolism, insulin sensitivity, and anti-inflammatory effects. This systematic review and meta-analysis of controlled trials aimed to assess the effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers. Methods The processes of systematic reviews and meta-analyses were performed according to the PRISMA checklist. PubMed, Web of Sciences, Cochrane library, and Scopus databases were search for relevant studies without time or language restrictions up to December 30, 2020. All randomized clinical trials which assessed the effect of glutamine supplementation on “glycemic indices”, “level of triglyceride, “and “inflammatory markers” were included in the study. The effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers was assessed using a standardized mean difference (SMD) and 95% confidence interval (CI). Heterogeneity between among studies was assessed using Cochran Q-statistic and I-square. Random/fixed-effects meta-analysis method was used to estimate the pooled SMD. The risk of bias for the included trials was evaluated using the Cochrane quality assessment tool. Results In total, 12 studies that assessed the effect of glutamine supplementation on cardio-metabolic risk factors were included in the study. Meta-analysis showed that glutamine supplementation significantly decreased significantly serum levels of FPG [SMD: − 0.73, 95% CI − 1.35, − 0.11, I2: 84.1%] and CRP [SMD: − 0.58, 95% CI − 0.1, − 0.17, I2: 0%]. The effect of glutamine supplementation on other cardiometabolic risk factors was not statistically significant (P > 0.05). Conclusion Our findings showed that glutamine supplementation might have a positive effect on FPG and CRP; both of which are crucial as cardio-metabolic risk factors. However, supplementation had no significant effect on other cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asayesh
- Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran.
| | - Shirin Djalalinia
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Development of Research and Technology Center, Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Ochi
- Students Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. .,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
5
|
Effects of the Glutamine Administration on T Helper Cell Regulation and Inflammatory Response in Obese Mice Complicated with Polymicrobial Sepsis. Mediators Inflamm 2020; 2020:8869017. [PMID: 33223959 PMCID: PMC7671796 DOI: 10.1155/2020/8869017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated the impacts of GLN on inflammation and T cell dysregulation in obese mice complicated with sepsis. Mice were divided into normal control (NC) and high-fat diet groups. The high-fat diet provided 60% of energy from fat and was administered for 10 weeks to induce obesity. Mice fed with a high-fat diet were then assigned to sham (SH) and sepsis with saline (SS) or GLN (SG) groups. The SH group was subjected to laparotomy, while the sepsis group underwent cecal ligation and puncture (CLP). The SS group was intravenously injected with saline. The SG group was intravenously administered GLN after CLP. Mice were sacrificed at 12, 24, or 48 h post-CLP, respectively. Results demonstrated that in the presence of obesity, sepsis drove CD4+ T cells toward the helper T (Th)2 and Th17 lineages. Also, expressions of inflammatory cytokines and macrophage infiltration markers in adipose tissues and lungs were elevated. Treatment of obese mice with GLN after sepsis reversed Th polarization and downregulated macrophage infiltration and inflammatory cytokine, whereas the tight junction-associated protein expression increased in the lungs. These findings suggest that the intravenous administration of GLN to obese mice after sepsis modulated a more balanced Th cell lineage, alleviated inflammation, and attenuated lung injury.
Collapse
|
6
|
Exercise Preconditioning Attenuates the Response to Experimental Colitis and Modifies Composition of Gut Microbiota in Wild-Type Mice. Life (Basel) 2020; 10:life10090200. [PMID: 32937846 PMCID: PMC7555193 DOI: 10.3390/life10090200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated the suppressive effect of exercise preconditioning against colitis induced by high-fat diet (HF) plus dextran sulfate sodium (DSS) in wild-type mice. Male mice (C57BL/6) aged 6 weeks were assigned to standard chow (SC, n = 10) or HF (n = 10) or HF followed by DSS (HF+DSS, n = 10) or exercise preconditioning (EX) followed by HF+DSS (EX+HF+DSS, n = 10) for a total of 15 weeks. After 12 weeks of dietary treatments and/or exercise preconditioning, mice in the DSS groups were subjected to administration of 2 cycles of 5-day DSS (2% w/v) with a 7-day interval between cycles. HF resulted in colitis symptoms and histological changes, infiltration of immunity cells, decreased gut barrier proteins, increased pro-inflammatory and chemotactic cytokines and decreased anti-inflammatory cytokine such as adiponectin, which deteriorated after administration of DSS. Exercise preconditioning alleviated HF+DSS-induced colitis and caused significant modifications in gut microbiota: decreased Bacteroides vulgatus (p = 0.050) and increased Akkermansia muciniphila (p = 0.050). The current findings suggest that exercise preconditioning attenuates the severity of HF+DSS-induced colitis in C57BL/6 mice.
Collapse
|
7
|
Khan AU, Muhammad Khan A, Khan A, Shal B, Aziz A, Ahmed MN, Khan S. The newly synthesized compounds (NCHDH and NTHDH) attenuates LPS-induced septicemia and multi-organ failure via Nrf2/HO1 and HSP/TRVP1 signaling in mice. Chem Biol Interact 2020; 329:109220. [PMID: 32763245 DOI: 10.1016/j.cbi.2020.109220] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
The sepsis is considered as serious clinic-pathological condition related with high rate of morbidity and mortality in critical care settings. In the proposed study, the hydrazides derivatives N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (1-2) (NCHDH and NTHDH) were investigated against the LPS-induced sepsis in rodents. The NCHDH and NTHDH markedly improved the physiological sign and symptoms associated with the sepsis such as mortality, temperature, and clinical scoring compared to negative control group, which received only LPS (i.p.). The NCHDH and NTHDH also inhibited the production of the NO and MPO compared to the negative control. Furthermore, the treatment control improved the histological changes markedly of all the vital organs. Additionally, the Masson's trichrome and PAS (Periodic Acid Schiff) staining also showed improvement in the NCHDH and NTHDH treated group in contrast to LPS-induced group. The antioxidants were enhanced by the intervention of the NCHDH and NTHDH and the level of the MDA and POD were attenuated marginally compared to the LPS-induced group. The hematology study showed marked improvement and the reversal of the LPS-induced changes in blood composition compared to the negative control. The synthetic function of the liver and kidney were preserved in the NCHDH and NTHDH treated group compared to the LPS-induced group. The NCHDH and NTHDH markedly enhanced the Nrf2, HO-1 (Heme oxygenase-1), while attenuated the Keap1 and TRPV1 expression level as compared to LPS treated group. Furthermore, the NCHDH and NTHDH treatment showed marked increased in the mRNA expression level of the HSP70/90 proteins compared to the negative control.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Muhammad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
9
|
Vulczak A, Catalão CHR, Freitas LAPD, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int J Mol Sci 2019; 20:ijms20174255. [PMID: 31480313 PMCID: PMC6747181 DOI: 10.3390/ijms20174255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a syndrome characterized by a dysregulated inflammatory response, cellular stress, and organ injury. Sepsis is the main cause of death in intensive care units worldwide, creating need for research and new therapeutic strategies. Heat shock protein (HSP) analyses have recently been developed in the context of sepsis. HSPs have a cytoprotection role in stress conditions, signal to immune cells, and activate the inflammatory response. Hence, HSP analyses have become an important focus in sepsis research, including the investigation of HSPs targeted by therapeutic agents used in sepsis treatment. Many therapeutic agents have been tested, and their HSP modulation showed promising results. Nonetheless, the heterogeneity in experimental designs and the diversity in therapeutic agents used make it difficult to understand their efficacy in sepsis treatment. Therefore, future investigations should include the analysis of parameters related to the early and late immune response in sepsis, HSP localization (intra or extracellular), and time to the onset of treatment after sepsis. They also should consider the differences in experimental sepsis models. In this review, we present the main results of studies on therapeutic agents in targeting HSPs in sepsis treatment. We also discuss limitations and possibilities for future investigations regarding HSP modulators.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Maria José Alves Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil.
