1
|
Fagundes ADS, Marinho AH, Lopes Freitas I, Lopes Filho BJP, Rodacki C, Bertuzzi R, Lima-Silva AE, Cristina-Souza G. Neuromuscular Fatigue During Brazilian Jiujitsu Matches: Analysis of Upper and Lower Limbs. Int J Sports Physiol Perform 2025; 20:23-29. [PMID: 39467539 DOI: 10.1123/ijspp.2023-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE To determine the effects of repeated Brazilian jiujitsu (BJJ) matches on neuromuscular fatigue in forearm-flexor and knee-extensor muscles. METHODS Twelve BJJ athletes (8 men and 4 women) performed a simulated BJJ tournament composed of four 8-minute matches interspersed by 16-minute intervals. Neuromuscular fatigue was assessed via prematch to postmatch(es) reductions in maximal voluntary isometric contraction (MVIC), voluntary activation, and potentiated twitch force (Ptwpot) in the forearm-flexor and knee-extensor muscles. RESULTS The MVIC of the knee extensors and forearm flexors reduced from prematch 1 to postmatch 2 and remained suppressed until postmatch 4 (P < .034). The voluntary activation of the knee extensors declined only after match 4, whereas the voluntary activation of the forearm flexors did not change throughout the matches (P = .102). Ptwpot of knee extensors decreased from prematch 1 to postmatch 1 (P < .001) and remained reduced until postmatch 4 (P < .001). Ptwpot of the forearm flexors reduced after every match (P < .010), with complete recovery occurring only before the second match (P = .99). The magnitude of the prematch-to-postmatch reduction in Ptwpot was lower in knee extensors than in forearm flexors (P = .044). CONCLUSIONS Repeated BJJ matches induced neuromuscular fatigue, mainly due to impairments in muscle contractile function (ie, peripheral fatigue). The time between BJJ matches seems to be insufficient to allow complete recovery of neuromuscular function, which may influence performance during subsequent matches.
Collapse
Affiliation(s)
- Athos da Silva Fagundes
- Nutrition and Exercise Research Group, State University of Minas Gerais, Poços de Caldas, MG, Brazil
| | - Alisson Henrique Marinho
- Nutrition and Exercise Research Group, State University of Minas Gerais, Poços de Caldas, MG, Brazil
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, PR, Brazil
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, AL, Brazil
| | - Iron Lopes Freitas
- Nutrition and Exercise Research Group, State University of Minas Gerais, Poços de Caldas, MG, Brazil
| | | | - Cintia Rodacki
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of Sao Paulo, São Paulo, SP, Brazil
| | - Adriano Eduardo Lima-Silva
- Nutrition and Exercise Research Group, State University of Minas Gerais, Poços de Caldas, MG, Brazil
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Gislaine Cristina-Souza
- Nutrition and Exercise Research Group, State University of Minas Gerais, Poços de Caldas, MG, Brazil
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Greenhouse-Tucknott A, Wrightson JG, Berens S, Dekerle J, Harrison NA. Perceived fatigue does not alter effort-based decision making but does undermine confidence in the ability to perform physical actions. Physiol Behav 2024; 291:114792. [PMID: 39730065 DOI: 10.1016/j.physbeh.2024.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Fatigue may affect the decision to deploy effort (cost) for a given rewarded outcome (benefit). However, it remains unclear whether these fatigue-associated changes can be attributed to simply feeling fatigued. To investigate this question, twenty-two healthy males made a series of choices between two rewarded options: a fixed, no effort option, where no physical effort was required to obtain a set, low reward vs. a variable, effortful option, in which both the physical effort requirements (i.e. different durations of a sustained contraction performed in the lower limbs) and rewards (i.e. greater monetary incentives) was varied. Effort-based choices were made under two conditions: (1) a rested (control) state, (2) a pre-induced state of perceived fatigue, evoked through physical exertion in the upper-limbs, thus controlling for the physical manifestation of fatigue (i.e. decline in muscular force production in the lower limbs) on the decision process. Though prior physical exertion increased the perception of fatigue, participants choices did not significantly differ between control and fatigue conditions. Across both conditions, participants demonstrated an anticipated aversion to effort, with greater effort requirements reducing the decision to engage in actions associated with higher rewards. However, in the fatigue state only, decision time was prolonged and self-reported confidence in individuals' ability to perform high effort actions was reduced. The findings suggest that a perceived state of fatigue does not necessarily alter cost/benefit comparisons within effort-based decisions, but may introduce greater uncertainty within choice and reduce self-confidence. These findings evidence altered evaluative processes during decision making under conditions of fatigue.
Collapse
Affiliation(s)
- Aaron Greenhouse-Tucknott
- Fatigue and Exercise Laboratory, School of Education, Sport and Health Sciences, University of Brighton, Village Way, Brighton, BN1 9PH, UK
| | - James G Wrightson
- Fatigue and Exercise Laboratory, School of Education, Sport and Health Sciences, University of Brighton, Village Way, Brighton, BN1 9PH, UK; Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Sam Berens
- School of Psychology, University of Sussex, UK
| | - Jeanne Dekerle
- Fatigue and Exercise Laboratory, School of Education, Sport and Health Sciences, University of Brighton, Village Way, Brighton, BN1 9PH, UK.
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK
| |
Collapse
|
3
|
MacDougall KB, Aboodarda SJ, Westergard PH, MacIntosh BR. The validity and reliability of quadriceps twitch force as a measure of skeletal muscle fatigue while cycling. Eur J Sport Sci 2024; 24:1328-1340. [PMID: 39118274 PMCID: PMC11369328 DOI: 10.1002/ejsc.12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The measurement of skeletal muscle fatigue in response to cycling exercise is commonly done in isometric conditions, potentially limiting its ecological validity, and creating challenges in monitoring the time course of muscle fatigue across an exercise bout. This study aimed to determine if muscle fatigue could be reliably assessed by measuring quadriceps twitch force evoked while pedaling, using instrumented pedals. Nine participants completed three laboratory visits: a step incremental test to determine power output at lactate threshold, and on separate occasions, two constant-intensity bouts at a power output 10% above lactate threshold. Femoral nerve electrical stimulation was applied to elicit quadriceps twitch force both while pedaling (dynamic) and at rest (isometric). The test-retest reliability of the dynamic twitch forces and the agreement between the dynamic and isometric twitch forces were evaluated. Dynamic twitch force was found to have excellent reliability in an unfatigued state (intraclass correlation coefficient (ICC) = 0.920 and mean coefficient of variation (CV) = 7.5%), and maintained good reliability at task failure (ICC = 0.846 and mean CV = 11.5%). When comparing dynamic to isometric twitch forces across the task, there was a greater relative decline in the dynamic condition (P = 0.001). However, when data were normalized to the 5 min timepoint when potentiation between conditions was presumed to be more similar, this difference disappeared (P = 0.207). The reliability of this method was shown to be commensurate with the gold standard method utilizing seated isometric dynamometers and offers a new avenue to monitor the kinetics of muscle fatigue during cycling in real time.
Collapse
|
4
|
MacDougall KB, Zhang J, Grunau M, Anklovitch E, MacIntosh BR, MacInnis MJ, Aboodarda SJ. Acute performance fatigability following continuous versus intermittent cycling protocols is not proportional to total work done. Appl Physiol Nutr Metab 2024; 49:1055-1067. [PMID: 38631044 DOI: 10.1139/apnm-2023-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Classical training theory postulates that performance fatigability following a training session should be proportional to the total work done (TWD); however, this notion has been questioned. This study investigated indices of performance and perceived fatigability after primary sessions of high-intensity interval training (HIIT) and constant work rate (CWR) cycling, each followed by a cycling time-to-task failure (TTF) bout. On separate days, 16 participants completed an incremental cycling test, and, in a randomized order, (i) a TTF trial at 80% of peak power output (PPO), (ii) an HIIT session, and (iii) a CWR session, both of which were immediately followed by a TTF trial at 80% PPO. Central and peripheral aspects of performance fatigability were measured using interpolated twitch technique, and perceptual measures were assessed prior to and following the HIIT and CWR trials, and again following the TTF trial. Despite TWD being less following HIIT (P = 0.029), subsequent TTF trial was an average of 125 s shorter following HIIT versus CWR (P < 0.001), and this was accompanied by greater impairments in voluntary and electrically evoked forces (P < 0.001), as well as exacerbated perceptual measures (P < 0.001); however, there were no differences in any fatigue measure following the TTF trial (P ≥ 0.149). There were strong correlations between the decline in TTF and indices of peripheral (r = 0.70) and perceived fatigability (r ≥ 0.80) measured at the end of HIIT and CWR. These results underscore the dissociation between TWD and performance fatigability and highlight the importance of peripheral components of fatigability in limiting endurance performance during high-intensity cycling exercise.
