1
|
Heo R, Park M, Mun SY, Zhuang W, Jeong J, Park H, Han ET, Han JH, Chun W, Jung WK, Choi IW, Park WS. Vasorelaxant mechanisms of the antidiabetic anagliptin in rabbit aorta: roles of Kv channels and SERCA pump. Acta Diabetol 2025; 62:241-251. [PMID: 39103505 DOI: 10.1007/s00592-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
AIMS The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minju Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Dahmani W, Akissi ZLE, Elaouni N, Bouanani NE, Mekhfi H, Bnouham M, Legssyer A, Sahpaz S, Ziyyat A. Carob leaves: Phytochemistry, antioxidant properties, vasorelaxant effect and mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119226. [PMID: 39653104 DOI: 10.1016/j.jep.2024.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ceratonia siliqua L., is a species of significant nutritional and industrial interest with extensive traditional uses. This fabaceae is renowned for its medicinal properties, including the treatment of high blood pressure. Due to its chemical composition, carob exhibits several valuable therapeutic functions such as antioxidant, antidiarrheal, antidiabetic, and antibacterial actions. AIM OF THE REVIEW This study investigates the chemical composition of Ceratonia siliqua L. leaves aqueous extract (CsAE) and explores the vasorelaxant effect and its underlying mechanisms. Acute toxicity and antioxidant activity of CsAE were also examined. METHODS The phytochemical profile was elucidated using TLC and UHPLC-MS. The vasorelaxant effect and mechanisms were studied on thoracic aortic rings from normotensive rats, using various antagonists. Acute toxicity was assessed by orally administering the extract to mice. Antioxidant activity was evaluated using β-carotene bleaching and DPPH. RESULTS TLC analysis of CsAE reveals flavonoids and hydrolysable tannins. Gallic acid, myricitrin, quercitrin as well as galloylglucopyranoside derivatives were identified by UHPLC-MS. CsAE relaxed phenylephrine-precontracted aorta in a concentration-dependent manner. This response was reduced when the aorta was denuded or pretreated with L-NAME, hydroxocobalamin, ODQ, 4-AP, TEA, calmidazolium chloride, and thapsigargin. CsAE showed significant antioxidant activity with no observed toxicity in the experimental animals. CONCLUSION CsAE has a significant vasodilatory effect, mediated through the CaM/eNOS/sGC pathway, activation of Kca and Kv, and intracellular calcium mobilization into SERCA. It also exhibits strong antioxidant activity, with no observed toxicity in the experimental animals. These findings represent the first evidence of the vasorelaxant effect of Ceratonia siliqua L. leaves from Eastern Morocco.
Collapse
Affiliation(s)
- Widad Dahmani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Zachée Louis Evariste Akissi
- BioEcoAgro Joint Cross-Border Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, 59650, Villeneuve d'Ascq, France.
| | - Nabia Elaouni
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Nour Elhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Sevser Sahpaz
- BioEcoAgro Joint Cross-Border Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, 59650, Villeneuve d'Ascq, France.
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| |
Collapse
|
3
|
Geldner J, Papenkort S, Kiem S, Böl M, Siebert T. Active and passive material response of urinary bladder smooth muscle tissue in uniaxial and biaxial tensile testing. Acta Biomater 2025; 193:255-266. [PMID: 39706540 DOI: 10.1016/j.actbio.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The urinary bladder is a hollow organ that undergoes significant deformation as it receives, stores, and releases urine. To understand the organ mechanics, it is necessary to obtain information about the material properties of the tissues involved. In displacement-controlled tensile tests, tissue samples are mounted on a device that applies stretches to the tissue in one or more directions, resulting in a specific stress response. For this study, we performed uniaxial and biaxial stretch experiments on tissue samples (n = 36) from the body region of the porcine urinary bladder. We analyzed the stress-relaxation, activation dynamics, and passive and active stretch-stress response. Main findings of our experiments are: (1) For uniaxial and biaxial stretching, the time constants for stress-relaxation depend on the stretch amplitude, (2) biaxially stretched samples experienced slower activation with τact increasing by +63% compared to uniaxial stretching, (3) biaxial tests are characterized by reduced optimum stretches λopt by -18%, and (4) biaxial and uniaxial tests showed no significant difference in maximum active stresses σopt. To interpret the results, we present a continuum mechanical model based on a viscoelastic, isotropic solid extended by a set of active muscle fibers. Model predictions show that results (3) and (4) can be explained by a uniform distribution of fiber orientations and a specific shape of the active fiber stress-stretch relationship. This study highlights how deformation modes during tensile testing affects smooth muscle mechanics, proving insights for interpreting experimental data and improving organ modeling. STATEMENT OF SIGNIFICANCE: In this study, we examined the mechanical properties of porcine bladder smooth muscle using uniaxial and equibiaxial tensile tests. To our knowledge, this is the first instance where the active stress-stretch relationships of smooth muscle tissue have been analysed under equibiaxial stretch. The data collected offer a detailed understanding of the connection between deformation and active stress production, surpassing the insights provided by existing uniaxial tests in the literature. These findings are crucial for comprehending the physiology of smooth muscle tissue and for developing constitutive muscle models that can make more accurate predictions about the functionality of hollow organs in both health and disease. Additionally, our findings on smooth muscle active stress could aid in the creation of biomaterials that interact with or even replace natural muscle.
Collapse
Affiliation(s)
- Julian Geldner
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Temprano-Sagrera G, Peypoch O, Soto B, Dilmé J, Calsina Juscafresa L, Davtian D, de la Rosa Estadella M, Nieto L, Brown A, Escudero JR, Viñuela A, Camacho M, Sabater-Lleal M. Differential Expression Analyses on Human Aortic Tissue Reveal Novel Genes and Pathways Associated With Abdominal Aortic Aneurysm Onset and Progression. J Am Heart Assoc 2024; 13:e036082. [PMID: 39655704 DOI: 10.1161/jaha.124.036082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are focal dilatations of the abdominal aorta that expand progressively, increasing their risk of rupture. Rupture of an AAA is associated with high mortality rates, but the mechanisms underlying the initiation, expansion, and rupture of AAAs are not yet fully understood. We aimed to characterize the pathophysiology of AAAs and identify new genes associated with AAA initiation and progression. METHODS AND RESULTS This study used RNA sequencing data on 140 samples, becoming the largest RNA sequencing data set for differential expression studies of AAAs. We performed differential expression analyses and analyses of differential splicing between dilated and nondilated aortic tissue samples, and between AAAs of different diameters. We identified 3002 differentially expressed genes between AAAs and controls that were independent of ischemic time, 1425 of which were new. Additionally, 8 genes (EXTL3, ZFR, DUSP8, DISP1, USP33, VPS37C, ZNF784, RFX1) were differentially expressed between AAAs of varying diameters and between AAAs and control samples. Finally, 7 genes (SPP1, FHL1, GNAS, MORF4L2, HMGN1, ARL1, RNASE4) with differential splicing patterns were also differentially expressed genes between AAAs and controls, suggesting that splicing differences in these genes may contribute to the observed expression changes and disease development. CONCLUSIONS This study identifies new genes and splicing patterns associated with AAAs and validates previous relevant pathways on AAAs. These findings contribute to the understanding of the complex mechanisms underlying AAAs and may provide potential targets to limit AAA progression and mortality risk.