| |
Collapse
|
10
|
Oral Glutamine Supplement Reduces Subjective Fatigue Ratings during Repeated Bouts of Firefighting Simulations. SAFETY 2019. [DOI: 10.3390/safety5020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wildland firefighting requires repetitive (e.g., consecutive work shifts) physical work in dangerous conditions (e.g., heat and pollution). Workers commonly enter these environments in a nonacclimated state, leading to fatigue and heightened injury risk. Strategies to improve tolerance to these stressors are lacking. Purpose: To determine if glutamine ingestion prior to and after consecutive days of firefighting simulations in the heat attenuates subjective ratings of fatigue, and evaluate if results were supported by glutamine-induced upregulation of biological stress responses. Methods: Participants (5 male, 3 female) ingested glutamine (0.15 g/kg/day) or a placebo before and after two consecutive days (separated by 24 h) of firefighter simulations in a heated chamber (35 °C, 35% humidity). Perceived fatigue and biological stress were measured pre-, post-, and 4 h postexercise in each trial. Results: Subjective fatigue was reduced pre-exercise on Day 2 in the glutamine group (p < 0.05). Peripheral mononuclear cell expression of heat shock protein 70 (HSP70) and serum antioxidants were elevated at 4 h postexercise on Day 1 in the glutamine trial (p < 0.05). Conclusions: Ingestion of glutamine before and after repeated firefighter simulations in the heat resulted in reduced subjective fatigue on Day 2, which may be a result of the upregulation of biological stress systems (antioxidants, HSPs). This response may support recovery and improve work performance.
Collapse
|
11
|
Ma KC, Schenck EJ, Pabon MA, Choi AMK. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 2019; 197:300-309. [PMID: 28977759 DOI: 10.1164/rccm.201612-2460pp] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kevin C Ma
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Edward J Schenck
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Maria A Pabon
- 3 Division of General Internal Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and.,2 New York-Presbyterian Hospital, New York, New York
| | - Augustine M K Choi
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
12
|
Stern RA, Mozdziak PE. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J Anim Physiol Anim Nutr (Berl) 2019; 103:774-785. [PMID: 30860624 DOI: 10.1111/jpn.13080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Comparative aspects of ammonia toxicity, specific to liver and skeletal muscle and skeletal muscle metabolism between avian and mammalian species are discussed in the context of models for liver disease and subsequent skeletal muscle wasting. The purpose of this review is to present species differences in ammonia metabolism and to specifically highlight observed differences in skeletal muscle response to excess ammonia in avian species. Ammonia, which is produced during protein catabolism and is an essential component of nucleic acid and protein biosynthesis, is detoxified mainly in the liver. While the liver is consistent as the main organ responsible for ammonia detoxification, there are evolutionary differences in ammonia metabolism and nitrogen excretory products between avian and mammalian species. In patients with liver disease and all mammalian models, inadequate ammonia detoxification and successive increased circulating ammonia concentration, termed hyperammonemia, leads to severe skeletal muscle atrophy, increased apoptosis and reduced protein synthesis, altogether having deleterious effects on muscle size and strength. Previously, an avian embryonic model, designed to determine the effects of increased circulating ammonia on muscle development, revealed that ammonia elicits a positive myogenic response. Specifically, induced hyperammonemia in avian embryos resulted in a reduction in myostatin, a well-known inhibitor of muscle growth, expression, whereas myostatin expression is significantly increased in mammalian models of hyperammonemia. These interesting findings imply that species differences in ammonia metabolism allow avians to utilize ammonia for growth. Understanding the intrinsic physiological mechanisms that allow for ammonia to be utilized for growth has potential to reveal novel approaches to muscle growth in avian species and will provide new targets for preventing muscle degeneration in mammalian species.
Collapse
Affiliation(s)
- Rachel A Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Paul E Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
13
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
14
|
Robertson LM, Fletcher NM, Diamond MP, Saed GM. Evitar (l-Alanyl-l-Glutamine) Regulates Key Signaling Molecules in the Pathogenesis of Postoperative Tissue Fibrosis. Reprod Sci 2018; 26:724-733. [DOI: 10.1177/1933719118789511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aims:Hypoxia and the resulting oxidative stress play a major role in postoperative tissue fibrosis. The objective of this study was to determine the effect of l-alanyl-l-glutamine (Ala-Gln) on key markers of postoperative tissue fibrosis: hypoxia-inducible factor (HIF) 1α and type I collagen.Methods:Primary cultures of human normal peritoneal fibroblasts (NPF) established from normal peritoneal tissue were treated with increasing doses of Ala-Gln (0, 1, 2, or 10 mM) with hypoxia ([2% O2] 0-48 hours; continuous hypoxia) or after hypoxia (0.5, 1, 2, 4 hours) and restoration of normoxia (episodic hypoxia) with immediate treatment with Ala-Gln. Hypoxia-inducible factor 1α and type 1 collagen levels were determined by enzyme-linked immunosorbent assay. Data were analyzed with 1-way analysis of variance followed by Tukey tests with Bonferroni correction.Results:Hypoxia-inducible factor 1α and type I collagen levels increased in untreated controls by 3- to 4-fold in response to continuous and episodic hypoxia in human NPF. Under continuous hypoxia, HIF-1α and type I collagen levels were suppressed by Ala-Gln in a dose-dependent manner. l-alanyl-l-glutamine treatment after episodic hypoxia also suppressed HIF-1α and type I collagen levels for up to 24 hours for all doses and up to 48 hours at the highest dose, regardless of exposure time to hypoxia.Conclusions:l-alanyl-l-glutamine significantly suppressed hypoxia-induced levels of key tissue fibrosis (adhesion) phenotype markers under conditions of continuous as well as episodic hypoxia in vitro. This effect of glutamine on molecular events involved in the cellular response to insult or injury suggests potential therapeutic value for glutamine in the prevention of postoperative tissue fibrosis.
Collapse
Affiliation(s)
| | - Nicole M. Fletcher
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Moura CS, Lollo PCB, Morato PN, Amaya-Farfan J. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review. Nutrients 2018; 10:nu10060683. [PMID: 29843396 PMCID: PMC6024325 DOI: 10.3390/nu10060683] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| | | | - Priscila Neder Morato
- School of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Mato Grosso do Sul, Brazil.
| | - Jaime Amaya-Farfan
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| |
Collapse
|
16
|
Barrington JH, Chrismas BCR, Gibson OR, Tuttle J, Pegrum J, Govilkar S, Kabir C, Giannakakis N, Rayan F, Okasheh Z, Sanaullah A, Ng Man Sun S, Pearce O, Taylor L. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion. Front Physiol 2017; 8:560. [PMID: 28824456 PMCID: PMC5539087 DOI: 10.3389/fphys.2017.00560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6), (2) IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007) and IPC (−1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress.