Collapse
Affiliation(s)
| | - Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Micah Grunau
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Eric Anklovitch
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | | |
Collapse
|
5
|
Lavigne C, Mons V, Grange M, Blain GM. Acute neuromuscular, cardiovascular, and muscle oxygenation responses to low-intensity aerobic interval exercises with blood flow restriction. Exp Physiol 2024; 109:1353-1369. [PMID: 38875101 PMCID: PMC11291873 DOI: 10.1113/ep091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Collapse
|
6
|
Spineli H, dos Santos M, Almeida D, Gitaí D, Silva-Cavalcante M, Balikian P, Ataide-Silva T, Marinho A, Sousa F, de Araujo G. ACE gene polymorphisms (rs4340) II and DI are more responsive to the ergogenic effect of caffeine than DD on aerobic power, heart rate, and perceived exertion in a homogeneous Brazilian group of adolescent athletes. Braz J Med Biol Res 2024; 57:e13217. [PMID: 38896643 PMCID: PMC11186592 DOI: 10.1590/1414-431x2024e13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The purpose of this study was to verify the association between angiotensin-converting enzyme (ACE) genotypes DD, DI, and II and caffeine (CAF) ingestion on endurance performance, heart rate, ratio of perceived exertion (RPE), and habitual caffeine intake (HCI) of adolescent athletes. Seventy-four male adolescent athletes (age: DD=16±1.7; DI=16±2.0; II=15±1.7 years) ingested CAF (6 mg/kg) or placebo (PLA) one hour before performing the Yo-Yo Intermittent Recovery level 1 (Yo-Yo IR1) test. No difference was found among groups for HCI. However, CAF increased the maximal distance covered and VO2max in DI and II genotype carriers compared to PLA (DD: Δ=31 m and 0.3 mL·kg-1·min-1; DI: Δ=286 m and 1.1 mL·kg-1·min-1; II: Δ=160 m and 1.4 mL·kg-1·min-1). Heart rate of DI and II genotype carriers increased with CAF compared to PLA, while RPE was higher in the II and lower in the DD genotypes. The correlations between HCI and maximal distance covered or VO2max were significant in the II genotype carriers with CAF. CAF increased endurance capacity, heart rate, and RPE in adolescent athletes with allele I, while endurance performance and aerobic power had a positive correlation to HCI in the II genotype group. These findings suggested that DD genotype were less responsive to CAF and that genetic variations should be taken into account when using CAF supplementation to enhance exercise performance.
Collapse
Affiliation(s)
- H. Spineli
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. dos Santos
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Almeida
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - D. Gitaí
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - M. Silva-Cavalcante
- Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Maceió, AL, Brasil
| | - P. Balikian
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - T. Ataide-Silva
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - A. Marinho
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - F. Sousa
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
| | - G. de Araujo
- Instituto de Educação Física e Esporte, Universidade Federal de Alagoas, Maceió, AL, Brasil
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL, Brasil
| |
Collapse
|
7
|
Ortega DG, Smith RW, Arnett JE, Neltner TJ, Schmidt RJ, Johnson GO, Housh TJ. Are performance and perceived fatigability dependent on the anchor scheme of fatiguing isometric tasks in men? J Sports Med Phys Fitness 2024; 64:505-515. [PMID: 38436595 DOI: 10.23736/s0022-4707.24.15721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ratings of perceived exertion (RPE) can be used to regulate exercise intensity. This study examined the effect of anchor scheme on performance fatigability and neuromuscular responses following fatiguing forearm flexion tasks. METHODS Twelve men (age 20.9±2.2 years; height 179.8±5.3 cm; body mass 80.2±9.9 kg) performed sustained, isometric forearm flexion tasks to failure anchored to RPE=6 (RPEFT) and the torque (TRQFT) that corresponded to RPE=6. Pre-test and post-test maximal voluntary isometric contractions (MVIC) were performed to quantify changes in the amplitude (AMP) and mean power frequency (MPF) of the electromyographic (EMG) and mechanomyographic (MMG) signals. Neuromuscular efficiency (NME) was calculated by dividing normalized torque by normalized EMG AMP. A dependent t-test was used to assess the mean difference for time to task failure (TTF). Repeated measures ANOVAs were used to compare mean differences for performance fatigability and normalized neuromuscular parameters. RESULTS The RPEFT had a greater TTF than the TRQFT (P<0.001). MVIC and NME decreased from pre-test to post-test following the RPEFT and TRQFT (P<0.05) with no differences between anchor schemes. Following the TRQFT, normalized EMG MPF decreased from pre-test to post-test (P=0.004). Following the RPEFT, normalized MMG MPF increased from pre-test to post-test (P=0.021). There were no changes in normalized EMG AMP or MMG AMP (P>0.05). CONCLUSIONS These findings indicated anchor scheme-specific neuromuscular responses and TTF, despite no difference in performance fatigability. Furthermore, performance fatigability was likely due to peripheral fatigue (based on normalized EMG MPF and NME) following the TRQFT, but peripheral and central fatigue (based on normalized MMG MPF and NME) following the RPEFT.
Collapse
Affiliation(s)
- Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA -
| | - Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Tyler J Neltner
- Department of Health and Human Performance, University of Wisconsin - Platteville, Platteville, WI, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
8
|
Smith RW, Ortega DG, Arnett JE, Neltner TJ, Schmidt RJ, Johnson GO, Weir JP, Housh TJ. The effects of sustained, low- and high-intensity isometric tasks on performance fatigability and the perceived responses that contributed to task termination. Eur J Appl Physiol 2024; 124:1587-1599. [PMID: 38165446 DOI: 10.1007/s00421-023-05396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The present study examined the effects of sustained, isometric low- versus high-intensity tasks on time to task failure (TTF), performance fatigability (PF), ratings of perceived exertion (RPE), and the perceived causes of task termination from a post-test questionnaire (PTQ). METHODS Ten men (mean ± SD: age = 21.1 ± 2.3 years; height = 180.2 ± 5.7 cm; body mass = 79.5 ± 8.8 kg) performed maximal voluntary isometric contractions (MVICs) before and after fatiguing, isometric forearm flexion tasks anchored to the torque corresponding to RPE values of 2 (TRQ2FT = 23.8 ± 7.1 N·m) and 8 (TRQ8FT = 60.9 ± 11.4 N·m). In addition, the subjects completed a PTQ which surveyed whether the perceived sensations of fatigue or pain, and/or the psychological factors of loss of focus and motivation contributed to the decision to terminate the task. Repeated measures ANOVAs, Wilcoxon-Signed Rank tests, and Spearman's Rank-Order Correlations were used to analyze the data. RESULTS Across the fatiguing tasks, there were similar decreases in MVIC torque (95.2 ± 20.3 vs. 68.9 ± 15.6 N·m; p < 0.001) and RPE values (p = 0.122) at task failure for TRQ2FT (7.4 ± 2.7) and TRQ8FT (8.9 ± 1.0), but a longer (p = 0.005) TTF for the TRQ2FT (245.0 ± 177.0 s) than TRQ8FT (36.8 ± 11.1 s). CONCLUSIONS Despite reaching task failure, the subjects were able to perform MVICs that were 100-300% greater than the target torque values within seconds of terminating the tasks. Thus, we hypothesized that task failure was not caused by an inability to produce sufficient torque to sustain the tasks, but rather an unwillingness to continue the task.
Collapse
Affiliation(s)
- Robert W Smith
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA.
| | - Dolores G Ortega
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Tyler J Neltner
- Department of Health and Human Performance, University of Wisconsin-Platteville, Platteville, WI, 53818, USA
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
9
|
Matta PM, Glories D, Alamia A, Baurès R, Duclay J. Mind over muscle? Time manipulation improves physical performance by slowing down the neuromuscular fatigue accumulation. Psychophysiology 2024; 61:e14487. [PMID: 38015102 DOI: 10.1111/psyp.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (Tmax ), voluntary activation level (VAL), and potentiated twitch (TTW ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for Tmax , VAL, and TTW between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.