Collapse
Affiliation(s)
- Gerard Temprano-Sagrera
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
| | - Olga Peypoch
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Servei d'Angiologia i Cirurgia Vascular i Endovascular Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Begoña Soto
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Servei d'Angiologia i Cirurgia Vascular i Endovascular Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Jaume Dilmé
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Servei d'Angiologia i Cirurgia Vascular i Endovascular Hospital de la Santa Creu i Sant Pau Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERECV) Madrid Spain
| | - Laura Calsina Juscafresa
- Department of Vascular and Endovascular Surgery Hospital del Mar Barcelona Spain
- Department of Medicine and Surgery Universitat Pompeu Fabra Barcelona Spain
| | - David Davtian
- Population Health and Genomics Ninewells Hospital and Medical School, University of Dundee Dundee United Kingdom
| | | | - Lluís Nieto
- Department of Vascular and Endovascular Surgery Hospital del Mar Barcelona Spain
| | - Andrew Brown
- Population Health and Genomics Ninewells Hospital and Medical School, University of Dundee Dundee United Kingdom
| | - José Román Escudero
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Servei d'Angiologia i Cirurgia Vascular i Endovascular Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Ana Viñuela
- Faculty of Medical Sciences Biosciences Institute, University of Newcastle Newcastle upon Tyne United Kingdom
| | - Mercedes Camacho
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERECV) Madrid Spain
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Department of Medicine, Cardiovascular Medicine Unit Karolinska Institutet Stockholm Sweden
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain
| |
Collapse
|
5
|
Johnson RT, Wostear F, Solanki R, Steward O, Bradford A, Morris C, Bidula S, Warren DT. A microtubule stability switch alters isolated vascular smooth muscle Ca2+ flux in response to matrix rigidity. J Cell Sci 2024; 137:jcs262310. [PMID: 39301761 PMCID: PMC11586521 DOI: 10.1242/jcs.262310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
During ageing, the extracellular matrix of the aortic wall becomes more rigid. In response, vascular smooth muscle cells (VSMCs) generate enhanced contractile forces. Our previous findings demonstrate that VSMC volume is enhanced in response to increased matrix rigidity, but our understanding of the mechanisms regulating this process remain incomplete. In this study, we show that microtubule stability in VSMCs is reduced in response to enhanced matrix rigidity via Piezo1-mediated Ca2+ influx. Moreover, VSMC volume and Ca2+ flux is regulated by microtubule dynamics; microtubule-stabilising agents reduced both VSMC volume and Ca2+ flux on rigid hydrogels, whereas microtubule-destabilising agents increased VSMC volume and Ca2+ flux on pliable hydrogels. Finally, we show that disruption of the microtubule deacetylase HDAC6 uncoupled these processes and increased α-tubulin acetylation on K40, VSMC volume and Ca2+ flux on pliable hydrogels, but did not alter VSMC microtubule stability. These findings uncover a microtubule stability switch that controls VSMC volume by regulating Ca2+ flux. Taken together, these data demonstrate that manipulation of microtubule stability can modify VSMC response to matrix stiffness.
Collapse
Affiliation(s)
- Robert T. Johnson
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Finn Wostear
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Reesha Solanki
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Oliver Steward
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Alice Bradford
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | | | - Stefan Bidula
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Derek T. Warren
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| |
Collapse
|
6
|
Stoyanova M, Milusheva M, Gledacheva V, Stefanova I, Todorova M, Kircheva N, Angelova S, Pencheva M, Stojnova K, Tsoneva S, Nikolova S. Spasmolytic Activity and Anti-Inflammatory Effect of Novel Mebeverine Derivatives. Biomedicines 2024; 12:2321. [PMID: 39457637 PMCID: PMC11505310 DOI: 10.3390/biomedicines12102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) has a major negative influence on quality of life, causing cramps, stomach pain, bloating, constipation, etc. Antispasmodics have varying degrees of efficacy. Mebeverine, for example, works by controlling bowel movements and relaxing the muscles of the intestines but has side effects. Therefore, more efficient medication is required. Methods: In the current study, we investigated the synthesis of novel mebeverine analogs and determined ex vivo their spasmolytic and in vitro and ex vivo anti-inflammatory properties. The ability to influence both contractility and inflammation provides a dual-action approach, offering a comprehensive solution for the prevention and treatment of both conditions. Results: The results showed that all the compounds have better spasmolytic activity than mebeverine and good anti-inflammatory potential. Among the tested compounds, 3, 4a, and 4b have been pointed out as the most active in all the studies conducted. To understand their mechanism of activity, molecular docking simulation was investigated. The docking analysis explained the biological activities with their calculated Gibbs energies and possibilities for binding both centers of albumin. Moreover, the calculations showed that molecules can bind also the two muscarinic receptors and interleukin-β, hence these structures would exert a positive therapeutic effect owed to interaction with these specific receptors/cytokine. Conclusions: Three of the tested compounds have emerged as the most active and effective in all the studies conducted. Future in vivo and preclinical experiments will contribute to the establishment of these novel mebeverine derivatives as potential drug candidates against inflammatory diseases in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| |
Collapse
|
7
|
Huang F, Zhang F, Huang L, Zhu X, Huang C, Li N, Da Q, Huang Y, Yang H, Wang H, Zhao L, Lin Q, Chen Z, Xu J, Liu J, Ren M, Wang Y, Han Z, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors Regulate Vascular Smooth Muscle Cell Proliferation and Neointima Formation in Mice. J Am Heart Assoc 2024; 13:e034203. [PMID: 39023067 DOI: 10.1161/jaha.124.034203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Disease Models, Animal
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/pathology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Fang Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Huihua Yang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Hong Wang
- Central Laboratory Peking University Shenzhen Hospital Shenzhen China
| | - Lingyun Zhao
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Qingsong Lin
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine Shenzhen University Shenzhen China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Yan Wang
- Department of Cardiology Qingdao Municipal Hospital Qingdao China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Peking University Shenzhen China
| |
Collapse
|
8
|
Afroz M, Bhuia MS, Rahman MA, Hasan R, Islam T, Islam MR, Chowdhury R, Khan MA, Antas E Silva D, Melo Coutinho HD, Islam MT. Anti-diarrheal effect of piperine possibly through the interaction with inflammation inducing enzymes: In vivo and in silico studies. Eur J Pharmacol 2024; 965:176289. [PMID: 38158111 DOI: 10.1016/j.ejphar.2023.176289] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Piperine is a natural alkaloid that possesses a variety of therapeutic properties, including anti-inflammatory, antioxidant, antibacterial, and anticarcinogenic activities. The present study aims to assess the medicinal benefits of piperine as an anti-diarrheal agent in a chick model by utilizing in vivo and in silico techniques. For this, castor oil was administered orally to 2-day-old chicks to cause diarrhea. Bismuth subsalicylate (10 mg/kg), loperamide (3 mg/kg), and nifedipine (2.5 mg/kg) were used as positive controls, while the vehicle was utilized as a negative control. Two different doses (25 and 50 mg/kg b.w.) of the test sample (piperine) were administered orally, and the highest dose was tested with standards to investigate the synergistic activity of the test sample. In our findings, piperine prolonged the latent period while reducing the number of diarrheal feces in the experimental chicks during the monitoring period (4 h). At higher doses, piperine appears to reduce diarrheal secretion while increasing latency in chicks. Throughout the combined pharmacotherapy, piperine outperformed bismuth subsalicylate and nifedipine in terms of anti-diarrheal effects with loperamide. In molecular docking, piperine exhibited higher binding affinities towards different inflammatory enzymes such as cyclooxygenase 1 (-7.9 kcal/mol), cyclooxygenase 2 (-8.4 kcal/mol), nitric oxide synthases (-8.9 kcal/mol), and L-type calcium channel (-8.8 kcal/mol), indicating better interaction of PP with these proteins. In conclusion, piperine showed a potent anti-diarrheal effect in castor oil-induced diarrheal chicks by suppressing the inflammation and calcium ion influx induced by castor oil.
Collapse
Affiliation(s)
- Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh.
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Rakibul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
9
|
Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci 2023; 24:ijms24108803. [PMID: 37240147 DOI: 10.3390/ijms24108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Engin S, Barut EN, Erac Y, Sari S, Kadioglu M. The inhibitory effect of escitalopram on mouse detrusor contractility: The role of L-type calcium channels. Toxicol Appl Pharmacol 2023; 461:116408. [PMID: 36736438 DOI: 10.1016/j.taap.2023.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are associated with urinary problems attributed to their central effects. ESC is a preferred SSRI and several case reports described that ESC is related to urinary retention. However, the direct effect of ESC on detrusor contractility is still not completely elucidated. Thus, we investigated the effect of ESC on detrusor contractility and mechanism(s) of its action in isolated mouse detrusor strips. Molecular docking and measurement of intracellular calcium were performed to determine the possible calcium channel blocking effect of ESC. The contractile responses to carbachol (CCh), KCl and electrical field stimulation of detrusor strips were significantly abolished by ESC (10 or 100 μM). ESC relaxed KCl-precontracted detrusor strips concentration-dependently, which was not affected by tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. ESC (10 or 100 μM) reduced both the CaCl2- and CCh-induced contractions under calcium-free conditions, indicating the role of calcium-involved mechanisms in ESC-mediated relaxation. Furthermore, ESC significantly decreased Bay K8644-induced contraction and the cytosolic calcium level in fura-2-loaded A7r5 cells. Molecular docking study also revealed the potential of ESC to bind L-type calcium (Cav1) channels. Our results demonstrate that ESC inhibits detrusor contractility via blocking Cav1 channels, which provides evidence for the direct effect of ESC on detrusor contractility and its mechanism.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Mine Kadioglu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
12
|
Xiong D(JP, Martin JG, Lauzon AM. Airway smooth muscle function in asthma. Front Physiol 2022; 13:993406. [PMID: 36277199 PMCID: PMC9581182 DOI: 10.3389/fphys.2022.993406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.