Collapse
Affiliation(s)
- James H Barrington
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University LondonUxbridge, United Kingdom
| | - James Tuttle
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - J Pegrum
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Govilkar
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - N Giannakakis
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - F Rayan
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Z Okasheh
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - A Sanaullah
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Ng Man Sun
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Lee Taylor
- ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar.,School of Sport, Exercise and Health Sciences. Loughborough UniversityLoughborough, United Kingdom
| |
Collapse
|
17
|
Wang H, Dong Y, Cai Y. Alanyl-glutamine prophylactically protects against lipopolysaccharide-induced acute lung injury by enhancing the expression of HSP70. Mol Med Rep 2017; 16:2807-2813. [DOI: 10.3892/mmr.2017.6896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/02/2017] [Indexed: 11/06/2022] Open
|
18
|
Ventura G, Bortolotti M, Neveux N, Gusmini X, Nakib S, Sarfati G, Cynober L, De Bandt JP. Influence of an ω3-fatty acid-enriched enteral diet with and without added glutamine on the metabolic response to injury in a rat model of prolonged acute catabolism. Nutrition 2017; 42:75-81. [PMID: 28870483 DOI: 10.1016/j.nut.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVE In critically ill patients, acute injury alters gut function, causing greater risk for sepsis and malnutrition. Peptide-enriched diets may promote nitrogen absorption, whereas ω3-enriched diets reduce alterations in gut barrier function. The aim of this study was to assess the effectiveness of a peptide- and ω3-enriched diet on the metabolic response to injury and the gut barrier function in a model of prolonged catabolism in the rat. Given the intestinal trophic effect of glutamine, we tested for a synergistic effect of glutamine. METHODS We randomized 40 male Sprague-Dawley rats (250 g) into four groups to enterally receive a standard high-protein diet (S), or a peptide- and ω3-enriched diet either alone (IMN) or supplemented with glutamine and alanine supplied as dipeptide (DIP) or as free amino acids (AAs) for 4 d. Metabolic response to injury was induced by turpentine injections on days 1 and 3. At sacrifice, nutritional and inflammatory biomarkers and intestinal and liver function were assessed. RESULTS Weight gain (+45-62%) and nitrogen balance (+33-56%) were significantly higher in all groups than in the S group. In jejunal mucosa, total glutathione was significantly higher (+20-30%) and myeloperoxidase activity significantly lower in all groups compared with the S group. Hepatic triacylglycerol content was significantly lower in the AA (0.30 ± 0.04 μM/g) and DIP (0.43 ± 0.08 μM/g) groups than in the S group (0.71 ± 0.08 μM/g). CONCLUSIONS In this model of prolonged catabolism, compared with a standard diet, a peptide- and ω3-enriched diet improved metabolic response to injury, with better nitrogen balance and weight recovery, and decreased intestinal myeloperoxidase activity. Only marginal additional effects of glutamine supplementation were observed with decreased hepatic fat content.
Collapse
Affiliation(s)
- Gabrielle Ventura
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Murielle Bortolotti
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Nathalie Neveux
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Xavier Gusmini
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Samir Nakib
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Gilles Sarfati
- Clinical Chemistry Department, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Luc Cynober
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Jean-Pascal De Bandt
- Laboratory of Nutrition Biology, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France; Clinical Chemistry Department, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.
| |
Collapse
|
19
|
Wang H, Tang C, Jiang Z, Zhou X, Chen J, Na M, Shen H, Lin Z. Glutamine promotes Hsp70 and inhibits α-Synuclein accumulation in pheochromocytoma PC12 cells. Exp Ther Med 2017; 14:1253-1259. [PMID: 28810585 DOI: 10.3892/etm.2017.4580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Hsp70 regulates α-Synuclein (α-Syn) degeneration in Parkinson's disease (PD), indicating that Hsp70 promotion may be able to prevent or reverse α-Syn-induced toxicity in PD. Additionally, it has been demonstrated that glutamine (Gln) enhances Hsp70 expression. In the present study, Gln-induced Hsp70 promotion in pheochromocytoma was investigated with reverse transcription- quantitative polymerase chain reaction and western blotting methods. Then it was observed whether heat shock factor (HSF)-1 was required for this phenomenon with an RNA interference strategy. The regulatory role of Gln on α-Syn degeneration was also determined in the α-Syn-overexpressed PC12 [PC12 (α-Syn+)] cells, which were treated with or without the proteasomal inhibitor lactacystin (Lac). The results demonstrated that treatment with ≥10 mM Gln significantly increased Hsp70 mRNA and protein levels (P<0.05) and that this promotion was HSF-1-dependent, as HSF-1 knockout with HSF-1-specific small interfering RNA abrogated Hsp70 promotion in PC12 (α-Syn+) cells. Furthermore, Gln treatment markedly upregulated α-Syn degeneration in PC12 (α-Syn+) cells, which was significantly reduced (P<0.05) in the presence of Lac. Therefore, the present study suggests that Gln is able to induce the promotion of Hsp70 expression in PC12 cells in an HSF-1-dependent manner and that Gln-mediated Hsp70 promotion may increase α-Syn degradation even in the presence of proteasomal inhibitor. Thus, glutamine may be a potential therapeutic agent to prevent α-Syn aggregation in PD.
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
20
|
Marshall H, Chrismas BCR, Suckling CA, Roberts JD, Foster J, Taylor L. Chronic probiotic supplementation with or without glutamine does not influence the eHsp72 response to a multi-day ultra-endurance exercise event. Appl Physiol Nutr Metab 2017; 42:876-883. [PMID: 28460195 DOI: 10.1139/apnm-2017-0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Probiotic and glutamine supplementation increases tissue Hsp72, but their influence on extracellular Hsp72 (eHsp72) has not been investigated. The aim of this study was to investigate the effect of chronic probiotic supplementation, with or without glutamine, on eHsp72 concentration before and after an ultramarathon. Thirty-two participants were split into 3 independent groups, where they ingested probiotic capsules (PRO; n = 11), probiotic + glutamine powder (PGLn; n = 10), or no supplementation (CON; n = 11), over a 12-week period prior to commencement of the Marathon des Sables (MDS). eHsp72 concentration in the plasma was measured at baseline, 7 days pre-race, 6-8 h post-race, and 7 days post-race. The MDS increased eHsp72 concentrations by 124% (F[1,3] = 22.716, p < 0.001), but there was no difference in the response between groups. Additionally, PRO or PGLn supplementation did not modify pre- or post-MDS eHsp72 concentrations compared with CON (p > 0.05). In conclusion, the MDS caused a substantial increase in eHsp72 concentration, indicating high levels of systemic stress. However, chronic PRO or PGLn supplementation did not affect eHsp72 compared with control pre- or post-MDS. Given the role of eHsp72 in immune activation, the commercially available supplements used in this study are unlikely to influence this cascade.