Collapse
Affiliation(s)
- Pierre-Marie Matta
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dorian Glories
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Andrea Alamia
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin Baurès
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Duclay
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| |
Collapse
|
10
|
Fekih N, Zghal F, Machfer A, Ben Hadj Hassen H, Zarizissi S, Bouzid MA. Peripheral fatigue regulation during knee extensor exercise in type 1 diabetes and consequences on the force-duration relationship. Eur J Appl Physiol 2024; 124:897-908. [PMID: 37733138 DOI: 10.1007/s00421-023-05318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE This study aimed to examine if peripheral fatigue is adjusted during knee extensor (KE) exercise in order not to surpass a critical threshold patient with type 1 diabetes (T1D) and the consequences of this mechanism on the force-duration relationship. METHODS Eleven T1D individuals randomly performed two different sessions in which they performed 60 maximum voluntary contractions (MVC; 3 s contraction, 2 s relaxation). One trial was performed in the non-fatigued state (CTRL) and another after fatiguing neuromuscular stimulation of the KE (FNMES). Peripheral and central fatigue were quantified by the difference between pre and post exercise in quadriceps voluntary activation (ΔVA) and potentiated twitch (ΔPtw). Critical torque (CT) was determined as the average force of the last 12 contractions, whereas W' was calculated as the area above the CT. RESULTS Although FNMES led to a significant decrease in potentiated twitch (Ptw) before performing the 60-MVCs protocol (p < 0.05), ΔVA (∼ -7.5%), ΔPtw (∼ -39%), and CT (∼816 N) post-MVCs were similar between the two conditions. The difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r2 = 0.60). In addition, W' was correlated with ΔPtw (r2 = 0.62) in the CTRL session. CONCLUSION Correlative results in the present study indicate that regulating peripheral fatigue mechanisms at a critical threshold limit W'. Additionally, peripheral fatigue during KE exercise is limited to an individual threshold in T1D patients.
Collapse
Affiliation(s)
- Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Firas Zghal
- Faculté des Sciences du Sport, LAMHESS, Université Côte d'Azur, Nice, France
| | - Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Hayfa Ben Hadj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Slim Zarizissi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia.
| |
Collapse
|
11
|
Thomas E, Scardina A, Nakamura M, Bellafiore M, Bianco A. Acute effects of different administration order of stretching exercises: effects on range of motion and cross-over effect. J Sports Med Phys Fitness 2024; 64:95-102. [PMID: 37902800 DOI: 10.23736/s0022-4707.23.15289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND The aim of this manuscript is to investigate if stretching exercise administration order may influence outcomes pertinent to range of movement (ROM). METHODS A total sample of 108 participants was randomized into five groups. Eight sets of unilateral static stretching (SS) of 30s duration each with a 30s rest were administered to the right leg. One group underwent SS of the knee extensors (KE), another to the knee flexors (KF), another first to the KE and then to the KF, another first to the KF and then to the KE while the last group was used as control (CG). Each group was assessed for ROM of both lower limbs for either the KE and KF motion (passive hip extention [PHE] and passive straight leg raise [PSLR], respectively). Measures were assessed before (T0), immediately after (T1), and 15 minutes after the intervention (T2). RESULTS No differences were observed for time (T0 vs. T1 vs. T2) for all measures in the CG for both limbs. Time-x-group interactions were observed only in the intervention limb (P<0.0007 and 0.004, ES 0.73 and 0.55, for KE and KF, respectively). Within the intervention limb, a significant increase in the PHE was observed from T0 to T1 only in the KE and KF/KE groups. For measures of the PSLR, a significant increase was observed from T0 to T1 only in the KF and KE/KF groups. No differences neither for time or group were observed in the control limb. CONCLUSIONS Our results highlight that exercise administration order has an effect on ROM outcomes. Measures of ROM significantly increase only for the last stretched muscle in each intervention group. No crossover effect was observed in the contralateral limb.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy -
| | - Antonino Scardina
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Saga, Japan
| | - Marianna Bellafiore
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Farra SD, Jacobs I. Arterial desaturation rate does not influence self-selected knee extension force but alters ventilatory response to progressive hypoxia: A pilot study. Physiol Rep 2024; 12:e15892. [PMID: 38172088 PMCID: PMC10764295 DOI: 10.14814/phy2.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The absolute magnitude and rate of arterial desaturation each independently impair whole-body aerobic exercise. This study examined potential mechanisms underlying the rate-dependent relationship. Utilizing an exercise protocol involving unilateral, intermittent, isometric knee extensions (UIIKE), we provided sufficient reperfusion time between contractions to reduce the accumulation of intramuscular metabolic by-products that typically stimulate muscle afferents. The objective was to create a milieu conducive to accentuating any influence of arterial desaturation rate on muscular fatigue. Eight participants completed four UIIKE sessions, performing one 3 s contraction every 30s at a perceived intensity of 50% MVC for 25 min. Participants voluntarily adjusted their force generation to maintain perceptual effort at 50% MVC without feedback. Reductions in inspired oxygen fraction (FI O2 ) decreased arterial saturation from >98% to 70% with varying rates in three trials: FAST (5.3 ± 1.3 min), MED (11.8 ± 2.7 min), and SLOW (19.9 ± 3.7 min). FI O2 remained at 0.21 during the control trial. Force generation and muscle activation remained at baseline levels throughout UIIKE trials, unaffected by the magnitude or rate of desaturation. Minute ventilation increased with hypoxia (p < 0.05), and faster desaturation rates magnified this response. These findings demonstrate that arterial desaturation magnitude and rate independently affect ventilation, but do not influence fatigue development during UIIKE.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
- Tanenbaum Institute for Science in Sport, University of TorontoTorontoOntarioCanada
| |
Collapse
|
13
|
Taheri Karami G, Hemmatinafar M, Koushkie Jahromi M, Nemati J, Niknam A. Repeated mouth rinsing of coffee improves the specific-endurance performance and jump performance of young male futsal players. J Int Soc Sports Nutr 2023; 20:2214108. [PMID: 37190757 DOI: 10.1080/15502783.2023.2214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Mouth-rinsing with ergogenic solutions such as carbohydrate and caffeinated drinks has been considered among athletes as a practical nutritional strategy. Therefore, this study aimed to determine the effect of repeated coffee mouth-rinsing (CMR) doses on specific performances of futsal players. METHOD Twenty-four male futsal players randomly participated in this randomized, double-blind, and crossover design study. During the intervention, participants were randomly placed in four different conditions including 1. low-dose CMR (LDC, n = 6, ~60 mg caffeine); 2. high-dose CMR (HDC, n = 6, ~125 mg caffeine); 3. decaffeinated CMR (PLA, n = 6, ~10 mg caffeine); and 4. no CMR (CON, n = 6). Vertical jump height was measured at baseline, baseline after CMR (baseline-CMR), immediately after the intermittent futsal endurance test (FIET) (IA-FIET), 5 min after the FIET (5"A-FIET) and 10 min after the FIET (10"A-FIET). Perceived fatigue was also measured by visual analogue scale (VAS) at baseline, IA-FIET, 5"A-FIET, and 10"A-FIET. CMR was also performed at baseline, during FIET (Repeated between levels), and 10'A-FIET. The collected data were analyzed (with SPSS software) by one- and two-way repeated measure ANOVA and Bonferroni post hoc test at P < 0.05 level. RESULTS The findings of the present study illustrated that the perceived fatigue in IA-FIET increased significantly compared to the baseline which was accompanied by a significant decrease in 5"A-FIET and 10"A-FIET compared to IA-FIET (P < 0.05), and no significant difference was observed between conditions in the baseline, IA-FIET, 5"A-FIET, and 10"A-FIET (P > 0.05). However, HDC and LDC rose significantly the distance covered in FIET compared to CON and PLA (P < 0.05). In addition, HDC increased the FIET performance more than LDC (P < 0.05). Although there was no difference between any of the conditions at baseline (P > 0.05), baseline-CMR increased significantly the vertical jump height (P < 0.05). At IA-FIET, vertical jump height decreased to baseline levels in CMR conditions but increased in 5"A-FIET, which remained constant until 10"A-FIET (P < 0.05). In addition, vertical jump height in HDC and LDC conditions was significantly higher than CON in IA-FIET, 5"A-FIET, and 10"A-FIET. CONCLUSION This study showed that repeated CMR with low and high doses is a useful strategy to improve specific futsal performance. However, higher dose CMR appears to have more profound effects on performance improvement than lower doses.