Collapse
Affiliation(s)
- Dora (Jun Ping) Xiong
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Anne-Marie Lauzon,
| |
Collapse
|
13
|
Kiplang’at KP, Boldizsár I, Dobolyi A, Varró P. Effects of dibenzylbutyrolactone lignans arctigenin and trachelogenin on the motility of isolated rat ileum. Toxicol Rep 2022; 9:1222-1232. [DOI: 10.1016/j.toxrep.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022] Open
|
14
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
15
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
16
|
Seo MS, An JR, Kang M, Heo R, Park H, Han ET, Han JH, Chun W, Park WS. Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci 2021; 287:120101. [PMID: 34715136 DOI: 10.1016/j.lfs.2021.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
AIMS Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits. MAIN METHODS We used rabbit thoracic aortic rings and its arterial tone was tested by using wire myography system. KEY FINDINGS Canagliflozin caused concentration-dependent vasodilation in aortic rings pre-constricted with phenylephrine or high K+. However, the degree of canagliflozin-induced vasodilation of the aortic rings pre-constricted with high K+ was less than that of rings pre-constricted with phenylephrine. Application of 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, reduced canagliflozin-induced vasodilation. However, pre-incubation of an inwardly rectifying K+ channel inhibitor, a large-conductance Ca2+-activated K+ channel inhibitor, and an ATP-sensitive K+ inhibitor did not modulate the vasodilatory effects of canagliflozin. Indeed, canagliflozin increased Kv currents in aortic smooth muscle cells. Pre-treatment with thapsigargin or cyclopiazonic acid, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors, reduced the vasodilatory effects of canagliflozin. Conversely, pre-treatment with a Ca2+ channel inhibitor, adenylyl cyclase/PKA inhibitors, and guanylyl cyclase/PKG inhibitors did not modulate the vasodilatory effects of canagliflozin. Endothelium removal, and pre-treatment with the nitric oxide synthase inhibitor L-NAME, and small- and intermediate-conductance Ca2+-activated K+ channel inhibitor apamin and TRAM-34, did not diminish the vasodilatory effects of canagliflozin. SIGNIFICANCE Our results indicate that canagliflozin induces vasodilation, which is dependent on the robust SERCA activity and Kv channel activation.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
17
|
Zhou W, Li X, Wang Y, Wang J, Zhang J, Wei H, Peng C, Wang Z, Li G, Li D. Physiological and transcriptomic changes of zebrafish (Danio rerio) embryos-larvae in response to 2-MIB exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126142. [PMID: 34492931 DOI: 10.1016/j.jhazmat.2021.126142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
2-Methylisoborneol (2-MIB), a natural odorous substance, is widely distributed in water environment, but there is a paucity of information concerning its systemic toxicity. Herein, we investigated the effects of 2-MIB exposure on developmental parameters, locomotive behavior, oxidative stress, apoptosis and transcriptome of zebrafish. Zebrafish embryos exposed to different concentrations (0, 0.5, 5 and 42.8 μg/L) of 2-MIB showed no changes in mortality, hatchability, and malformation rate, but the body length of zebrafish larvae was significantly increased in a dose-dependent manner, and accompanied by the changes of growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis genes. Moreover, the swimming activity of zebrafish larvae increased, which may be due to the increase of acetylcholinesterase (AChE) activity. Meanwhile, 2-MIB caused oxidative stress and apoptosis in zebrafish larvae by altering the NF-E2-related factor 2 (Nrf2) and mitochondrial signaling pathways, respectively. Transcriptome sequencing assay showed that the phototransduction signaling pathway was significantly enriched, and most of the genes in this pathway exhibited enhanced expression after exposure to 2-MIB. These findings provide an important reference for risk assessment and early warning to 2-MIB exposure.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China
| | - Xiaoyu Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Wei
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
18
|
Yan L, Ren H, Yuan F, Shi W, Wang Y, Luo H. Molecular mechanism of apelin-13 regulation of colonic motility in rats. Eur J Pharmacol 2021; 904:174149. [PMID: 33961873 DOI: 10.1016/j.ejphar.2021.174149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
Apelin is a novel neuropeptide identified as the endogenous ligand for the apelin receptor. Apelin and its receptor are widely distributed in the gastrointestinal tract. Studies have reported that apelin-13 is involved in modulating gastrointestinal motility; however, the evidence is insufficient and the relevant mechanism is still not fully clear. Consequently, our study designed to explore the effect induced by exogenous apelin-13, to analyze the mechanism of action in isolated rat colons and colonic smooth muscle cells. The spontaneous contractions of colonic smooth muscle strips from rat were measured in an organ bath system. L-type calcium currents and large conductance Ca2+-activated K+ (BKCa) currents in rat colonic smooth muscle cells were investigated using the electrophysiological patch-clamp technique. Apelin-13 decreased the spontaneous contractile activity of colonic smooth muscle strips in a dose-dependent manner, and the inhibitory effect was not abolished by tetrodotoxin. The electrophysiological recordings revealed that apelin-13 reduced the crest currents of L-type calcium in a concentration-dependent manner in colonic smooth muscle cells at the test potential of 0 mV. Moreover, apelin-13 moved the current-voltage (I-V) curves of L-type calcium channels upward, but did not change their contour. Furthermore, the characteristics of L-type calcium channels with steady-state activation and steady-state inactivation were not significantly changed. Similarly, application of apelin-13 also significantly decreased BKCa currents in a concentration-dependent manner. In conclusion, apelin-13 inhibited the spontaneous contractile activity of isolated rat colons via the suppression of L-type calcium channels and BKCa channels in colonic smooth muscle cells.
Collapse
Affiliation(s)
- Lin Yan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Fangting Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Wenyao Shi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Ying Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China.
| |
Collapse
|
19
|
Piggott CA, Jin Y. Junctophilins: Key Membrane Tethers in Muscles and Neurons. Front Mol Neurosci 2021; 14:709390. [PMID: 34305529 PMCID: PMC8295595 DOI: 10.3389/fnmol.2021.709390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Contacts between the endoplasmic reticulum (ER) and plasma membrane (PM) contain specialized tethering proteins that bind both ER and PM membranes. In excitable cells, ER–PM contacts play an important role in calcium signaling and transferring lipids. Junctophilins are a conserved family of ER–PM tethering proteins. They are predominantly expressed in muscles and neurons and known to simultaneously bind both ER- and PM-localized ion channels. Since their discovery two decades ago, functional studies using junctophilin-deficient animals have provided a deep understanding of their roles in muscles and neurons, including excitation-contraction coupling, store-operated calcium entry (SOCE), and afterhyperpolarization (AHP). In this review, we highlight key findings from mouse, fly, and worm that support evolutionary conservation of junctophilins.
Collapse
Affiliation(s)
- Christopher A Piggott
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
20
|
Engin S, Kaya Yasar Y, Barut EN, Getboga D, Erac Y, Sezen SF. The inhibitory effect of trimetazidine on detrusor contractility - a potential repositioning of trimetazidine for the treatment of overactive bladder. J Pharm Pharmacol 2021; 74:94-102. [PMID: 34109981 DOI: 10.1093/jpp/rgab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to identify the effect of trimetazidine (TMZ), an antianginal drug, on detrusor smooth muscle (DSM) contractility and its possible mechanisms of action. METHODS We performed in-vitro contractility studies on isolated mouse DSM strips and investigated the effect of TMZ on Ca2+ levels in fura-2-loaded A7r5 cells. KEY FINDINGS TMZ (300 or 1000 µM) inhibited carbachol (CCh)- and KCl-induced contractions and produced a concentration-dependent (10-1000 µM) relaxation in KCl-precontracted DSM strips. TMZ-induced relaxation was markedly decreased by BaCl2, an inward-rectifying K+ channel blocker, but was not altered by preincubation with tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. TMZ (300 or 1000 µM) reduced both the CaCl2-induced contraction of depolarized DSM strips under Ca2+-free conditions and the CCh-induced contraction of DSM strips preincubated with nifedipine in Ca2+-containing Krebs solution. Furthermore, TMZ (1000 µM) significantly decreased the Ca2+ levels in fura-2-loaded A7r5 cells. CONCLUSIONS TMZ decreased DSM contractility and caused a concentration-dependent relaxation of the tissue possibly through its actions on Ca2+ transients and K+ channels. Our results provide preclinical evidence that TMZ would be a potential candidate to treat disorders related to the overactivity of the bladder.