Collapse
Affiliation(s)
- Hannah Marshall
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | | | - Craig Anthony Suckling
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Justin D Roberts
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Josh Foster
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | - Lee Taylor
- d ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopaedic and Sports Medicine Hospital, Aspire Zone, PO Box 29222, Doha, Qatar.,e School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TT, UK
| |
Collapse
|
21
|
Moura CS, Lollo PCB, Morato PN, Risso EM, Amaya-Farfan J. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food Funct 2017; 8:3228-3238. [DOI: 10.1039/c7fo00465f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, including intense exercise.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Pablo Christiano Barboza Lollo
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Priscila Neder Morato
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Eder Muller Risso
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Jaime Amaya-Farfan
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| |
Collapse
|
22
|
Kratochwill K, Boehm M, Herzog R, Gruber K, Lichtenauer AM, Kuster L, Csaicsich D, Gleiss A, Alper SL, Aufricht C, Vychytil A. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses - A First-In-Man Trial. PLoS One 2016; 11:e0165045. [PMID: 27768727 PMCID: PMC5074513 DOI: 10.1371/journal.pone.0165045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. METHODS In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. RESULTS AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07-2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. CONCLUSION We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD.
Collapse
Affiliation(s)
- Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Zytoprotec GmbH, Vienna, Austria
| | - Michael Boehm
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Zytoprotec GmbH, Vienna, Austria
| | - Katharina Gruber
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Anton Michael Lichtenauer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Zytoprotec GmbH, Vienna, Austria
| | - Lilian Kuster
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Zytoprotec GmbH, Vienna, Austria
| | - Dagmar Csaicsich
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Vychytil
- Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Boyles MSP, Ranninger C, Reischl R, Rurik M, Tessadri R, Kohlbacher O, Duschl A, Huber CG. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part Fibre Toxicol 2016; 13:49. [PMID: 27609141 PMCID: PMC5017021 DOI: 10.1186/s12989-016-0160-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity. RESULTS We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis. CONCLUSIONS Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.
Collapse
Affiliation(s)
- Matthew S. P. Boyles
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Christina Ranninger
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Roland Reischl
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Marc Rurik
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany ,Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Richard Tessadri
- Faculty of Geo- and Atmospheric Science, Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany ,Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany ,Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany ,Faculty of Medicine, University of Tübingen, Geissweg 3, 72076 Tübingen, Germany ,Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
| | - Albert Duschl
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| |
Collapse
|
24
|
Bolotin G, Raman J, Williams U, Bacha E, Kocherginsky M, Jeevanandam V. Glutamine Improves Myocardial Function following Ischemia-Reperfusion Injury. Asian Cardiovasc Thorac Ann 2016; 15:463-7. [DOI: 10.1177/021849230701500603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardial ischemia-reperfusion injury is common during cardiac procedures. Glutamine may protect the myocardium by preserving metabolic substrates. Glutamine (0.52 g·kg−1) or Ringer's lactate solution (control group) was administered intraperitoneally to 63 Sprague-Dawley rats at 4 or 18 hours prior to experimental ischemia and reperfusion. The hearts were excised and perfused on an isolated working heart model, exposed to global ischemia for 15 min and reperfusion for 1 hour. Left atrial pressure, mean aortic pressure, cardiac flow, coronary flow, and aortic output were measured 15 min before ischemia and every 15 min during reperfusion. There was significantly better cardiac output in the glutamine pretreated groups. Pretreatment at 4 hours before the experiment was superior to pretreatment at 18 hours, with better maintenance of cardiac output and coronary flow. The enhanced protective effect of pretreatment at 4 hours highlights the importance of timing, and suggests a potential clinical benefit.
Collapse
Affiliation(s)
- Gil Bolotin
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| | - Jai Raman
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| | - Ursula Williams
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| | - Emile Bacha
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| | - Masha Kocherginsky
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| | - Valluvan Jeevanandam
- Division of Cardiothoracic, Surgery Pritzker School of Medicine, University of Chicagom, USA
| |
Collapse
|
25
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|
26
|
Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol 2016; 93:129-37. [PMID: 27137983 DOI: 10.1016/j.fct.2016.04.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis.
Collapse
Affiliation(s)
- Nirajan Shrestha
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea
| | - Myung Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Chan Young Kim
- Department of Surgery, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea; Department of Surgery, Chonbuk National University Medical School, 561-712, Jeonju, South Korea.
| |
Collapse
|
27
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
28
|
Glutamine may repress the weak LPS and enhance the strong heat shock induction of monocyte and lymphocyte HSP72 proteins but may not modulate the HSP72 mRNA in patients with sepsis or trauma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:806042. [PMID: 26550577 PMCID: PMC4621332 DOI: 10.1155/2015/806042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Objective. We assessed the lipopolysaccharide (LPS) or heat shock (HS) induction of heat shock protein-72 (HSP72) in peripheral blood mononuclear cells (PBMCs) of patients with severe sepsis (SS) or trauma-related systemic inflammatory response syndrome (SIRS), compared to healthy individuals (H); we also investigated any pre- or posttreatment modulating glutamine (Gln) effect. Methods. SS (11), SIRS (10), and H (19) PBMCs were incubated with 1 μg/mL LPS or 43°HS. Gln 10 mM was either added 1 h before or 1 h after induction or was not added at all. We measured monocyte (m), lymphocyte (l), mRNA HSP72, HSP72 polymorphisms, interleukins (ILs), monocyte chemoattractant protein-1 (MCP-1), and cortisol levels. Results. Baseline lHSP72 was higher in SS (p < 0.03), and mHSP72 in SIRS (p < 0.02), compared to H. Only HS induced l/mHSP72/mRNA HSP72; LPS induced IL-6, IL-8, IL-10, and MCP-1. Induced mRNA was related to l/mHSP72, and was related negatively to cytokines. Intracellular l/mHSP72/HSP72 mRNA was related to serum ILs, not being influenced by cortisol, illness severity, and HSP72 polymorphisms. Gln did not induce mRNA in any group but modified l/mHSP72 after LPS/HS induction unpredictably. Conclusions. HSP72 mRNA and l/mHSP72 are higher among critically ill patients, further induced by HS, not by LPS. HSP72 proteins and HSP72 mRNA are related to serum ILs and are negatively related to supernatant cytokines, not being influenced by HSP72 polymorphisms, cortisol, or illness severity. Gln may depress l/mHSP72 after LPS exposure and enhance them after HS induction, but it may not affect early induced HSP72 mRNA.