Collapse
Affiliation(s)
- Ghasem Taheri Karami
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Alireza Niknam
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
MacDougall KB, McClean ZJ, MacIntosh BR, Fletcher JR, Aboodarda SJ. Ischemic Preconditioning, But Not Priming Exercise, Improves Exercise Performance in Trained Rock Climbers. J Strength Cond Res 2023; 37:2149-2157. [PMID: 37607294 DOI: 10.1519/jsc.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ABSTRACT MacDougall, KB, McClean, ZJ, MacIntosh, BR, Fletcher, JR, and Aboodarda, SJ. Ischemic preconditioning, but not priming exercise, improves exercise performance in trained rock climbers. J Strength Cond Res 37(11): 2149-2157, 2023-To assess the effects of ischemic preconditioning (IPC) and priming exercise on exercise tolerance and performance fatigability in a rock climbing-specific task, 12 rock climbers completed familiarization and baseline tests, and constant-load hangboarding tests (including 7 seconds on and 3 seconds off at an intensity estimated to be sustained for approximately 5 minutes) under 3 conditions: (a) standardized warm-up (CON), (b) IPC, or (c) a priming warm-up (PRIME). Neuromuscular responses were assessed using the interpolated twitch technique, including maximum isometric voluntary contraction (MVC) of the finger flexors and median nerve stimulation, at baseline and after the performance trial. Muscle oxygenation was measured continuously using near-infrared spectroscopy (NIRS) across exercise. Time to task failure (T lim ) for IPC (316.4 ± 83.1 seconds) was significantly greater than CON (263.6 ± 69.2 seconds) ( p = 0.028), whereas there was no difference between CON and PRIME (258.9 ± 101.8 seconds). At task failure, there were no differences in MVC, single twitch force, or voluntary activation across conditions; however, recovery of MVC and single twitch force after the performance trial was delayed for IPC and PRIME compared with CON ( p < 0.05). Despite differences in T lim , there were no differences in any of the NIRS variables assessed. Overall, despite exercise tolerance being improved by an average of 20.0% after IPC, there were no differences in neuromuscular responses at task failure, which is in line with the notion of a critical threshold of peripheral fatigue. These results indicate that IPC may be a promising precompetition strategy for rock climbers, although further research is warranted to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Zachary J McClean
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
15
|
Billaut F, Demers MR, Hibbert A. Performance Kinetics During Repeated Sprints is Influenced by Knowledge of Task Endpoint and Associated Peripheral Fatigue. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2023; 16:987-998. [PMID: 37649870 PMCID: PMC10464754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The regulation of exercise intensity allows an athlete to perform an exercise in the fastest possible time while avoiding debilitating neuromuscular fatigue development. This phenomenon is less studied during intermittent activities. To investigate anticipatory and real-time regulation of motor output and neuromuscular fatigue during repeated-sprint exercise, twelve males randomly performed one (S1), two (S2), four (S4) and six (S6) sets of five 5-s cycling sprints. Mechanical work and electromyographic activity were assessed during sprints. Potentiated quadriceps twitch force (ΔQtw,pot) and central activation ratio (QCAR) were quantified from response to supra-maximal magnetic femoral nerve stimulation pre-vs post-exercise. Compared with S1, mechanical work developed in the first sprint and in the entire first set was reduced in S6 (-7.8% and -5.1%, respectively, P < 0.05). Work developed in the last set was similar in S4 and S6 (P = 0.82). Similar results were observed for EMG activity. The QCAR was also more reduced in S4 (-5.8%, P < 0.05) and S6 (-8.3%, P < 0.05) than in S1. However, ΔQtw,pot was not significantly different across all trials (-33.1% to -41.9%, P = 0.46). Perceived exhaustion increased across sprints to reach a maximal and similar level in S2, S4 and S6 (all 19.2, P < 0.01 vs S1). These results suggest that the regulation of performance, exerted at the beginning and continuously during repeated sprints, is based on the task endpoint, presumably to avoid excessive peripheral muscle and associated conscious overwhelming sensations.
Collapse
Affiliation(s)
- François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, CANADA
| | | | - Andrew Hibbert
- Institute for Health & Sport, Victoria University, Melbourne, VIC, AUSTRALIA
| |
Collapse
|
16
|
Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado DGDS. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20:97. [PMID: 37496055 PMCID: PMC10373277 DOI: 10.1186/s12984-023-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Despite reporting the positive effects of transcranial direct current stimulation (tDCS) on endurance performance, very few studies have investigated its efficacy in anaerobic short all-out activities. Moreover, there is still no consensus on which brain areas could provide the most favorable effects on different performance modalities. Accordingly, this study aimed to investigate the effects of anodal tDCS (a-tDCS) targeting the primary motor cortex (M1) or left dorsolateral prefrontal cortex (DLPFC) on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling. METHODS In this randomized, crossover, and double-blind study, 15 healthy physically active men underwent a-tDCS targeting M1 or the left DLPFC or sham tDCS in separate days before performing three bouts of all-out 30s cycling anaerobic test. a-tDCS was applied using 2 mA for 20 min. Peak power, mean power, fatigue index, and EMG of the quadriceps muscles were measured during each bout. Heart rate, perceived exertion, affective valence, and arousal were recorded two minutes after each bout. Color-word Stroop test and choice reaction time were measured at baseline and after the whole anaerobic test. RESULTS Neither tDCS montage significantly changed peak power, mean power, fatigue index, heart rate, affective valence, arousal, and choice reaction time (p> 0.05). a-tDCS over DLPFC significantly lowered RPE of the first bout (compared to sham; p=0.048, Δ=-12.5%) and third bout compared to the M1 (p=0.047, Δ=-12.38%) and sham (p=0.003, Δ=-10.5%), increased EMG of the Vastus Lateralis muscle during the second (p=0.016, Δ= +40.3%) and third bout (p=0.016, Δ= +42.1%) compared to sham, and improved the score of color-word Stroop test after the repeated all-out task (p=0.04, Δ= +147%). The qualitative affective response (valence and arousal) was also higher under the M1 and DLPFC compared to the sham. CONCLUSION We concluded that tDCS targeting M1 or DLPFC does not improve repeated anaerobic performance. However, the positive effect of DLPFC montage on RPE, EMG, qualitative affective responses, and cognitive function is promising and paves the path for future research using different tDCS montages to see any possible effects on anaerobic performance. TRIAL REGISTRATION This study was approved by the Ethics Committee of Razi University (IR.RAZI.REC.1400.023) and registered in the Iranian Registry of Clinical Trials (IRCT id: IRCT20210617051606N5; Registration Date: 04/02/2022).
Collapse
Affiliation(s)
- Hafez Teymoori
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Worya Tahmasebi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne France- Comte, Besancon, France
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of the Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
17
|
Cherouveim ED, Miliotis PG, Koskolou MD, Dipla K, Vrabas IS, Geladas ND. The Effect of Skeletal Muscle Oxygenation on Hemodynamics, Cerebral Oxygenation and Activation, and Exercise Performance during Incremental Exercise to Exhaustion in Male Cyclists. BIOLOGY 2023; 12:981. [PMID: 37508410 PMCID: PMC10376807 DOI: 10.3390/biology12070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
This study aimed to elucidate whether muscle blood flow restriction during maximal exercise is associated with alterations in hemodynamics, cerebral oxygenation, cerebral activation, and deterioration of exercise performance in male participants. Thirteen healthy males, cyclists (age 33 ± 2 yrs., body mass: 78.6 ± 2.5 kg, and body mass index: 25.57 ± 0.91 kg·m-1), performed a maximal incremental exercise test on a bicycle ergometer in two experimental conditions: (a) with muscle blood flow restriction through the application of thigh cuffs inflated at 120 mmHg (with cuffs, WC) and (b) without restriction (no cuffs, NC). Exercise performance significantly deteriorated with muscle blood flow restriction, as evidenced by the reductions in V˙O2max (-17 ± 2%, p < 0.001), peak power output (-28 ± 2%, p < 0.001), and time to exhaustion (-28 ± 2%, p < 0.001). Muscle oxygenated hemoglobin (Δ[O2Hb]) during exercise declined more in the NC condition (p < 0.01); however, at exhaustion, the magnitude of muscle oxygenation and muscle deoxygenation were similar between conditions (p > 0.05). At maximal effort, lower cerebral deoxygenated hemoglobin (Δ[HHb]) and cerebral total hemoglobin (Δ[THb]) were observed in WC (p < 0.001), accompanied by a lower cardiac output, heart rate, and stroke volume vs. the NC condition (p < 0.01), whereas systolic blood pressure, rating of perceived exertion, and cerebral activation (as assessed by electroencephalography (EEG) activity) were similar (p > 0.05) between conditions at task failure, despite marked differences in exercise duration, maximal aerobic power output, and V˙O2max. In conclusion, in trained cyclists, muscle blood flow restriction during an incremental cycling exercise test significantly limited exercise performance. Exercise intolerance with muscle blood flow restriction was mainly associated with attenuated cardiac responses, despite cerebral activation reaching similar maximal levels as without muscle blood flow restriction.