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Damla Getboga
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
21
|
Kim HR, Park JS, Karabulut H, Yasmin F, Jun CD. Transgelin-2: A Double-Edged Sword in Immunity and Cancer Metastasis. Front Cell Dev Biol 2021; 9:606149. [PMID: 33898417 PMCID: PMC8060441 DOI: 10.3389/fcell.2021.606149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hatice Karabulut
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Fatima Yasmin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
22
|
Ren H, Yuan F, Tan W, Ding Y, An P, Luo H. Effect of Evodiamine on Rat Colonic Hypermotility Induced by Water Avoidance Stress and the Underlying Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:441-452. [PMID: 33603336 PMCID: PMC7882800 DOI: 10.2147/dddt.s298954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Background and Aim EVO is a natural alkaloid that reportedly has potential value in regulating gastrointestinal motility, but this conclusion remains controversial, and the molecular mechanism is unclear. In this study, we aimed to explore the effect of short-chain fatty acids on rat colonic hypermotility induced by water avoidance stress and the underlying mechanism. Methods We constructed a hypermotile rat model by chronic water avoidance stress, and Western blot was used to detect the protein level of nNOS in colon tissue. The organ bath and multichannel physiological signal acquisition systems were used to examine the spontaneous contractions of smooth muscle strips. The whole-cell patch-clamp technique was used to investigate L-type voltage-dependent calcium and BKCa channel currents in colonic smooth muscle cells. Results EVO inhibited the spontaneous contractions of colonic smooth muscle strips in a dose-dependent manner. Moreover, EVO decreased the fecal output induced by chronic water avoidance stress. TTX did not block the inhibitory effect of EVO on spontaneous colon contractions, while L-NNA, a selective nNOS synthase inhibitor, did partially abolish this inhibitory effect. The protein expression of nNOS in the colon tissues of rats administered EVO was significantly increased compared to that in control rats. EVO reversibly inhibited the L-type calcium channel current without changing the steady-state activation or inactivation in colonic smooth muscle cells. EVO significantly inhibited the BKCa current but did not change the shape of the I-V curves. Conclusion EVO inhibits gastrointestinal motility by inhibiting L-type calcium and BKCa channels in colonic smooth muscle cells and indirectly interacting with nNOS.
Collapse
Affiliation(s)
- HaiXia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - FangTing Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - YiJuan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - HeSheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
23
|
An Indole Alkaloid Extracted from Evodia rutaecarpa Inhibits Colonic Motility of Rats In Vitro. Gastroenterol Res Pract 2020; 2020:8610653. [PMID: 32328100 PMCID: PMC7157783 DOI: 10.1155/2020/8610653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Evodiamine (Evo) is an indole alkaloid extracted from the traditional Chinese medicinal herb Evodia rutaecarpa. Evo may regulate gastrointestinal motility, but the evidence is insufficient, and the mechanisms remain unknown. The aim of this study was to investigate the effect of Evo on colonic motility of rats and the underlying mechanisms in vitro. Rat colonic muscle was exposed to Evo (10 and 100 μM) followed by immunohistochemistry of cholecystokinin receptor 1 (CCK1R). Muscle contractions were studied in an organ bath system to determine whether CCK1R, nitric oxide (NO), and enteric neurons are involved in the relaxant effect of Evo. Whole-cell patch-clamp was used to detect L-type calcium currents (ICa,L) in isolated colonic smooth muscle cells (SMCs). CCK1R was observed in SMCs, intermuscular neurons, and mucosa of rat colon. Evo could inhibit spontaneous muscle contractions; NO synthase, inhibitor L-NAME CCK1R antagonist, could partly block this effect, while the enteric neurons may not play a major role. Evo inhibited the peak ICa,L in colonic SMCs at a membrane potential of 0 mV. The current-voltage (I–V) relationship of L-type calcium channels was modified by Evo, while the peak of the I–V curve remained at 0 mV. Furthermore, Evo inhibited the activation of L-type calcium channels and decreased the peak ICa,L. The relaxant effect of Evo on colonic muscle is associated with the inhibition of L-type calcium channels. The enteric neurons, NO, and CCK1R may be partly related to the inhibitory effect of Evo on colonic motility. This study provides the first evidence that evodiamine can regulate colonic motility in rats by mediating calcium homeostasis in smooth muscle cells. These data form a theoretical basis for the clinical application of evodiamine for treatment of gastrointestinal motility diseases.
Collapse
|
24
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
25
|
Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, Tang H, Huang F, Zhang F, Fang X, Liu J, Jia N, Chen J, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc 2019; 8:e011704. [PMID: 30755057 PMCID: PMC6405661 DOI: 10.1161/jaha.118.011704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023]
Abstract
Background Endothelial NO synthase plays a central role in regulating vasodilation and blood pressure. Intracellular Ca2+ mobilization is a critical modulator of endothelial NO synthase function, and increased cytosolic Ca2+ concentration in endothelial cells is able to induce endothelial NO synthase phosphorylation. Ca2+ release mediated by 3 subtypes of inositol 1,4,5-trisphosphate receptors ( IP 3Rs) from the endoplasmic reticulum and subsequent Ca2+ entry after endoplasmic reticulum Ca2+ store depletion has been proposed to be the major pathway to mobilize Ca2+ in endothelial cells. However, the physiological role of IP 3Rs in regulating blood pressure remains largely unclear. Methods and Results To investigate the role of endothelial IP 3Rs in blood pressure regulation, we first generated an inducible endothelial cell-specific IP 3R1 knockout mouse model and found that deletion of IP 3R1 in adult endothelial cells did not affect vasodilation and blood pressure. Considering all 3 subtypes of IP 3Rs are expressed in mouse endothelial cells, we further generated inducible endothelial cell-specific IP 3R triple knockout mice and found that deletion of all 3 IP 3R subtypes decreased plasma NO concentration and increased basal blood pressure. Furthermore, IP 3R deficiency reduced acetylcholine-induced vasodilation and endothelial NO synthase phosphorylation at Ser1177. Conclusions Our results reveal that IP 3R-mediated Ca2+ release in vascular endothelial cells plays an important role in regulating vasodilation and physiological blood pressure.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure/physiology
- Calcium/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myography
- Vasodilation/physiology
Collapse
Affiliation(s)
- Qingsong Lin
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Lingyun Zhao
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ran Jing
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Christa Trexler
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Hong Wang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Yali Li
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Huayuan Tang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fang Huang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fei Zhang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Xi Fang
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Jie Liu
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Nan Jia
- Department of CardiologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Kunfu Ouyang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
26
|
Yan L, Tang Q, Quan X, Ren H, Chen W, Xia H, Luo H. Effects of exendin-4 on colonic motility in rats and its underlying mechanism. Neurogastroenterol Motil 2019; 31:e13482. [PMID: 30303298 DOI: 10.1111/nmo.13482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists modulate gastrointestinal motility; however, the effects of GLP-1R agonists on colonic motility are still controversial, and the molecular mechanism is unclear. Exendin-4 shares 53% homology with GLP-1 and is a full agonist of GLP-1R. In this study, our aims were to explore the role and mechanism of exendin-4 in isolated rat colonic tissues and cells. METHODS An organ bath system was used to examine the spontaneous contractions of smooth muscle strips. The whole-cell patch-clamp technique was used to investigate the currents of L-type voltage-dependent calcium channels and large conductance Ca2+ -activated K+ (BKCa ) channels in smooth muscle cells. KEY RESULTS Exendin-4 decreased both the amplitude and frequency of spontaneous contractions of smooth muscle strips in a concentration-dependent manner. The inhibitory effect was completely blocked by exendin-4(9-39), a GLP-1R antagonist. Moreover, this effect was partially abolished by tetrodotoxin (TTX), a blocker of neuronal voltage-dependent Na+ channels, Nω-Nitro-l-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor, apamin, an inhibitor of small-conductance Ca2+ -activated K+ (SK) channels. Whole-cell patch-clamp recordings revealed that exendin-4 inhibited the peak current of L-type calcium channels in colonic smooth muscle cells, but did not change the shape of the current-voltage (I-V) curves. The steady-state activation and steady-state inactivation of L-type calcium channels were not affected. Likewise, BKCa currents were significantly inhibited by exendin-4. CONCLUSIONS Exendin-4 indirectly inhibits colonic muscle activity via a nitrergic and a purinergic neural pathway through NO and ATP release and inhibits L-type voltage-dependent calcium channels and BKCa channels in smooth muscle cells.