Collapse
|
29
|
Yang J, Zhang Y, Zhao S, Zhang Z, Tong X, Wei F, Lu Z. Heat shock protein 70 induction by glutamine increases the α-synuclein degradation in SH-SY5Y neuroblastoma cells. Mol Med Rep 2015; 12:5524-30. [PMID: 26135068 DOI: 10.3892/mmr.2015.4027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Functional defects in heat shock proteins (HSPs), e.g. Hsp70, have been reported to have a key role in Parkinson's disease (PD). Overexpressed Hsp70 re‑folds aggregated α‑synuclein to generate the non‑toxic and non‑aggregated form. Thus, Hsp70 is a well‑defined therapeutic target, and Hsp70 promotion is an efficient strategy to prevent or even reverse the α‑synuclein‑induced toxicity in PD. The present study investigated the promotion of Hsp70 expression in SH‑SY5Y neuroblastoma cells by glutamine (Gln), which has recently been recognized to induce Hsp70 expression. Furthermore, the role of heat shock factor (HSF)‑1 in the Gln‑mediated upregulation of Hsp70 expression was investigated. In addition, the regulatory role of Gln in α‑synuclein degradation in α‑synuclein‑overexpressing SH‑SY5Y cells was determined. The results of the present study demonstrated that Gln treatment significantly upregulated Hsp70 expression at the mRNA as well as the protein level in a dose‑dependent and time‑dependent manner. Gln‑induced Hsp70 upregulation was found to be HSF‑1‑dependent, as HSF‑1 knockdown abrogated the Hsp70 upregulation by Gln in α‑synuclein‑overexpressing SH‑SY5Y cells. In conclusion, present study confirmed that Gln upregulates Hsp70 expression in SH‑SY5Y neuroblastoma cells in an HSF‑1‑dependent manner. The upregulation of Hsp70 by Gln increases the α‑synuclein degradation. Therefore, Gln may be a potential therapeutic agent to prevent α‑synuclein aggregation in PD.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanmei Zhang
- Department of Neurology, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010055, P.R. China
| | - Shigang Zhao
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Zhelin Zhang
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Xiuqing Tong
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Fang Wei
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
30
|
Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, Yeh SL. Glutamine Administration After Sublethal Lower Limb Ischemia Reduces Inflammatory Reaction and Offers Organ Protection in Ischemia/Reperfusion Injury. JPEN J Parenter Enteral Nutr 2015; 40:1122-1130. [PMID: 26059902 DOI: 10.1177/0148607115587949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study investigated the effects of intravenous glutamine (GLN) administration on the expression of adhesion molecules and inflammatory mediators in a mice model of hind limb ischemia/reperfusion (IR) injury. METHODS There were 3 IR groups and 1 normal control (NC) group. The NC group did not undergo the IR procedure. Mice in the IR groups underwent 90 minutes of limb ischemia followed by a variable period of reperfusion. Ischemia was performed by applying a 4.5-oz orthodontic rubber band to the left thigh. Mice in one IR group were sacrificed immediately after reperfusion. The other 2 IR groups were injected once with either 0.75 g GLN/kg body weight (G group) or an equal volume of saline (S group) via tail vein before reperfusion. Mice in the S and G groups were subdivided and sacrificed at 4 or 24 hours after reperfusion. RESULTS IR enhanced the inflammatory cytokine gene expressions in muscle. Also, plasma interleukin (IL)-6 levels, blood neutrophil percentage, and the adhesion molecule and chemokine receptors expressed by leukocytes were upregulated after reperfusion. The IR-induced muscle inflammatory mediator gene expressions, blood macrophage percentage, and plasma IL-6 concentration had declined at an early or a late phase of reperfusion when GLN was administered. Histologic findings also found that remote lung injury was attenuated during IR insult. CONCLUSIONS A single dose of GLN administration immediately after sublethal lower limb ischemia reduces the inflammatory reaction locally and systemically; this may offer local and distant organ protection in hind limb IR injury.
Collapse
Affiliation(s)
- Yao-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Juey-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Hou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Li Yeh
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| | - Sung-Ling Yeh
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Xue H, Ren W, Denkinger M, Schlotzer E, Wischmeyer PE. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids. JPEN J Parenter Enteral Nutr 2015; 40:52-66. [PMID: 25888676 DOI: 10.1177/0148607115581838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. METHODS Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). RESULTS Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. CONCLUSIONS Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Wenhua Ren
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | | | | | - Paul E Wischmeyer
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
32
|
Chuang IC, Huang MS, Huang LJ, Chou SH, Tsai TN, Chen YC, Yang RC. Prophylactic inhalation of L-alanyl-L-glutamine enhances heat shock protein 72 and attenuates endotoxin-induced lung injury in rats. Physiol Res 2014; 64:505-12. [PMID: 25470514 DOI: 10.33549/physiolres.932827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies have demonstrated that heat shock protein 70 (HSP70) plays an important role in the protection of stressed organisms. The development of strategies for enhancing HSPs expression may provide novel means of minimizing inflammatory lung conditions, such as acute lung injury. This study aimed to examine the effect of L-alanyl-L-glutamine (GLN) inhalation in enhancing pulmonary HSP72 (inducible HSP70) expression and attenuating lung damage in a model of acute lung injury induced by lipopolysaccharide (LPS) inhalation. The experimental rats were randomly assigned to one of four experimental groups: (1) NS: saline inhalation; (2) NS-LPS: pretreatment by saline inhalation 12 h before LPS inhalation; (3) GLN: glutamine inhalation; (4) GLN-LPS: pretreatment by glutamine inhalation 12 h before LPS inhalation. The results show that GLN compared with saline administration, led to significant increase in lung HSP72 both in non LPS-treated rats and LPS-treated rats. In LPS-treated rats, pretreatment by GLN inhalation produced less lung injury as evidenced by the decrease in lung injury score and dramatic decrease in lactate dehydrogenase (LDH) activity and polymorphonuclear leukocyte cell differentiation counts (PMN %) in the bronchoalveolar lavage fluid. The study indicates that prophylactic glutamine inhalation associated with the enhancement of HSP72 synthesis attenuates tissue damage in experimental lung injury.
Collapse
Affiliation(s)
- I-C Chuang
- Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Glutamine administration modulates lung γδ T lymphocyte expression in mice with polymicrobial sepsis. Shock 2014; 41:115-22. [PMID: 24434415 DOI: 10.1097/shk.0000000000000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the effects of glutamine (GLN) administration on regulating lung γδ T cells in polymicrobial sepsis. Mice were randomly assigned to normal group (NC), septic saline group (SS), and septic GLN group (SG). All mice were fed with chow diet. Sepsis was induced by cecal ligation and puncture (CLP). The SS and SG groups were, respectively, injected with saline and 0.75 g GLN/kg body weight once via tail vein 1 h after CLP. Mice were killed 12 and 24 h after CLP. Their lungs were collected for further analysis. The results showed that, compared with normal mice, sepsis resulted in higher lung γδ T cell and neutrophil percentages and higher cytokine expressed by γδ T cells. Histopathologic findings showed that the extent of inflammatory lesions of the lung alveolar was less severe in the SG group than the SS group after CLP. The SG group had a higher γδ T cell percentage and lower γδ T cell apoptotic rates as well as lower neutrophil numbers in the lungs. Also, interleukin 17A (IL-17A), interferon γ, and IL-10 expressed by γδ T cells and CXC receptor 2 expressed by neutrophils decreased in the SG group. Moreover, GLN reduced IL-17A, IL-1β, and IL-23 concentrations and myeloperoxidase activity in lung tissues. Our results suggest that GLN administration after initiation of sepsis affects lung γδ T cell percentage and cytokine secretion and prevented apoptosis of γδ T cells and neutrophil infiltration to the lungs, which may partly be responsible for ameliorating acute lung injury induced by sepsis.