Collapse
Affiliation(s)
- Evgenia D Cherouveim
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Panagiotis G Miliotis
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Maria D Koskolou
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece
| | - Ioannis S Vrabas
- Laboratory of Exercise Physiology and Biochemistry, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece
| | - Nickos D Geladas
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| |
Collapse
|
18
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. The Effects of Anchor Schemes on Performance Fatigability, Neuromuscular Responses and the Perceived Sensations That Contributed to Task Termination. J Funct Morphol Kinesiol 2023; 8:jfmk8020049. [PMID: 37218845 DOI: 10.3390/jfmk8020049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The present study examined the effect of anchor schemes on the time to task failure (TTF), performance fatigability, neuromuscular responses, and the perceived sensations that contributed to task termination following the sustained, isometric forearm flexion tasks. Eight women completed sustained, isometric forearm flexion tasks anchored to RPE = 8 (RPEFT) and the torque (TRQFT) that corresponded to RPE = 8. The subjects performed pre-test and post-test maximal isometric contractions to quantify performance fatigability and changes in electromyographic amplitude (EMG AMP) and neuromuscular efficiency (NME). In addition, the subjects completed a post-test questionnaire (PTQ) to quantify the contributions of perceived sensations to task termination. Repeated measure ANOVAs were used to assess the mean differences for TTF, performance fatigability, and neuromuscular responses. Wilcoxon Signed Rank Tests were used to assess the differences between anchor schemes for the average values from the PTQ item scores. For TTF, the RPEFT was longer than the TRQFT (174.9 ± 85.6 vs. 65.6 ± 68.0 s; p = 0.006). Collapsed across the anchor scheme, there were decreases in torque (23.7 ± 5.5 Nm vs. 19.6 ± 4.9 Nm; p < 0.001) and NME (1.00 ± 0.00 vs. 0.76 ± 0.15; p = 0.003). There were no significant (p > 0.577) changes for EMG AMP. For the PTQ, there were no differences (p > 0.05) between anchor schemes. There were, however, inter-individual differences in the response scores. The current findings indicated that performance fatigability was likely due to peripheral fatigue (based on NME), not central fatigue (based on EMG AMP). Furthermore, the use of a PTQ may serve as a simple tool to assess the contributions of perceived sensations to task termination.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| |
Collapse
|
19
|
Etemadi M, Amiri E, Tadibi V, Grospretre S, Valipour Dehnou V, Machado DGDS. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci 2023; 24:25. [PMID: 37020275 PMCID: PMC10077713 DOI: 10.1186/s12868-023-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been shown to have positive effects on exercise performance and cognitive function in the normal ambient condition. Hypoxia is deemed a stressful situation with detrimental effects on physiological, psychological, cognitive, and perceptual responses of the body. Nevertheless, no study has evaluated the efficacy of tDCS for counteracting the negative effects of hypoxic conditions on exercise performance and cognition so far. Hence, in the present study, we investigated the effects of anodal tDCS on endurance performance, cognitive function, and perceptual responses in hypoxia. PARTICIPANTS AND METHODS Fourteen endurance-trained males participated in five experimental sessions. After familiarization and measuring peak power output in hypoxia, in the first and second sessions, through the 3rd to 5th sessions, participants performed a cycling endurance task until exhaustion after 30 min hypoxic exposure at resting position followed by 20 min of anodal stimulation of the motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), or sham-tDCS. Color-word Stroop test and choice reaction time were measured at baseline and after exhaustion. Time to exhaustion, heart rate, saturated O2, EMG amplitude of the vastus lateralis, vastus medialis, and rectus femoris muscles, RPE, affective response, and felt arousal were also measured during the task under hypoxia. RESULTS The results showed a longer time to exhaustion (+ 30.96%, p=0.036), lower RPE (- 10.23%, p = 0.045) and higher EMG amplitude of the vastus medialis muscle (+ 37.24%, p=0.003), affective response (+ 260%, p=0.035) and felt arousal (+ 28.9%, p=0.029) in the DLPFC tDCS compared to sham. The choice reaction time was shorter in DLPFC tDCS compared to sham (- 17.55%, p=0.029), and no differences were seen in the color-word Stroop test among the conditions under hypoxia. M1 tDCS resulted in no significant effect for any outcome measure. CONCLUSIONS We concluded that, as a novel finding, anodal stimulation of the left DLPFC might provide an ergogenic aid for endurance performance and cognitive function under the hypoxic condition probably via increasing neural drive to the working muscles, lowering RPE, and increasing perceptual responses.
Collapse
Affiliation(s)
- Matin Etemadi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
- Room. 73, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-E Bostan, Kermanshah, 674441497, Iran.
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory-Culture, Sports, Health and Society, University Bourgogne France-Comte, Besancon, France
| | - Vahid Valipour Dehnou
- Department of Sports Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| |
Collapse
|
20
|
Hurd KA, Surges MP, Farrell JW. Use of Exercise Training to Enhance the Power-Duration Curve: A Systematic Review. J Strength Cond Res 2023; 37:733-744. [PMID: 35852374 DOI: 10.1519/jsc.0000000000004315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Hurd, KA, Surges, MP, and Farrell, JW. Use of exercise training to enhance the power-duration curve: a systematic review. J Strength Cond Res 37(3): 733-744, 2023-The power/velocity-duration curve consists of critical power (CP), the highest work rate at which a metabolic steady state can obtained, and W' (e.g., W prime), the finite amount of work that can be performed above CP. Significant associations between CP and performance during endurance sports have been reported resulting in CP becoming a primary outcome for enhancement following exercise training interventions. This review evaluated and summarized the effects of different exercise training methodologies for enhancing CP and respective analogs. A systematic review was conducted with the assistance of a university librarian and in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Ten studies met the criteria for inclusion and were reviewed. Four, 2, 2, 1, and 1 articles included swimming, cycling, resistance training, rowing, and running, respectively. Improvements in CP, and respective analogs, were reported in 3 swimming, 2 cycling, and 1 rowing intervention. In addition, only 2 cycling and 1 swimming intervention used CP, and respective analogs, as an index of intensity for prescribing exercise training, with one cycling and one swimming intervention reporting significant improvements in CP. Multiple exercise training modalities can be used to enhance the power/velocity-duration curve. Significant improvements in CP were often reported with no observed improvements in W' or with slight decreases. Training may need to be periodized in a manner that targets enhancements in either CP or W' but not simultaneously.
Collapse
Affiliation(s)
- Kweisi A Hurd
- Clinical Biomechanics and Exercise Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas
| | | | | |
Collapse
|
21
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. Utilizing the RPE-Clamp model to examine interactions among factors associated with perceived fatigability and performance fatigability in women and men. Eur J Appl Physiol 2023; 123:1397-1409. [PMID: 36856798 DOI: 10.1007/s00421-023-05163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE The purpose of the present study was to examine the interactions between perceived fatigability and performance fatigability in women and men by utilizing the RPE-Clamp model to assess the fatigue-induced effects of a sustained, isometric forearm flexion task anchored to RPE = 8 on time to task failure (TTF), torque, and neuromuscular responses. METHODS Twenty adults (10 men and 10 women) performed two, 3 s forearm flexion maximal voluntary isometric contractions (MVICs) followed by a sustained, isometric forearm flexion task anchored to RPE = 8 using the OMNI-RES (0-10) scale at an elbow joint angle of 100°. Electromyographic amplitude (EMG AMP) was recorded from the biceps brachii. Torque and EMG AMP values resulting from the sustained task were normalized to the pretest MVIC. Neuromuscular efficiency was defined as NME = normalized torque/normalized EMG AMP. Mixed factorial ANOVAs and Bonferroni corrected dependent t tests and independent t tests were used to examine differences across time and between sex for torque and neuromuscular parameters. RESULTS There were no differences between the women and men for the fatigue-induced decreases in torque, EMG AMP, or NME, and the mean decreases (collapsed across sex) were 50.3 ± 8.6 to 2.8 ± 2.9% MVIC, 54.7 ± 12.0 to 19.6 ± 5.3% MVIC, and 0.94 ± 0.19 to 0.34 ± 0.16, respectively. Furthermore, there were no differences between the women and men for TTF (251.8 ± 74.1 vs. 258.7 ± 77.9 s). CONCLUSION The results suggested that the voluntary reductions in torque to maintain RPE and the decreases in NME were likely due to group III/IV afferent feedback from peripheral fatigue that resulted in excitation-contraction coupling failure.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
- , 840 N 14th Street, Lincoln, NE, 68508, USA.