Collapse
Affiliation(s)
- Lin Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qincai Tang
- Department of Pathology, China Three Gorges University College of Medicine, Yichang, China
| | - Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Jia M, Lu X, Wang Z, Zhao L, Zhang S. Effects of Fengliao-Changweikang in Diarrhea-predominant Irritable Bowel Syndrome Rats and Its Mechanism Involving Colonic Motility. J Neurogastroenterol Motil 2018; 24:479-489. [PMID: 29715711 PMCID: PMC6034674 DOI: 10.5056/jnm17093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims This study was designed to investigate the effect of Fengliao-Changweikang (FLCWK) in diarrhea-predominant irritable bowel syndrome (IBS-D) rats and explore its underlying mechanisms. Methods IBS-D model rats were induced by neonatal maternal separation (NMS) combined with restraint stress (RS). In in vivo experiments, the model rats were randomly divided into 5 groups: NMS + RS, FLCWK (low dose, middle dose, and high dose), and pinaverium bromide. The normal control (no handling) rats were classified as the NH group. The therapeutic effect of FLCWK was evaluated by fecal characteristics, electromyographic response and abdominal withdrawal reflex scores. In in vitro experiments, the model rats were randomly divided into 2 groups: NMS + RS, FLCWK (middle dose), and no handling rats were used as the NH group. The differences in basic tension and ACh-induced tension of isolated colonic longitudinal smooth muscle strips (CLSMs) among the 3 groups were observed. In addition, different inhibitors (nifedipine, TMB-8, L-NAME, methylene blue, and 4-AP) were pretreated to explore the underlying mechanisms. Results In in vivo experiments, fecal characteristics, electromyographic response, and abdominal withdrawal reflex scores significantly improved in the FLCWK group, compared with the NMS + RS group. In in vitro experiments, the basic tension and ACh-induced tension of CLSMs in IBS-D rats were significantly inhibited by FLCWK. After pre-treatment with different inhibitors, the ACh-induced tension of CLSMs in each group showed no significant difference. Conclusions FLCWK manifested curative effect in IBS-D rats by inhibiting colonic contraction. The underlying mechanisms may be related to regulatory pathway of nitric oxide/cGMP/Ca2+ and specific potassium channels.
Collapse
Affiliation(s)
- Mengdi Jia
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Xiaofang Lu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Zhengfang Wang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Alom F, Miyakawa M, Matsuyama H, Nagano H, Tanahashi Y, Unno T. Possible antagonistic effects of the TRPC4 channel blocker ML204 on M 2 and M 3 muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J Vet Med Sci 2018; 80:1407-1415. [PMID: 29973432 PMCID: PMC6160885 DOI: 10.1292/jvms.18-0197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ML204, a potent transient receptor potential canonical 4 (TRPC4) channel blocker, is often used to elucidate the involvement of TRPC4 channels in receptor-operated signaling processes in
visceral smooth muscles. In the present study, we investigated the possible antagonistic actions of ML204 on M2 and M3 muscarinic receptors, which mediate contractions
in mouse ileal and detrusor smooth muscles. In ileal and detrusor smooth muscle preparations, ML204 (3 or 10 µM) significantly inhibited electrical field stimulation
(EFS)-evoked cholinergic contractions. However, it did not significantly inhibit high K+-induced and EFS-evoked non-cholinergic contractions in the ileal preparations. When the
muscarinic agonist, carbachol was cumulatively applied, ML204 (1, 3 and 10 µM) caused a rightward parallel shift of the concentration-response curves of carbachol.
Additionally, ML204 (1, 3 and 10 µM) inhibited carbachol-induced negative chronotropic response in atrial preparations, which is mediated by M2 muscarinic
receptors. Furthermore, ML204 significantly inhibited the contractions evoked by carbachol-induced intracellular Ca2+ release, which is mediated by M3 muscarinic
receptors. These results suggested that ML204 might exhibit antagonistic actions on M2 and M3 muscarinic receptors; in addition, the inhibitory effects of ML204 against
EFS-induced cholinergic contractions might be attributed to this receptor antagonism rather than inhibition of TRPC4 channel activity. Therefore, these effects should be considered when
ML204 is used as a TRPC4 channel blocker.
Collapse
Affiliation(s)
- Firoj Alom
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masumi Miyakawa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Nagano
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
29
|
Soni H, Peixoto-Neves D, Buddington RK, Adebiyi A. Adenosine A 1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am J Physiol Renal Physiol 2017; 313:F1216-F1222. [PMID: 28855189 DOI: 10.1152/ajprenal.00335.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Adenosine, a regulator of cardiovascular development and renal function, constricts renal afferent arterioles by inducing intracellular Ca2+ concentration ([Ca2+]i) elevation in smooth muscle cells (SMCs) via activation of its cognate A1 receptors (A1Rs). Mechanisms that underlie A1R-dependent [Ca2+]i elevation in renal vascular SMCs are not fully resolved. Whether A1R expression and function in preglomerular microvessels are dependent on postnatal kidney maturation is also unclear. In this study, we show that selective activation of A1Rs by 2-chloro-N6-cyclopentyladenosine (CCPA) does not stimulate store-operated Ca2+ entry in afferent arterioles isolated from neonatal pigs. However, CCPA-induced [Ca2+]i elevation is dependent on phospholipase C and transient receptor potential cation channel, subfamily C, member 3 (TRPC3). Basal [Ca2+]i was unchanged in afferent arterioles isolated from newborn (0-day-old) pigs compared with their 20-day-old counterparts. By contrast, CCPA treatment resulted in significantly larger [Ca2+]i in afferent arterioles from 20-day-old pigs. A1R protein expression levels in the kidneys and afferent arterioles were unaltered in 0- vs. 20-day-old pigs. However, the TRPC3 channel protein expression level was ~92 and 78% higher in 20-day-old pig kidneys and afferent arterioles, respectively. These data suggest that activation of A1Rs elicits receptor-operated Ca2+ entry in porcine afferent arterioles, the level of which is dependent on postnatal maturation of TRPC3 channels. We propose that TRPC3 channels may contribute to the physiology and pathophysiology of A1Rs.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Dieniffer Peixoto-Neves
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Randal K Buddington
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and.,School of Health Studies, University of Memphis, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
30
|
Importance of Altered Levels of SERCA, IP 3R, and RyR in Vascular Smooth Muscle Cell. Biophys J 2017; 112:265-287. [PMID: 28122214 DOI: 10.1016/j.bpj.2016.11.3206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Calcium cycling between the sarcoplasmic reticulum (SR) and the cytosol via the sarco-/endoplasmic reticulum Ca-ATPase (SERCA) pump, inositol-1,4,5-triphosphate receptor (IP3R), and Ryanodine receptor (RyR), plays a major role in agonist-induced intracellular calcium ([Ca2+]cyt) dynamics in vascular smooth muscle cells (VSMC). Levels of these calcium handling proteins in SR get altered under disease conditions. We have developed a mathematical model to understand the significance of altered levels of SERCA, IP3R, and RyR on the intracellular calcium dynamics of VSMC and to understand how variation in protein levels that arise due to diabetes contribute to different VSMC behavior and thus vascular disease. SR is modeled as a single continuous entity with homogeneous intra-SR calcium. Model results show that agonist-induced intracellular calcium dynamics can be modified by changing the levels of SERCA, IP3R, and/or RyR. Lowering SERCA level will enable intracellular calcium oscillations at low agonist concentrations whereas lowered levels of IP3R and RyR need higher agonist concentration for intracellular calcium oscillations. This research suggests that reduced SERCA level is the main factor responsible for the reduced intracellular calcium transients and contractility in VSMCs.
Collapse
|
31
|
Suleiman MM, Oyelowo BB, Abubakar A, Mamman M, Bello KDT. A controlled study to investigate anti-diarrhoeal effect of the stem-bark fractions of Terminalia avicennioides in laboratory animal models. Int J Vet Sci Med 2017; 5:14-22. [PMID: 30255043 PMCID: PMC6137853 DOI: 10.1016/j.ijvsm.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022] Open
Abstract
Due to the shortcomings associated with modern synthetic antidiarrhoeal drugs, it is important to find newer, safer and cheaper antidiarrhoeal agents from natural sources. The study was conducted to evaluate the anti-diarrhoeal activity of the fractions of the stem-bark of Terminalia avicennioides in laboratory animal models. The effect of different concentrations (1.0 × 10−3, 2.0 × 10−3, 4.0 × 10−3 and 8.0 × 10−3 mg/mL) of the aqueous methanol (AMF), ethyl acetate (EAF) and hexane (HXF) fractions of T. avicennioides were tested against spontaneous and acetylcholine-induced contractions of rabbit jejunum as well as on histamine-induced contraction of guinea pig ileum. Similarly, the effects of the AMF on gastro-intestinal transit time, castor oil-induced diarrhoea and castor oil-induced enteropooling were evaluated. The AMF, EAF and HXF at concentrations of 1.0 × 10−3, 2.0 × 10−3, 4.0 × 10−3 and 8.0 × 10−3 mg/mL attenuated the contractile effects of both the spontaneous and acetylcholine-induced contractions of rabbit jejunum and that of histamine-induced contraction of guinea pig ileum in a concentration-dependent manner. The AMF at doses of 200, 300 and 500 mg/kg produced significant (p < 0.05) reductions in gastrointestinal transit time of charcoal and incidence of castor oil-induced diarrhoea in mice relative to the untreated control. Similarly, at doses of 300 and 500 mg/kg, AMF significantly (p < 0.05) reduced the weight and volume of intestinal fluid in the treated mice when compared to the untreated animals. The results of this study showed that the stem-bark of T. avicennioides possesses spasmolytic effect and could be a potential antidiarrhoeal agent. However, detailed pharmacological trials are required to justify the clinical use of the plant for treating diarrhoea.