Collapse
|
34
|
Ni HB, Zhang Z, Qin HD. Protective effect of glutamine in critical patients with acute liver injury. World J Emerg Med 2014; 2:210-5. [PMID: 25215012 DOI: 10.5847/wjem.j.1920-8642.2011.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutamine (Gln) supplementation is known to decrease oxidative stress and inflammatory response, enhance resistance to infectious pathogens, shorten hospital stay, and decrease medical costs of patients. This study was undertaken to evaluate the relationship between the effect of early parenteral glutamine (Gln) supplement on acute liver injury (ALI) and heat shock protein 70 (HSP-70) expression in critical patients. METHODS Forty-four patients who had been admitted to the emergency intensive care unit (EICU) of Nanjing First Hospital Affiliated to Nanjing Medical University were randomly divided into a control group (n=22) and a Gln group (n=22). The patients of the two groups received enteral and parenteral nutrition. In addition, parenteral Gln 0.4 g/kg per day was given for 7 days in the Gln group. Serum HSP-70 and Gln were measured at admission and at 7 days after admission. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBiL), serum levels of HSP-70 and Gln, mechanical ventilation (MV) time, ICU stay, peripheral blood of TNF-α, IL-6, CD3, CD4 and CD4/CD8 levels were also measured in the two groups. RESULTS In the Gln group, the levels of serum HSP-70 and Gln were significantly higher after Gln treatment than those before the treatment (P<0.01). HSP-70 level was positively correlated with the Gln level in the Gln group after administration of parenteral Gln (P<0.01). The levels of serum ALT, AST, TBiL and TNF-α, IL-6 were lower in the Gln group than in the non-Gln group (P<0.01). MV time and ICU stay were significantly different between the two groups (P<0.05). The levels of CD3, CD4 and CD4/CD8 were significantly higher in the Gln group than in the control group after treatment (P<0.05). CONCLUSION Parenteral Gln significantly increases the level of serum HSP70 in critically ill patients. The enhanced expression of HSP70 is correlated with improved outcomes of Gln-treated patients with acute liver injury.
Collapse
Affiliation(s)
- Hai-Bin Ni
- Department of Emergency, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210006, China
| | - Zheng Zhang
- Department of Emergency, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210006, China
| | - Hai-Dong Qin
- Department of Emergency, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
35
|
Hwang JK, Kim JM, Kim YK, Kim SD, Park SC, Kim JI, Nam HW, Kim J, Moon IS. The early protective effect of glutamine pretreatment and ischemia preconditioning in renal ischemia-reperfusion injury of rat. Transplant Proc 2014; 45:3203-8. [PMID: 24182785 DOI: 10.1016/j.transproceed.2013.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 07/13/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Heat shock proteins (HSP) play an important role in protecting cells against stress. METHODS Using a rat model, we tested the hypothesis that pretreatment with glutamine (Gln) and ischemia preconditioning (IPC) increase the expression of HSP resulting in attenuation of renal ischemia/reperfusion (I/R) injury. Sprague-Dawley rats were randomized into 4 groups [group I, Gln injection (+), IPC (+); group II, Gln injection (+), IPC (-); group III, saline injection (+), IPC (+); group IV, saline injection (+), IPC (-)]. Renal HSP70 expression was determined by Western blotting and kidney function was assessed by blood urea nitrogen and serum creatinine. Renal cross-sections were microscopically examined for tubular necrosis, exfoliation of tubular epithelial cells, cast formation, and monocyte infiltration. RESULTS Gln pretreatment increased intrarenal HSP expression (P = .031). In group I, tubulointerstitial abnormalities were clearly slighter compared with the other groups (P < .001). CONCLUSION Our experiments suggest that (1) a single dose of Gln could induce HSP expression and (2) IPC could relieve renal I/R injury. In addition, IPC combined with Gln pretreatment had a synergic protective effect against renal I/R injury.
Collapse
Affiliation(s)
- J K Hwang
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grintescu IM, Luca Vasiliu I, Cucereanu Badica I, Mirea L, Pavelescu D, Balanescu A, Grintescu IC. The influence of parenteral glutamine supplementation on glucose homeostasis in critically ill polytrauma patients--A randomized-controlled clinical study. Clin Nutr 2014; 34:377-82. [PMID: 24931756 DOI: 10.1016/j.clnu.2014.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Rapid onset of resistance to insulin is a prominent component of stress metabolism in multiple trauma patients. Recent studies have clarified the role of amino acids (especially glutamine) in glucose transportation and the benefits of parenteral alanyl-glutamine supplementation (0.3-0.6 g/kg/day) in glucose homeostasis. The aims of this study are to evaluate the incidence of hyperglycemic episodes and the need for exogenous insulin to maintain stable glucose levels in critically ill polytrauma patients supplemented with parenteral glutamine dipeptide (Dipeptiven(®)) versus standard nutritional support. METHODS This was an open-label randomized-controlled trial of 82 polytrauma patients aged 20-60 years old, randomly assigned into two equal groups independent of sex, age and Injury Severity Score. We excluded patients with diabetes mellitus, or renal or hepatic failure. One group received parenteral Dipeptiven(®) supplementation of 0.5 g/kg/day and the other received standard isocaloric isoproteinic nutritional support. RESULTS We found that 63% of patients in the glutamine-supplemented group had no hyperglycemic episodes; only 37% required exogenous insulin (mean daily requirement of 44 units/day). In the control group, 51% of patients required insulin (mean daily requirement 63 unit/day; p = 0.0407). CONCLUSIONS The effect of glutamine supplementation on glucose homeostasis is associated with a lower incidence of hyperglycemia among critically ill polytrauma patients, and leads to a lower mean daily dose of insulin. Controlled-trials.com Identifier: ISRCTN71592366 (http://www.controlled-trials.com/ISRCTN71592366/ISRCTN71592366).
Collapse
Affiliation(s)
- Ioana Marina Grintescu
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| | - Irina Luca Vasiliu
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania.
| | - Ioana Cucereanu Badica
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| | - Liliana Mirea
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| | - Daniela Pavelescu
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| | - Andreea Balanescu
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| | - Ioana Cristina Grintescu
- Clinical Emergency Hospital of Bucharest, Intensive Care and Anaesthesiology Department, Calea Floreasca nr. 8, Sector 1, Bucharest, 014461, Romania
| |
Collapse
|
37
|
Baird CH, Niederlechner S, Beck R, Kallweit AR, Wischmeyer PE. L-Threonine induces heat shock protein expression and decreases apoptosis in heat-stressed intestinal epithelial cells. Nutrition 2014; 29:1404-11. [PMID: 24103518 DOI: 10.1016/j.nut.2013.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 05/24/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Osmotically acting amino acids can be cytoprotective following injury. As threonine (THR) induces osmotic cell swelling, our aim was to investigate the potential for THR to induce cellular protection in intestinal epithelial cells and evaluate possible mechanisms of protection. METHODS Cells treated with a range of THR doses were evaluated following heat stress (HS) injury. Alpha-aminoisobutyric acid (AIB), a non-metabolizable amino acid analog, was used as an osmotic control. MTS assays were used to assess cell survival. Heat shock protein (HSP) expression and cleaved caspase-3 (CC3) were evaluated via Western blot. Cell morphology and cell size were analyzed via microscopy. RESULT Following HS, THR treatment increased cell viability in a dose dependent manner vs. non-THR treated cells (CT). The non-metabolized amino acid analogue, AIB, also increased cell survival in heat-stressed cells versus HS controls. HSP70 and HSP25 expression increased with THR and AIB treatment versus HS controls. THR also increased HSP25 in non-stressed cells. Microscopic evaluation revealed both THR and AIB preserved the structural integrity of the actin cytoskeleton in heat-stressed cells versus HS controls. THR, but not AIB, enhanced nuclear translocation of HSP25 during HS. This nuclear translocation was associated with a 60% decrease in apoptosis in heat-stressed cells with THR. No antiapoptotic effect was observed with AIB. CONCLUSIONS This is the first demonstration that THR increases HSP70 and HSP 25 and protects cells from HS. THR's mechanism of protection may involve cytoskeletal stabilization, HSP up-regulation and nuclear translocation, and decreased apoptosis. THR's protection appears to involve both cell-swelling-dependent and -independent processes.