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
22
|
Bergevin M, Steele J, Payen de la Garanderie M, Feral-Basin C, Marcora SM, Rainville P, Caron JG, Pageaux B. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med 2023; 53:415-435. [PMID: 36318384 DOI: 10.1007/s40279-022-01762-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The perception of effort provides information on task difficulty and influences physical exercise regulation and human behavior. This perception differs from other-exercise related perceptions such as pain. There is no consensus on the role of group III/IV muscle afferents as a signal processed by the brain to generate the perception of effort. OBJECTIVE The aim of this meta-analysis was to investigate the effect of pharmacologically blocking muscle afferents on the perception of effort. METHODS Six databases were searched to identify studies measuring the ratings of perceived effort during physical exercise, with and without pharmacological blockade of muscle afferents. Articles were coded based on the operational measurement used to distinguish studies in which perception of effort was assessed specifically (effort dissociated) or as a composite experience including other exercise-related perceptions (effort not dissociated). Articles that did not provide enough information for coding were assigned to the unclear group. RESULTS The effort dissociated group (n = 6) demonstrated a slight increase in ratings of perceived effort with reduced muscle afferent feedback (standard mean change raw, 0.39; 95% confidence interval 0.13-0.64). The group effort not dissociated (n = 2) did not reveal conclusive results (standard mean change raw, - 0.29; 95% confidence interval - 2.39 to 1.8). The group unclear (n = 8) revealed a slight ratings of perceived effort decrease with reduced muscle afferent feedback (standard mean change raw, - 0.27; 95% confidence interval - 0.50 to - 0.04). CONCLUSIONS The heterogeneity in results between groups reveals that the inclusion of perceptions other than effort in its rating influences the ratings of perceived effort reported by the participants. The absence of decreased ratings of perceived effort in the effort dissociated group suggests that muscle afferent feedback is not a sensory signal for the perception of effort.
Collapse
Affiliation(s)
- Maxime Bergevin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - James Steele
- School of Sport, Health and Social Sciences, Southampton, UK
| | - Marie Payen de la Garanderie
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Camille Feral-Basin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Pierre Rainville
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada.,Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jeffrey G Caron
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Montreal, QC, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada. .,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| |
Collapse
|
23
|
Stavres J, Luck JC, Hamaoka T, Blaha C, Cauffman A, Dalton PC, Herr MD, Ruiz-Velasco V, Carr ZJ, Janicki P, Cui J. A 10-mg dose of amiloride increases time to failure during blood-flow-restricted plantar flexion in healthy adults without influencing blood pressure. Am J Physiol Regul Integr Comp Physiol 2022; 323:R875-R888. [PMID: 36222880 PMCID: PMC9678418 DOI: 10.1152/ajpregu.00190.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Amiloride has been shown to inhibit acid-sensing ion channels (ASICs), which contribute to ischemia-related muscle pain during exercise. The purpose of this study was to determine if a single oral dose of amiloride would improve exercise tolerance and attenuate blood pressure during blood-flow-restricted (BFR) exercise in healthy adults. Ten subjects (4 females) performed isometric plantar flexion exercise with BFR (30% maximal voluntary contraction) after ingesting either a 10-mg dose of amiloride or a volume-matched placebo (random order). Time to failure, time-tension index (TTI), and perceived pain (visual analog scale) were compared between the amiloride and placebo trials. Mean blood pressure, heart rate, blood pressure index (BPI), and BPI normalized to TTI (BPInorm) were also compared between trials using both time-matched (TM50 and TM100) and effort-matched (T50 and T100) comparisons. Time to failure (+69.4 ± 63.2 s, P < 0.01) and TTI (+1,441 ± 633 kg·s, P = 0.02) were both significantly increased in the amiloride trial compared with placebo, despite no increase in pain (+0.4 ± 1.7 cm, P = 0.46). In contrast, amiloride had no significant influence on the mean blood pressure or heart rate responses, nor were there any significant differences in BPI or BPInorm between trials when matched for time (all P ≥ 0.13). When matched for effort, BPI was significantly greater in the amiloride trial (+5,300 ± 1,798 mmHg·s, P = 0.01), likely owing to an increase in total exercise duration. In conclusion, a 10-mg oral dose of amiloride appears to significantly improve the tolerance to BFR exercise in healthy adults without influencing blood pressure responses.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Paul C Dalton
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Zyad J Carr
- Department of Anesthesiology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
24
|
Laginestra FG, Cavicchia A, Vanegas-Lopez JE, Barbi C, Martignon C, Giuriato G, Pedrinolla A, Amann M, Hureau TJ, Venturelli M. Prior Involvement of Central Motor Drive Does Not Impact Performance and Neuromuscular Fatigue in a Subsequent Endurance Task. Med Sci Sports Exerc 2022; 54:1751-1760. [PMID: 35612382 PMCID: PMC9481724 DOI: 10.1249/mss.0000000000002965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study evaluated whether central motor drive during fatiguing exercise plays a role in determining performance and the development of neuromuscular fatigue during a subsequent endurance task. METHODS On separate days, 10 males completed three constant-load (80% peak power output), single-leg knee-extension trials to task failure in a randomized fashion. One trial was performed without preexisting quadriceps fatigue (CON), and two trials were performed with preexisting quadriceps fatigue induced either by voluntary (VOL; involving central motor drive) or electrically evoked (EVO; without central motor drive) quadriceps contractions (~20% maximal voluntary contraction (MVC)). Neuromuscular fatigue was assessed via pre-post changes in MVC, voluntary activation (VA), and quadriceps potentiated twitch force ( Qtw,pot ). Cardiorespiratory responses and rating of perceived exertion were also collected throughout the sessions. The two prefatiguing protocols were matched for peripheral fatigue and stopped when Qtw,pot declined by ~35%. RESULTS Time to exhaustion was shorter in EVO (4.3 ± 1.3 min) and VOL (4.7 ± 1.5 min) compared with CON (10.8 ± 3.6 min, P < 0.01) with no difference between EVO and VOL. ΔMVC (EVO: -47% ± 8%, VOL: -45% ± 8%, CON: -53% ± 8%), Δ Qtw,pot (EVO: -65% ± 7%, VOL: -59% ± 14%, CON: -64% ± 9%), and ΔVA (EVO: -9% ± 7%, VOL: -8% ± 5%, CON: -7% ± 5%) at the end of the dynamic task were not different between conditions (all P > 0.05). Compared with EVO (10.6 ± 1.7) and CON (6.8 ± 0.8), rating of perceived exertion was higher ( P = 0.05) at the beginning of VOL (12.2 ± 1.0). CONCLUSIONS These results suggest that central motor drive involvement during prior exercise plays a negligible role on the subsequent endurance performance. Therefore, our findings indicate that peripheral fatigue-mediated impairments are the primary determinants of high-intensity single-leg endurance performance.
Collapse
Affiliation(s)
| | - Alessandro Cavicchia
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Jennifer E. Vanegas-Lopez
- Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, University of Strasbourg, FRANCE
| | - Chiara Barbi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Camilla Martignon
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Gaia Giuriato
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Anna Pedrinolla
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Markus Amann
- Department of Anaesthesiology, University of Utah, Salt Lake City, Utah
| | - Thomas J. Hureau
- Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, University of Strasbourg, FRANCE
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| |
Collapse
|
25
|
Lebesque L, Scaglioni G, Martin A. The impact of submaximal fatiguing exercises on the ability to generate and sustain the maximal voluntary contraction. Front Physiol 2022; 13:970917. [DOI: 10.3389/fphys.2022.970917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular fatigability is a failure to produce or maintain a required torque, and commonly quantified with the decrease of maximal torque production during a few seconds-long maximal voluntary contraction (MVC). The literature shows that the MVC reduction after exercises with different torque-time integral (TTI), is often similar. However, it was shown that after a fatiguing exercise, the decline in the capacity to sustain the maximal voluntary contraction for 1 min (MVC1-MIN) differs from the decrease in the capacity to perform a brief-MVC, suggesting that this latter can only partially assess neuromuscular fatigability. This study aims to highlight the relevance of using a sustained MVC to further explore the neuromuscular alterations induced by fatiguing exercises with different TTI. We used two contraction intensities (i.e., 20% and 40% MVC) to modulate the TTI, and two exercise modalities [i.e., voluntary (VOL) and electrical induced (NMES)], since the letter are known to be more fatiguing for a given TTI. Thirteen subjects performed a plantar-flexors MVC1-MIN before and after the fatiguing exercises. A similar MVC loss was obtained for the two exercise intensities despite a greater TTI at 40% MVC, regardless of the contraction modality. On the other hand, the torque loss during MVC1-MIN was significantly greater after the 40% compared to 20% MVC exercise. These findings are crucial because they demonstrate that maximal torque production and sustainability are two complementary features of neuromuscular fatigability. Hence, MVC1-MIN assessing simultaneously both capacities is essential to provide a more detailed description of neuromuscular fatigability.