Collapse
Affiliation(s)
- Mohammed M Suleiman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Balkisu B Oyelowo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Ahmed Abubakar
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Mamman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Kamar-Deen T Bello
- National Animal Production Research Institute, Ahmadu Bello University, Zaria, Shika, Nigeria
| |
Collapse
|
32
|
The sources of calcium for noradrenaline-induced contraction in the human thoracic internal artery. Pflugers Arch 2017; 469:1135-1140. [PMID: 28434061 DOI: 10.1007/s00424-017-1982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to examine the contribution of intracellular and extracellular calcium sources in contraction caused by noradrenaline (NA) of the human internal thoracic artery (ITA) in vitro. Distal segments of ITA were obtained from 20 patients (aged 38-73, at the time of routine coronary artery surgical revascularization (CABG)). Contractile responses to 10-6 mol/L NA in the physiological salt solution and in Ca2+-free solution without and after incubation with 10-6 mol/L thapsigargin (TSG) were recorded under isometric conditions. Responses of ITA rings to 1 μM NA without incubation with TSG accounted (% of reaction to 80 mM KCl) 224.70 ± 14.06% in PSS solution, 141.30 ± 8.66% in Ca2+-free solution, and 80.03 ± 1.71% after PSS restoration and were statistically significantly different (p < 0.0001, one-way ANOVA). Responses of ITA rings to 1 μM NA with 1 μM TSG accounted (% of reaction to 80 mM KCl) 114.50 ± 2.79% in Ca2+-free solution and 36.70 ± 2.38% after PSS restoration. Responses in Ca2+-free solution and after PSS restoration without and with TSG were statistically significantly different (p = 0.0257 and p < 0.0001, respectively-t test). ITA contraction is caused by calcium derived not only from the SR and the extracellular matrix. The delivery of calcium to the space surrounding tissue does not immediately deliver calcium to the myofilaments.
Collapse
|
33
|
Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells. Physiology (Bethesda) 2017; 31:316-26. [PMID: 27488743 DOI: 10.1152/physiol.00006.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Japan
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada; and
| |
Collapse
|
34
|
Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:82. [PMID: 28143473 PMCID: PMC5282690 DOI: 10.1186/s12906-017-1598-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Artemisia campestris L. (Asteraceae) is a medicinal herb traditionally used to treat hypertension and many other diseases. Hence, this study is aimed to analyze the essential oil of A. campestris L (AcEO) and to investigate the antiplatelet, antioxidant effects and the mechanisms of its vasorelaxant effect. METHODS The chemical composition of AcEO was elucidated using GC/MS analysis. Then, the antioxidant effect was tested on DPPH radical scavenging and on the prevention of β-carotene bleaching. The antiplatelet effect was performed on the presence of the platelet agonists: thrombin and ADP. The mechanism of action of the vasorelaxant effect was studied by using the cellular blockers specified to explore the involvement of NO/GC pathway and in the presence of calcium channels blockers and potassium channels blockers. RESULTS AcEO is predominated by the volatiles: spathulenol, ß-eudesmol and p-cymene. The maximal antioxidant effect was obtained with the dose 2 mg/ml of AcEO. The dose 1 mg/ml of AcEO showed a maximum antiplatelet effect of, respectively 49.73% ±9.54 and 48.20% ±8.49 on thrombin and ADP. The vasorelaxation seems not to be mediated via NOS/GC pathway neither via the potassium channels. However, pretreatment with calcium channels blockers attenuated this effect, suggesting that the vasorelaxation is mediated via inhibition of L-type Ca2+ channels and the activation of SERCA pumps of reticulum plasma. CONCLUSION This study confirms the antioxidant, antiplatelet and vasorelaxant effects of A.campestris L essential oil. However, the antihypertensive use of this oil should be further confirmed by the chemical fractionation and subsequent bio-guided assays.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratoire Qualité et Sécurité des Produits Alimentaires, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Fatima Belmekki
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Berrabah
- Laboratoire de Chimie du Solide Minéral et Analytique, Département de Chimie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
35
|
Kagimoto Y, Yamasaki K, Shimada-Ohmori R, Nan L, Numata Y, Aiba S. Positive correlation of vanilloid receptor subtype1 and prostaglandin E2 expression with pain in leiomyomas. J Dermatol 2016; 44:690-694. [PMID: 28026039 DOI: 10.1111/1346-8138.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022]
Abstract
Cutaneous leiomyomas are benign smooth muscle tumors that are occasionally painful. The mechanism of pain related to leiomyoma is not fully understood. To investigate the possible involvement of algoneic factors in pain from cutaneous leiomyomas. We present a case of cutaneous leiomyoma with severe, diffused pain in a large area and collected 10 more specimens of cutaneous leiomyoma with or without pain in patient histories. We immunohistochemiacally examined the expression of algoneic factors: serotonin, histamin, Substance P, PGE2, BDKRB2, VR1 and CGRP. We compared the pain area and expression of algoneic factors to reveal possible correlations. We describe here a patient with a cutaneous leiomyoma 1-cm in diameter, which caused severe pain diffused throughout an area of 20-cm around the tumor. The pain completely resolved after surgical excision of the leiomyoma. We observed that the leiomyoma cells expressed CGRP, PGE2 and VR1 in this case. We found a positive correlation between VR1 and PGE2 expression in the leiomyoma cells and areas with pain around the tumors among 11 specimens in total. VR1 and PGE2 might be key algogenic substances in painful leiomyoma.
Collapse
Affiliation(s)
- Yoshiko Kagimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Shimada-Ohmori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Liu Nan
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukikazu Numata
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, Jing R, Liu J, Lederer WJ, Chen J, Ouyang K. IP 3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight 2016; 1:e89402. [PMID: 27777977 DOI: 10.1172/jci.insight.89402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor-mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle-specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension.
Collapse
Affiliation(s)
- Qingsong Lin
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Guiling Zhao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xi Fang
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, California, USA
| | - Xiaohong Peng
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ran Jing
- Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ju Chen
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, California, USA
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
37
|
Pharmacological profile of N-(2,6-dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide, a novel analogue of lidocaine. Life Sci 2016; 155:48-55. [PMID: 27181746 DOI: 10.1016/j.lfs.2016.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/21/2023]
Abstract
AIM N-(2,6-Dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide (LIA), a lidocaine analogue, has potential applications in treating neuropathic pain. The aim of this work was to characterize the pharmacological activity of LIA related with central nervous system and cardiovascular activity. METHODS Anesthetic effect was tested in guinea pigs and mice. Ambulatory activity, anti-anxiety effect, sodium pentobarbital (PB)-induced hypnosis and pentylenetetrazol (PTZ)-induced seizures test were evaluated in mice to determine the possible central nervous system activity. The cardiovascular activities in vivo and ex vivo were analyzed in rats. KEY FINDINGS LIA (2%) presents, similar to lidocaine (2%), anesthetic activity on the corneal reflex, infiltration anesthesia and tail immersion test. LIA (1-100mg/kg, i.p.), similar to lidocaine (1-100mg/kg, i.p.), presents a dose-dependent sedative-hypnotic effect in mice. Both compounds did not produce anti-anxiety activity in mice. LIA did not prevent PTZ-induced seizures. However, LIA itself did not produce seizures at high doses in mice, as lidocaine does. LIA is a vasorelaxant compound for smooth muscle cells and presents hypotensive effect in vivo without increments to the heart rate significantly. SIGNIFICANCE High doses of lidocaine produce seizures and vasoconstriction. In this study, we found that LIA shares a similar pharmacological profile as lidocaine's but without the primary adverse effects of seizures and vasoconstriction.
Collapse
|
38
|
Cuíñas A, García-Morales V, Viña D, Gil-Longo J, Campos-Toimil M. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016; 155:102-9. [PMID: 27142830 DOI: 10.1016/j.lfs.2016.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Abstract
AIMS We investigated the implication of PKA and Epac proteins in the endothelium-independent vasorelaxant effects of cyclic AMP (cAMP). MAIN METHODS Cytosolic Ca(2+) concentration ([Ca(2+)]c) was measured by fura-2 imaging in rat aortic smooth muscle cells (RASMC). Contraction-relaxation experiments were performed in rat aortic rings deprived of endothelium. KEY FINDINGS In extracellular Ca(2+)-free solution, cAMP-elevating agents induced an increase in [Ca(2+)]c in RASMC that was reproduced by PKA and Epac activation and reduced after depletion of intracellular Ca(2+) reservoirs. Arginine-vasopressin (AVP)-evoked increase of [Ca(2+)]c and store-operated Ca(2+) entry (SOCE) were inhibited by cAMP-elevating agents, PKA or Epac activation in these cells. In aortic rings, the contractions induced by phenylephrine in absence of extracellular Ca(2+) were inhibited by cAMP-elevating agents, PKA or Epac activation. In these conditions, reintroduction of Ca(2+) induced a contraction that was inhibited by cAMP-elevating agents, an effect reduced by PKA inhibition and reproduced by PKA or Epac activators. SIGNIFICANCE Our results suggest that increased cAMP depletes intracellular, thapsigargin-sensitive Ca(2+) stores through activation of PKA and Epac in RASMC, thus reducing the amount of Ca(2+) released by IP3-generating agonists during the contraction of rat aorta. cAMP rise also inhibits the contraction induced by depletion of intracellular Ca(2+), an effect mediated by reduction of SOCE after PKA or Epac activation. Both effects participate in the cAMP-induced endothelium-independent vasorelaxation.