Collapse
Affiliation(s)
- Christine H Baird
- Department of Anesthesiology, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
38
|
Intravenous alanyl-L-glutamine balances glucose–insulin homeostasis and facilitates recovery in patients undergoing colonic resection. Eur J Anaesthesiol 2014; 31:212-8. [DOI: 10.1097/eja.0b013e328360c6b9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Intravenous Glutamine Administration Reduces Lung and Distal Organ Injury in Malnourished Rats With Sepsis. Shock 2014; 41:222-32. [DOI: 10.1097/shk.0000000000000102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Briassouli E, Goukos D, Daikos G, Apostolou K, Routsi C, Nanas S, Briassoulis G. Glutamine suppresses Hsp72 not Hsp90α and is not inducing Th1, Th2, or Th17 cytokine responses in human septic PBMCs. Nutrition 2014; 30:1185-94. [PMID: 24976418 DOI: 10.1016/j.nut.2014.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE L-Alanyl-glutamine (L-Ala-Gln) is a pharmaco-nutrient commonly used in nutrition regimens due to its immunomodulatory effects. In critically ill patients who are septic, L-Ala-Gln was associated with an increase in mortality. The aim of this study was to investigate whether L-Ala-Gln modulated heat shock protein (Hsp)-72, 90-α, T helper (Th)1, Th2, and Th17 cytokine expression in the peripheral blood mononuclear cells (PBMC) of patients with severe sepsis. METHODS Time-dose effects of L-Ala-Gln were compared with those of L-glutamine (L-Gln) and lipopolysaccharide (LPS) and to healthy controls. PBMCs were incubated with 1 or 10 μg/mL LPS, 5 or 10 mM L-Gln, and 5 or 10 mM L-Ala-Gln for different periods of time (0; 4; 24 h) when culture supernatants were harvested. RESULTS In both groups, basal Hsp72 increased over time (P < 0.02); Hsp90-α levels declined in controls (P < 0.02) but remained increased in septic patients (P < 0.02), not exhibiting any significant time-response trend. Both Glns suppressed Hsp72 in septic and controls at 10 mM by 4 h (P < 0.045) and Hsp90-α in the control group by 24 h (P < 0.045). LPS did not induce Hsps in either group. L-Ala-Gln did not induce any of the Th1, Th2, and Th17 cytokines in either group. CONCLUSION High doses of L-Gln or L-Ala-Gln do not induce any of the Th1, Th2, and Th17 cytokines in either healthy or septic human PBMCs. High Gln doses suppress Hsp72 in septic and control PBMCs. Hsp90-α time-series expression declines, contrasting the increasing trend of Hsp72 in healthy controls. Hsp90-α sustains increased levels in septic supernatants, showing a characteristic longitudinal behavior needed further elucidation.
Collapse
Affiliation(s)
- Efrossini Briassouli
- First Department of Internal Medicine, Medical School, University of Athens, Laikon Hospital, Athens, Greece
| | - Dimitris Goukos
- First Department of Internal Medicine, Medical School, University of Athens, Laikon Hospital, Athens, Greece
| | - George Daikos
- First Department of Internal Medicine, Medical School, University of Athens, Laikon Hospital, Athens, Greece
| | - Kleovoulos Apostolou
- First Department of Critical Care, Medical School, University of Athens, Evangelismos Hospital, Athens, Greece
| | - Christina Routsi
- First Department of Critical Care, Medical School, University of Athens, Evangelismos Hospital, Athens, Greece
| | - Serafim Nanas
- First Department of Critical Care, Medical School, University of Athens, Evangelismos Hospital, Athens, Greece
| | - George Briassoulis
- Pediatric Intensive Care Unit, University Hospital, University of Crete, Heraklion, Greece.
| |
Collapse
|
41
|
Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats. PLoS One 2014; 9:e83437. [PMID: 24465380 PMCID: PMC3896333 DOI: 10.1371/journal.pone.0083437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022] Open
Abstract
Whey protein hydrolysate (WPH) intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed) and exercised (stressed) groups, and were fed with three different sources of protein: whey protein (WP), whey protein hydrolysate (WPH) and casein (CAS) as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85), GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.
Collapse
|
42
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|
43
|
Chow O, Barbul A. Immunonutrition: Role in Wound Healing and Tissue Regeneration. Adv Wound Care (New Rochelle) 2014; 3:46-53. [PMID: 24761344 DOI: 10.1089/wound.2012.0415] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 12/21/2022] Open
Abstract
Significance: The role of immunonutrition in wound healing has been an area of both interest and controversy for many years. Although deficiencies in certain nutrients have long been known to impair healing, supplementation of specific immune modulating nutrients has not consistently yielded improvements in wound healing. Still, the prospect of optimizing nutrition to assist the immune system in wound repair bears great significance in both medical and surgical fields, as the costs of wound care and repair cannot be ignored. Recent Advances: Recent studies have rekindled efforts to elucidate the roles of specific immunonutrients, and we now have a better understanding of the conditionally essential role of various nutrients such as arginine, which becomes essential in certain clinical situations such as for the trauma patient or patients at high risk for malnutrition. Immunonutrition in its current formulation usually includes supplementation with arginine, glutamine, omega-3 fatty acids, vitamins, and trace minerals, and its use has often been associated with decreased infectious complications and sometimes with improvements in wound healing. Critical Issues: A key to understanding the role of immunonutrition in wound healing is recognizing the distinct contributions and importance of the various elements utilized. Future Directions: Critical areas for future study include identifying the specific populations, timing, and ideal composition of immunomodulating diets in order to optimize the wound healing process.