Collapse
|
26
|
Deshayes TA, Pancrate T, Goulet ED. Impact of dehydration on perceived exertion during endurance exercise: A systematic review with meta-analysis. J Exerc Sci Fit 2022; 20:224-235. [PMID: 35601980 PMCID: PMC9093000 DOI: 10.1016/j.jesf.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Understanding the impact of stressors on the rating of perceived exertion (RPE) is relevant from a performance and exercise adherence/participation standpoint. Athletes and recreationally active individuals dehydrate during exercise. No attempt has been made to systematically determine the impact of exercise-induced dehydration (EID) on RPE. Objective The present meta-analysis aimed to determine the effect of EID on RPE during endurance exercise and examine the moderating effect of potential confounders. Data analyses Performed on raw RPE values using random-effects models weighted mean effect summaries and meta-regressions with robust standard errors, and with a practical meaningful effect set at 1 point difference between euhydration (EUH) and EID. Only controlled crossover studies measuring RPE with a Borg scale in healthy adults performing ≥30 min of continuous endurance exercise while dehydrating or drinking to maintain EUH were included. Results Sixteen studies were included, representing 147 individuals. Mean body mass loss with EUH was 0.5 ± 0.4%, compared to 2.3 ± 0.5% with EID (range 1.7-3.1%). Within an EID of 0.5-3% body mass, a maximum difference in RPE of 0.81 points (95% CI: 0.36-1.27) was observed between conditions. A meta-regression revealed that RPE increases by 0.21 points for each 1% increase in EID (95% CI: 0.12-0.31). Humidity, ambient temperature and aerobic capacity did not alter the relationship between EID and RPE. Conclusion Therefore, the effect of EID on RPE is unlikely to be practically meaningful until a body mass loss of at least 3%.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
| | - Eric D.B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| |
Collapse
|
27
|
Lehtonen E, Gagnon D, Eklund D, Kaseva K, Peltonen JE. Hierarchical framework to improve individualised exercise prescription in adults: a critical review. BMJ Open Sport Exerc Med 2022; 8:e001339. [PMID: 35722045 PMCID: PMC9185660 DOI: 10.1136/bmjsem-2022-001339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/04/2022] Open
Abstract
Physical activity (PA) guidelines for the general population are designed to mitigate the rise of chronic and debilitating diseases brought by inactivity and sedentariness. Although essential, they are insufficient as rates of cardiovascular, pulmonary, renal, metabolic and other devastating and life-long diseases remain on the rise. This systemic failure supports the need for an improved exercise prescription approach that targets the individual. Significant interindividual variability of cardiorespiratory fitness (CRF) responses to exercise are partly explained by biological and methodological factors, and the modulation of exercise volume and intensity seem to be key in improving prescription guidelines. The use of physiological thresholds, such as lactate, ventilation, as well as critical power, have demonstrated excellent results to improve CRF in those struggling to respond to the current homogenous prescription of exercise. However, assessing physiological thresholds requires laboratory resources and expertise and is incompatible for a general population approach. A case must be made that balances the effectiveness of an exercise programme to improve CRF and accessibility of resources. A population-wide approach of exercise prescription guidelines should include free and accessible self-assessed threshold tools, such as rate of perceived exertion, where the homeostatic perturbation induced by exercise reflects physiological thresholds. The present critical review outlines factors for individuals exercise prescription and proposes a new theoretical hierarchal framework to help shape PA guidelines based on accessibility and effectiveness as part of a personalised exercise prescription that targets the individual.
Collapse
Affiliation(s)
- Elias Lehtonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Dominique Gagnon
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland.,School of Kinesiology, Laurentian University, Sudbury, Ontario, Canada.,Center for Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Daniela Eklund
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Kaisa Kaseva
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Juha Evert Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| |
Collapse
|
28
|
Hadjizadeh Anvar S, Kordi MR, Alizadeh S, Ramsay E, Shabkhiz F, Behm DG. Lack of Evidence for Crossover Fatigue with Plantar Flexor Muscles. J Sports Sci Med 2022; 21:214-223. [PMID: 35719232 PMCID: PMC9157513 DOI: 10.52082/jssm.2022.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
The occurrence and mechanisms underlying non-local or crossover muscle fatigue is an ongoing issue. This study aimed to investigate crossover fatigue of the plantar flexor muscles. Sixteen recreationally active males (n = 6) and females (n = 10) visited the laboratory for four sessions and performed a single 5-s pre-test maximal voluntary isometric contraction (MVIC) with each plantar flexors muscle. Thereafter, the fatigue intervention involved two 100-s MVICs (60-s recovery) with their dominant plantar flexors or rested for 260-s (control). Subsequently, in two separate sessions, Hoffman reflexes (H-reflex) were evoked in the non-dominant, non-exercised, leg before and following the dominant leg fatigue or control intervention (Fatigue-Reflex and Control-Reflex conditions). MVIC forces and volitional (V)-waves were monitored in the non-dominant leg in the other two sessions (Fatigue-MVIC and Control-MVIC) before and after the intervention (fatigue or control) as well as during 12 repeated MVICs and immediately thereafter. Despite the force reduction in the dominant leg (42.4%, p = 0.002), no crossover force deficit with single (F(1,9) = 0.02, p = 0.88, pƞ2 = 0.003) or repeated (F(1,9) = 0.006, p = 0.93, pƞ2 = 0.001) MVIC testing were observed. The H-reflex did not change after the fatigue (F(1,7) = 0.51; p = 0.49; pƞ2 = 0.06) or repeated MVICs (F(1,8) = 0.27; p = 0.61; pƞ2 = 0.03). There were also no crossover effects of fatigue on the V-wave with single (F(1,8) = 3.71, p = 0.09, pƞ2 = 0.31) or repeated MVICs (F(1,6) = 1.45, p = 0.27, pƞ2 = 0.19). Crossover fatigue was not evident with the plantar flexors nor any significant changes in H-reflex and V-waves in the soleus muscle. This finding suggests that crossover fatigue may not necessarily occur in slow-twitch predominant muscle groups.
Collapse
Affiliation(s)
- Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - Mohammad Reza Kordi
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| | - Emma Ramsay
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| | - Fatemeh Shabkhiz
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| |
Collapse
|
29
|
Voskuil CC, Dinyer-McNeely TK, Succi PJ, Campbell MS, Abel MG, Bergstrom HC. Unilateral Handgrip Holds to Failure Result in Sex-Dependent Contralateral Facilitation. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:782-796. [PMID: 35992504 PMCID: PMC9362884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study examined changes in maximal voluntary isometric contraction (MVIC) force following dominant (Dm) and nondominant (NDm) unilateral, handgrip isometric holds to failure (HTF) for the exercised ipsilateral (IPS) and non-exercised contralateral (CON) limbs and determined if there are sex- and hand- (Dm vs NDm) dependent responses in the HTF time, performance fatigability (PF) for the exercised IPS limb, and changes in MVIC force for the CON limb after unilateral fatigue. Ten men and 10 women (Age = 22.2 years) completed an isometric HTF at 50% MVIC for the Dm and NDm hand on separate days. Prior to, and immediately after the HTF, an MVIC was performed on the IPS and CON limbs, in a randomized order. The Dm (130.3 ± 36.8 s) HTF (collapsed across sex) was significantly longer (p = 0.002) than the NDm (112.1 ± 34.3 s). The men (collapsed across hand) demonstrated IPS (%Δ = 22.9 ± 10.8%) PF and CON facilitation (%Δ = -6.1 ± 6.9%) following the HTF, while the women demonstrated differences in PF between the Dm and NDm hands for the IPS (%Δ Dm = 28.0 ± 9.4%; NDm = 32.3% ± 10.1%; p = 0.027), but not the CON limb (%Δ Dm = -1.6 ± 5.7%; NDm = 1.7 ± 5.9%). The cross-over facilitation of the CON limb for men, but not women, following a unilateral, isometric handgrip HTF may be related to post-activation potentiation.