Collapse
Affiliation(s)
- Andrea Cuíñas
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Verónica García-Morales
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Gil-Longo
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Perrino BA. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 2016; 22:213-25. [PMID: 26701920 PMCID: PMC4819859 DOI: 10.5056/jnm15186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
40
|
Santos KC, Monte APO, Lima JT, Ribeiro LAA, Palheta Junior RC. Role of NO-cGMP pathway in ovine cervical relaxation induced by Erythroxylum caatingae Plowman. Anim Reprod Sci 2015; 164:23-30. [PMID: 26619941 DOI: 10.1016/j.anireprosci.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
Erythroxylum caatingae Plowman has a myorelaxing effect on smooth muscle tissue. We investigated the effect of the crude ethanolic extract of E. caatingae Plowman (Ec-EtOH) on the contractility of the ovine cervix. In an isometric system, circular strips were subjected to 90mM potassium (K(+)) or 30μM carbamylcholine (CCh)-induced contraction. We then exposed the tissue to cumulative concentrations of Ec-EtOH (1-729 μg/ml). In other bath solutions, the tissues were exposed to l-NG-nitroarginine methyl ester (l-NAME; 100μM), l-NAME (100μM)+l-arginine (300μM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ; 5μM), 4-aminopyridine (4-AP; 3mM), tetraethylammonium (TEA; 0.3mM), glybenclamide (1μM), atosiban (10μM) or verapamil (3μM), followed by the addition of Ec-EtOH (1-729 μg/ml). We also evaluated the effect of cervical Ec-EtOH infusion (2mg) on cervical contractility in vivo. Ec-EtOH decreased cervical contractility induced by K(+) or CCh, and 729 μg/ml Ec-EtOH decreased 85.4±5.1% the amplitude of basal contractility in vitro, with an EC50 of 17.9±3.7 μg/ml. This effect of Ec-EtOH was prevented by l-NAME or ODQ. l-arginine impaired the blunting effect of l-NAME on cervical relaxation caused by Ec-EtOH. However, the potassium channel blockers 4-AP, TEA, and glybenclamide did not modify this myorelaxation triggered by Ec-EtOH. Ec-EtOH also decreased acetylcholine-induced contractions in tissue preincubated with verapamil. In addition, Ec-EtOH decreased ovine cervical contractions in vivo. Thus, Ec-EtOH had a relaxant effect on ovine cervical contractions. This may involve the nitric oxide signal, mediated by cGMP cellular transduction, and be related to intracellular calcium sequestration.
Collapse
Affiliation(s)
| | - A P O Monte
- Laboratory of Physiology and Biotechnology of Animal Reproduction, Federal University of San Francisco Valley, Petrolina, PE, Brazil
| | - J T Lima
- Course of Natural Resources in Semiarid
| | | | | |
Collapse
|
41
|
Mechanism of bombesin-induced tonic contraction of the porcine lower esophageal sphincter. Sci Rep 2015; 5:15879. [PMID: 26522854 PMCID: PMC4629149 DOI: 10.1038/srep15879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/06/2015] [Indexed: 01/23/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is a disorder that is related to an incompetent lower esophageal sphincter (LES). Previous studies showed that bombesin could increase LES pressure in humans and opossums. The aim of the present study was to characterize the effects of bombesin on porcine LES contraction. We used the selective agonists, neuromedin B (NMB), gastrin-releasing peptide (GRP), and [D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6-14) (DTACPN-BN), as well as receptor antagonists of bombesin receptor subtype 2 (BB2), and 3 (BB3) for ex vivo contraction studies. Atropine, nifedipine, tetrodotoxin, and ω-conotoxin GVIA were used to explore the agonist-induced LES contraction mechanism. Reverse transcription polymerase chain reaction and immunohistochemistry were applied to detect bombesin receptor expression. Our results indicate that GRP and DTACPN-BN, but not NMB, induced tonic contractions of the porcine LES in a dose-dependent manner, and the contractions were inhibited with selective BB2 and BB3 antagonists. The GRP-induced contraction is mainly caused by L-type Ca2+ channel-mediated Ca2+ influx. However, DTACPN-BN-induced contractions are associated with neuronal conduction. RT-PCR and immunohistochemistry revealed that BB2 and BB3 were expressed in the porcine LES. Bombesin-induced tonic contraction of the LES is mediated through BB2 and BB3. Bombesin, BB2, and BB3 agonists might have the potential to treat GERD.
Collapse
|
42
|
Tsai CC, Chang LC, Huang SC, Tey SL, Hsu WL, Su YT, Liu CW, Tsai TR. Salvia miltiorrhiza Induces Tonic Contraction of the Lower Esophageal Sphincter in Rats via Activation of Extracellular Ca2+ Influx. Molecules 2015; 20:14504-21. [PMID: 26270658 PMCID: PMC6331792 DOI: 10.3390/molecules200814504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 01/22/2023] Open
Abstract
Up to 40% of patients with gastroesophageal reflux disease (GERD) suffer from proton pump inhibitor refractory GERD but clinically the medications to strengthen the lower esophageal sphincter (LES) to avoid irritating reflux are few in number. This study aimed to examine whether Salvia miltiorrhiza (SM) extracts induce tonic contraction of rat LES ex vivo and elucidate the underlying mechanisms. To investigate the mechanism underlying the SM extract-induced contractile effects, rats were pretreated with atropine (a muscarinic receptor antagonist), tetrodotoxin (a sodium channel blocker), nifedipine (a calcium channel blocker), and Ca2+-free Krebs-Henseleit solution with ethylene glycol tetraacetic acid (EGTA), followed by administration of cumulative dosages of SM extracts. SM extracts induced dose-related tonic contraction of the LES, which was unaffected by tetrodotoxin, atropine, or nifedipine. However, the SM extract-induced LES contraction was significantly inhibited by Ca2+-free Krebs-Henseleit solution with EGTA. Next, SM extracts significantly induce extracellular Ca2+ entry into primary LES cells in addition to intracellular Ca2+ release and in a dose-response manner. Confocal fluorescence microscopy showed that the SM extracts consistently induced significant extracellular Ca2+influx into primary LES cells in a time-dependent manner. In conclusion, SM extracts could induce tonic contraction of LES mainly through the extracellular Ca2+ influx pathway.
Collapse
Affiliation(s)
- Ching-Chung Tsai
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City 807, Taiwan.
- Departments of Pediatrics, E-Da Hospital, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
| | - Li-Ching Chang
- Department of Occupational Therapy, I-Shou University, No. 8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
- Department of Pharmacy, E-Da Hospital, No.1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
| | - Shih-Che Huang
- Department of Internal Medicine, E-Da Hospital, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
- School of Medicine, I-Shou University, No. 8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 824, Taiwan.
| | - Shu-Leei Tey
- Departments of Pediatrics, E-Da Hospital, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
| | - Wen-Li Hsu
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan.
| | - Yu-Tsun Su
- Departments of Pediatrics, E-Da Hospital, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 824, Taiwan.
| | - Ching-Wen Liu
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City 807, Taiwan.
| | - Tong-Rong Tsai
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City 807, Taiwan.