Collapse
Affiliation(s)
- Oliver Chow
- Department of Surgery, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Adrian Barbul
- Department of Surgery, Washington Hospital Center, Washington, District of Columbia
| |
Collapse
|
44
|
Pierre JF, Heneghan AF, Lawson CM, Wischmeyer PE, Kozar RA, Kudsk KA. Pharmaconutrition Review. JPEN J Parenter Enteral Nutr 2013; 37:51S-65S. [DOI: 10.1177/0148607113493326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joseph F. Pierre
- Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Aaron F. Heneghan
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Christy M. Lawson
- Department of Surgery, University of Tennessee Medical Center, Knoxville
| | | | - Rosemary A. Kozar
- Department of Surgery, University of Texas–Houston Health Science Center, Houston
| | - Kenneth A. Kudsk
- Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison
| |
Collapse
|
45
|
Alanyl-glutamine resolves lipopolysaccharide-induced lung injury in mice by modulating the polarization of regulatory T cells and T helper 17 cells. J Nutr Biochem 2013; 24:1555-63. [DOI: 10.1016/j.jnutbio.2013.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 12/22/2022]
|
46
|
Kim KS, Suh GJ, Kwon WY, Lee HJ, Jeong KY, Jung SK, Kwak YH. The effect of glutamine on cerebral ischaemic injury after cardiac arrest. Resuscitation 2013; 84:1285-90. [DOI: 10.1016/j.resuscitation.2013.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/08/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
47
|
Peng ZY, Zhou F, Wang HZ, Wen XY, Nolin TD, Bishop JV, Kellum JA. The anti-oxidant effects are not the main mechanism for glutamine's protective effects on acute kidney injury in mice. Eur J Pharmacol 2013; 705:11-9. [PMID: 23454558 DOI: 10.1016/j.ejphar.2013.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/02/2013] [Accepted: 02/07/2013] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a common problem characterized by an inflammatory response in the kidney and oxidative stress. However, there are no interventions to prevent AKI. Glutamine is an important precursor of glutathione and has also been shown to induce heat shock proteins (HSP). Thus, glutamine may affect both oxidative stress and inflammation. This study was to explore the effects of glutamine pretreatment on nephrotoxic AKI and to investigate the underlying mechanisms. First, the effects of alternate doses of glutamine were compared in CD-1 mice with AKI induced with folic acid intra-peritoneal injection. Then the effects of glutamine quercetin (an HSP inhibitor), and quercetin+glutamine, were compared in the same AKI model. AKI were assessed with plasma creatinine, urine neutrophil gelatinase-associated lipocalin, and renal histology. Inflammatory response was monitored with renal tumor necrosis factor (TNF-α), chemkines (CXCL1 and CCL2) contents, and neutrophil infiltration. Oxidative injury was detected with reduced glutathione, malondialdehyde, and protein thiol. Glutamine provided dose-dependent renal protection. Pretreatment with quercetin, which was showed to inhibit HSP-70 expression, abolished glutamine's renal-protective effects. Quercetin also abrogated glutamine's beneficial effects on renal TNF-α, chemokines, and neutrophil infiltration. However, quercetin did not affect glutamine's anti-oxidative effects. These results suggest that glutamine's renal-protective effects are mainly related to its activation of HSP-70, which mitigates inflammatory response, renal neutrophil infiltration and subsequent AKI. Regulating neutrophil infiltration might be a potential therapeutic target for AKI.
Collapse
Affiliation(s)
- Zhi-Yong Peng
- The CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang SC, Shi Q, Feng YN, Fang J. Tissue-Protective Effect of Glutamine on Hepatic Ischemia-Reperfusion Injury via Induction of Heme Oxygenase-1. Pharmacology 2013; 91:59-68. [DOI: 10.1159/000343809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/27/2012] [Indexed: 12/30/2022]
|
49
|
Glutamine modulates sepsis-induced changes to intestinal intraepithelial γδT lymphocyte expression in mice. Shock 2012; 38:288-93. [PMID: 22777117 DOI: 10.1097/shk.0b013e3182655932] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the effect of glutamine (GLN) on intestinal intraepithelial lymphocyte (IEL) γδT-cell cytokines and immune regulatory factor gene expressions in a mouse model of polymicrobial sepsis. Mice were randomly assigned to a normal group, a sepsis with saline (SS) group, or a sepsis with GLN (SG) group. All mice were fed a chow diet. Sepsis was induced by cecal ligation and puncture (CLP). The SS group was injected with saline, and the SG group was given 0.75 g GLN/kg body weight once via a tail vein 1 h after CLP. Septic mice were killed 12 h after CLP, and IEL γδT cells of the animals were isolated for further analysis. Results showed that compared with normal mice, sepsis resulted in lower IEL γδT-cell percentage and higher messenger RNA expressions of interferon γ, tumor necrosis factor α, interleukin 4 (IL-4), IL-13, IL-17, retinoid acid receptor-related orphan receptor γt, and complement 5a receptor by IEL γδT cells. These immunomodulatory mediator genes exhibited decreases, whereas IL-7 receptor expression increased in IEL γδT cells in septic mice with GLN administration. Annexin V/7-amino-actinomycin D stain revealed significantly lower rates of apoptosis, and IEL γδT-cell percentage was higher in the SG group. The histological findings also showed that damage to intestinal epithelial cells was less severe in the SG group. These results indicated that a single dose of GLN administered as treatment after the initiation of sepsis prevented apoptosis of IEL γδT cells and downregulated γδT cell-expressed inflammatory mediators that may consequently ameliorate the severity of sepsis-induced intestinal epithelial injury.
Collapse
|
50
|
Chamney C, Godar M, Garrigan E, Huey KA. Effects of glutamine supplementation on muscle function and stress responses in a mouse model of spinal cord injury. Exp Physiol 2012; 98:796-806. [PMID: 23143993 DOI: 10.1113/expphysiol.2012.069658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) results in loss of muscle function due to rapid breakdown of contractile proteins. Glutamine supplementation improves clinical outcomes, but its effects on muscle function after SCI are unknown. The benefits of glutamine in non-skeletal muscle tissues involve elevated heat shock protein (Hsp)70 and Hsp25, but the muscle response may differ because it is the largest contributor to plasma glutamine. We tested the hypothesis that glutamine preserves muscle function after SCI and that this is associated with increased heat shock protein and reduced inflammatory factors, interleukin-6 (IL-6) and tumour necrosis factor-α (TNFα). Changes in plantarflexor force, fatigability and total myofibrillar, Hsp70, Hsp25, IL-6 and TNFα muscle protein levels were measured 7 days after sham or spinal cord transection surgery in mice receiving daily placebo or glutamine. Compared with placebo, after SCI glutamine significantly attenuated the reductions in maximal isometric force (0.22 ± 0.01 versus 0.31 ± 0.03 N, respectively) and fatigue resistance (34 ± 4 versus 59 ± 4% of initial force, respectively). Glutamine significantly ameliorated the loss of myofibrillar protein with spinal cord transection. Spinal cord transection was associated with decreased Hsp70 and Hsp25 with glutamine only (45 ± 3 and 44 ± 5% of placebo, respectively). Glutamine significantly reduced spinal cord transection-associated increases in IL-6 and TNFα compared with placebo (38 ± 6 and 37 ± 8% of placebo, respectively). Functionally, early reductions in contractile protein, force and fatigue resistance after SCI were reversed with glutamine. Spinal cord transection-associated reductions in Hsp70, Hsp25, IL-6 and TNFα with glutamine versus placebo suggest lower stress in the muscle, possibly related to a reduced need to produce glutamine. These findings support glutamine as a therapeutic intervention to accelerate recovery of muscle function after SCI.
Collapse
Affiliation(s)
- Carissa Chamney
- College of Pharmacy and Health Sciences, Drake University, 2507 University Avenue, Des Moines, IA 50311, USA
| | | | | | | |
Collapse
|