| |
Collapse
|
43
|
Barriga-Rivera A, Vinuesa JL, Lopez-Alonso M. Anorectal Manometry in Wistar Rats with Inexpensive Setup: A Physiological Description of the Mechanical Activity. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Quan X, Luo H, Liu Y, Xia H, Chen W, Tang Q. Hydrogen sulfide regulates the colonic motility by inhibiting both L-type calcium channels and BKCa channels in smooth muscle cells of rat colon. PLoS One 2015; 10:e0121331. [PMID: 25811907 PMCID: PMC4374679 DOI: 10.1371/journal.pone.0121331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Objective To examine the hypothesis that hydrogen sulfide (H2S) regulates the colonic motility by modulating both L-type voltage-dependent calcium channels and large conductance Ca2+-activated K+ (BKCa) channels. Methods Immunohistochemistry was performed on rat colonic samples to investigate the localization of the H2S-producing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). The contractions of proximal colonic smooth muscle were studied in an organ bath system. The whole-cell patch-clamp technique was used to record both L-type calcium currents (ICa,L) and BKCa currents in colonic smooth muscle cells (SMCs) isolated from male Wistar rats. Results Immunohistochemistry revealed the presence of CBS and CSE in mucosa, smooth muscle cells and myenteric neurons. The H2S donor NaHS inhibited spontaneous contractions of the longitudinal muscle and circular muscle strips in a dose-dependent manner, and the inhibitory effects were not blocked by tetrodotoxin. NaHS inhibited the peak ICa,L in colonic SMCs at a membrane potential of 0 mV. The current-voltage (I-V) relationship of L-type calcium channels was modified by NaHS, and the peak of the I-V curve was shifted to the right. NaHS (200μΜ) evoked a significant rightward shift of the steady-state activation curve and inhibited the inactivation of L-type calcium channels. Furthermore, NaHS reversibly decreased the peak ICa,L in a dose-dependent manner. Likewise, BKCa channels were significantly inhibited by NaHS, and the addition of NaHS caused a time- and dose-dependent reduction in the BKCa current. Conclusion The relaxant effect of H2S on colonic muscle strips may be associated with the direct inhibition of H2S on L-type calcium channels. H2S may be involved in the regulation of calcium homeostasis in colonic SMCs of rat colon.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| | - Yin Liu
- Department of Gastroenterology, the Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Ochi R, Chettimada S, Gupte SA. Poly(ethylene glycol)-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells. PLoS One 2014; 9:e107049. [PMID: 25197984 PMCID: PMC4157810 DOI: 10.1371/journal.pone.0107049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol) cholesteryl ether (PEG-cholesterol) is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca2+ channel currents (ICa,L) recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD) is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD)) caused inhibition of ICa,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased ICa,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased ICa,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window ICa,L more strongly as compared with cholesterol (MβCD). Poly(ethylene glycol) conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of ICa,L.
Collapse
Affiliation(s)
- Rikuo Ochi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| | - Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sachin A. Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| |
Collapse
|
46
|
Yoon J, Choi M, Ku T, Choi WJ, Choi C. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers. JOURNAL OF BIOPHOTONICS 2014; 7:597-606. [PMID: 23650149 DOI: 10.1002/jbio.201200246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/03/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca(2+) level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction-limited volume can induce intracellular Ca(2+) increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca(2+) levels are amplified by calcium-induced calcium-releasing mechanisms through the ryanodine receptor, a Ca(2+) channel of the endoplasmic reticulum. The laser-induced Ca(2+) increases propagate to adjacent cells through gap junctions. Thus, ultrashort-pulsed lasers can induce smooth muscle contraction by controlling Ca(2+), even with optical stimulation of the diffraction-limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea; KAIST Institute for Optical Science and Technology, KAIST, Daejeon, Korea
| | | | | | | | | |
Collapse
|
47
|
Ewart MA, Kennedy S, Macmillan D, Raja ALN, Watt IM, Currie S. Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis. Atherosclerosis 2014; 234:154-61. [PMID: 24657385 PMCID: PMC3997800 DOI: 10.1016/j.atherosclerosis.2014.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 01/29/2014] [Accepted: 02/18/2014] [Indexed: 02/07/2023]
Abstract
Objectives Relaxation of vascular smooth muscle (VSM) requires re-uptake of cytosolic Ca2+ into the sarcoplasmic reticulum (SR) via the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA), or extrusion via the Plasma Membrane Ca2+ ATPase (PMCA) or sodium Ca2+ exchanger (NCX). Peroxynitrite, a reactive species formed in vascular inflammatory diseases, upregulates SERCA activity to induce relaxation but, chronically, can contribute to atherogenesis and altered vascular function by escalating endoplasmic reticulum stress. Our objectives were to determine if peroxynitrite-induced relaxation and Ca2+ handling processes within vascular smooth muscle cells were altered as atherosclerosis develops. Methods Aortae from control and ApoE−/− mice were studied histologically, functionally and for protein expression levels of SERCA and PMCA. Ca2+ responses were assessed in dissociated aortic smooth muscle cells in the presence and absence of extracellular Ca2+. Results Relaxation to peroxynitrite was concentration-dependent and endothelium-independent. The abilities of the SERCA blocker thapsigargin and the PMCA inhibitor carboxyeosin to block this relaxation were altered during fat feeding and plaque progression. SERCA levels were progressively reduced, while PMCA expression was upregulated. In ApoE−/− VSM cells, increases in cytosolic Ca2+ [Ca2+]c in response to SERCA blockade were reduced, while SERCA-independent Ca2+ clearance was faster compared to control. Conclusion As atherosclerosis develops in the ApoE−/− mouse, expression and function of Ca2+ handling proteins are altered. Up-regulation of Ca2+ removal via PMCA may offer a potential compensatory mechanism to help normalise the dysfunctional relaxation observed during disease progression. Expression and function of SERCA and PMCA are temporally altered in ApoE−/− VSM. TG-induced increases in [Ca2+]c were reduced in ApoE−/− aortic SM cells. Ca2+ extrusion is upregulated in isolated ApoE−/− aortic SM cells.
Collapse
Affiliation(s)
- Marie-Ann Ewart
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK.
| | - Simon Kennedy
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Debbi Macmillan
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - Abhirami L N Raja
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Ian M Watt
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, G12 8QQ, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| |
Collapse
|
48
|
Abstract
Renal expression of the peptide hormone urotensin II (UII) and its receptor (UTR) are dependent on kidney maturation and anatomical regions. However, renal regional hemodynamic effects of UII in neonates are unclear. Here, we investigated regional hemodynamic responses to acute intrarenal arterial administration of UII in newborn pigs. Western immunoblotting and immunofluorescence confirmed UTR expression and membrane localization in newborn pig renal afferent arterioles and afferent arteriolar smooth muscle cells respectively. Intrarenal arterial bolus injections of human UII (hUII; 1-100 ng/kg) resulted in a dose-dependent decrease in total renal blood flow (RBF) and an increase in mean arterial pressure (MAP) and renal vascular resistance (RVR) in newborn pigs. Moreover, hUII dose dependently reduced cortical blood flow (CBF) but increased medullary blood flow (MBF) in the piglets. hUII-induced MAP elevation and hemodynamic changes were inhibited by urantide, a UTR antagonist, but not losartan, a type 1 angiotensin II receptor antagonist. U-73122, a phospholipase C (PLC) inhibitor, and 2-aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate (IP₃) receptor antagonist, attenuated hUII-induced MAP and RVR elevations, RBF and CBF reductions, but not MBF increase. These findings indicate that intrarenal arterial administration of hUII elevates blood pressure and induces region-selective renal hemodynamic changes in newborn pigs. Our data also suggest that the PLC/IP₃ signaling pathway contributes to hUII-induced alterations in MAP, RBF, RVR, and CBF but not MBF in newborn pigs.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, , University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
49
|
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2013; 48:157-63. [PMID: 23065130 PMCID: PMC3604064 DOI: 10.1165/rcmb.2012-0231oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022] Open
Abstract
The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, Columbia University Medical Center, 650 West 168th Street, Black Building 7-713, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Pulina MV, Zulian A, Baryshnikov SG, Linde CI, Karashima E, Hamlyn JM, Ferrari P, Blaustein MP, Golovina VA. Cross talk between plasma membrane Na(+)/Ca (2+) exchanger-1 and TRPC/Orai-containing channels: key players in arterial hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:365-74. [PMID: 23224895 DOI: 10.1007/978-1-4614-4756-6_31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial smooth muscle (ASM) Na(+)/Ca(2+) exchanger type 1 (NCX1) and TRPC/Orai-containing receptor/store-operated cation channels (ROC/SOC) are clustered with α2 Na(+) pumps in plasma membrane microdomains adjacent to the underlying junctional sarcoplasmic reticulum. This arrangement enables these transport proteins to function as integrated units to help regulate local Na(+) metabolism, Ca(2+) signaling, and arterial tone. They thus influence vascular resistance and blood pressure (BP). For instance, upregulation of NCX1 and TRPC6 has been implicated in the pathogenesis of high BP in several models of essential hypertension. The models include ouabain-induced hypertensive rats, Milan hypertensive rats, and Dahl salt-sensitive hypertensive rats, all of which exhibit elevated plasma ouabain levels. We suggest that these molecular mechanisms are key contributors to the increased vascular resistance ("whole body autoregulation") that elevates BP in essential hypertension. Enhanced expression and function of ASM NCX1 and TRPC/Orai1-containing channels in hypertension implies that these proteins are potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|