Collapse
Affiliation(s)
- Caleb C Voskuil
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Taylor K Dinyer-McNeely
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Mark G Abel
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
Keller AV, Torres-Espin A, Peterson TA, Booker J, O’Neill C, Lotz JC, Bailey JF, Ferguson AR, Matthew RP. Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain. Front Bioeng Biotechnol 2022; 10:868684. [PMID: 35497350 PMCID: PMC9047543 DOI: 10.3389/fbioe.2022.868684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic low back pain (LBP) is a leading cause of disability and opioid prescriptions worldwide, representing a significant medical and socioeconomic problem. Clinical heterogeneity of LBP limits accurate diagnosis and precise treatment planning, culminating in poor patient outcomes. A current priority of LBP research is the development of objective, multidimensional assessment tools that subgroup LBP patients based on neurobiological pain mechanisms, to facilitate matching patients with the optimal therapies. Using unsupervised machine learning on full body biomechanics, including kinematics, dynamics, and muscle forces, captured with a marker-less depth camera, this study identified a forward-leaning sit-to-stand strategy (STS) as a discriminating movement biomarker for LBP subjects. A forward-leaning STS strategy, as opposed to a vertical rise strategy seen in the control participants, is less efficient and results in increased spinal loads. Inefficient STS with the subsequent higher spinal loading may be a biomarker of poor motor control in LBP patients as well as a potential source of the ongoing symptomology.
Collapse
Affiliation(s)
- Anastasia V. Keller
- Brain and Spinal Injury Center (BASIC), Weill Institute for Neuroscience, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Abel Torres-Espin
- Brain and Spinal Injury Center (BASIC), Weill Institute for Neuroscience, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas A. Peterson
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacqueline Booker
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Conor O’Neill
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jeannie F Bailey
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Weill Institute for Neuroscience, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Robert P. Matthew
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Robert P. Matthew,
| |
Collapse
|
31
|
Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073909. [PMID: 35409591 PMCID: PMC8997532 DOI: 10.3390/ijerph19073909] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives.
Collapse
|
32
|
Norbury R, Smith SA, Burnley M, Judge M, Mauger AR. The effect of hypertonic saline evoked muscle pain on neurophysiological changes and exercise performance in the contralateral limb. Exp Brain Res 2022; 240:1423-1434. [PMID: 35288782 PMCID: PMC9038847 DOI: 10.1007/s00221-022-06342-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/07/2022]
Abstract
Non-local muscle pain may impair endurance performance through neurophysiological mechanisms, but these are relatively unknown. This study examined the effects of muscle pain on neuromuscular and neurophysiological responses in the contralateral limb. On separate visits, nine participants completed an isometric time to task failure (TTF) using the right knee extensors after intramuscular injection of isotonic saline (CTRL) or hypertonic saline (HYP) into the left vastus lateralis. Measures of neuromuscular fatigue were taken before, during and after the TTF using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation. Mean pain intensity was greater in the left leg in HYP (3.3 ± 1.9) compared to CTRL (0.4 ± 0.7; P < 0.001) which was combined with a reduced TTF by 9.8% in HYP (4.54 ± 0.56 min) compared to CTRL (5.07 ± 0.77 min; P = 0.005). Maximum voluntary force was not different between conditions (all P > 0.05). Voluntary activation was lower in HYP compared to CTRL (P = 0.022). No difference was identified between conditions for doublet amplitude (P > 0.05). Furthermore, no difference in MEP·Mmax−1 or the TMS silent period between conditions was observed (all P > 0.05). Non-local pain impairs endurance performance of the contralateral limb. This impairment in performance is likely due to the faster attainment of the sensory tolerance limit from a greater amount of sensory feedback originating from the non-exercising, but painful, left leg.
Collapse
Affiliation(s)
- Ryan Norbury
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chipperfield Building Room 114, Canterbury Campus, Kent, CT2 7PE, UK
| | - Samuel A Smith
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chipperfield Building Room 114, Canterbury Campus, Kent, CT2 7PE, UK
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chipperfield Building Room 114, Canterbury Campus, Kent, CT2 7PE, UK
| | - Megan Judge
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chipperfield Building Room 114, Canterbury Campus, Kent, CT2 7PE, UK
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chipperfield Building Room 114, Canterbury Campus, Kent, CT2 7PE, UK.
| |
Collapse
|
33
|
de Almeida Azevedo R, Jazayeri D, Yeung ST, Khoshreza R, Millet GY, Murias JM, Aboodarda SJ. The effects of pain induced by blood flow occlusion in one leg on exercise tolerance and corticospinal excitability and inhibition of the contralateral leg in males. Appl Physiol Nutr Metab 2022; 47:632-648. [PMID: 35201916 DOI: 10.1139/apnm-2021-0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiencing pain in one leg can alter exercise tolerance and neuromuscular fatigue (NMF) responses in the contralateral leg; however, the corticospinal modulations to non-local experimental pain induced by blood flow occlusion remain unknown. In three randomized visits, thirteen male participants performed 25% of isometric maximal voluntary contraction (25%IMVC) to task failure with one leg preceded by (i) 6-min rest (CON), (ii) cycling at 80% of peak power output until task failure with the contralateral leg (CYCL) or (iii) CYCL followed by blood flow occlusion (OCCL) during 25%IMVC. NMF assessments (IMVC, voluntary activation [VA] and potentiated twitch [Qtw]) were performed at baseline and task failure. During the 25%IMVC, transcranial magnetic stimulations were performed to obtain motor evoked potential (MEP), silent period (SP), and short intracortical inhibition (SICI). 25%IMVC was shortest in OCCL (105±50s) and shorter in CYCL (154±68s) than CON (219±105s) (P<0.05). IMVC declined less after OCCL (-24±19%) and CYCL (-27±18%) then CON (-35±11%) (P<0.05). Qtw declined less in OCCL (-40±25%) compared to CYCL (-50±22%) and CON (-50±21%) (P<0.05). VA was similar amongst conditions. MEP and SP increased and SICI decreased throughout the task while SP was longer for OCCL compared to CYC condition (P<0.05). The results suggest that pain in one leg diminishes contralateral limb exercise tolerance and NMF development and modulate corticospinal inhibition in males. Novelty: Pain in one leg diminished MVC and twitch force decline in the contralateral limb Experimental pain induced by blood flow occlusion may modulation corticospinal inhibition of the neural circuitries innervating the contralateral exercise limb.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan M Murias
- University of Calgary, Faculty of Kinesiology, KNB 434, 2500 University Drive NW, Calgary, Alberta, Canada, T2N1N4;
| | - Saied Jalal Aboodarda
- University of Calgary , Faculty of Kinesiology, 2500 University Drive NW, Calgary, Canada, T2N 1N4;
| |
Collapse
|
34
|
Giuriato G, Venturelli M, Matias A, Soares EMKVK, Gaetgens J, Frederick KA, Ives SJ. Capsaicin and Its Effect on Exercise Performance, Fatigue and Inflammation after Exercise. Nutrients 2022; 14:232. [PMID: 35057413 PMCID: PMC8778706 DOI: 10.3390/nu14020232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 01/27/2023] Open
Abstract
Capsaicin (CAP) activates the transient receptor potential vanilloid 1 (TRPV1) channel on sensory neurons, improving ATP production, vascular function, fatigue resistance, and thus exercise performance. However, the underlying mechanisms of CAP-induced ergogenic effects and fatigue-resistance, remain elusive. To evaluate the potential anti-fatigue effects of CAP, 10 young healthy males performed constant-load cycling exercise time to exhaustion (TTE) trials (85% maximal work rate) after ingestion of placebo (PL; fiber) or CAP capsules in a blinded, counterbalanced, crossover design, while cardiorespiratory responses were monitored. Fatigue was assessed with the interpolated twitch technique, pre-post exercise, during isometric maximal voluntary contractions (MVC). No significant differences (p > 0.05) were detected in cardiorespiratory responses and self-reported fatigue (RPE scale) during the time trial or in TTE (375 ± 26 and 327 ± 36 s, respectively). CAP attenuated the reduction in potentiated twitch (PL: -52 ± 6 vs. CAP: -42 ± 11%, p = 0.037), and tended to attenuate the decline in maximal relaxation rate (PL: -47 ± 33 vs. CAP: -29 ± 68%, p = 0.057), but not maximal rate of force development, MVC, or voluntary muscle activation. Thus, CAP might attenuate neuromuscular fatigue through alterations in afferent signaling or neuromuscular relaxation kinetics, perhaps mediated via the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps, thereby increasing the rate of Ca2+ reuptake and relaxation.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.G.); (M.V.)
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA; (A.M.); (E.M.K.V.K.S.)
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.G.); (M.V.)
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexs Matias
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA; (A.M.); (E.M.K.V.K.S.)
| | - Edgard M. K. V. K. Soares
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA; (A.M.); (E.M.K.V.K.S.)
- Study Group on Exercise and Physical Activity Physiology and Epidemiology, Exercise Physiology Laboratory, Faculty of Physical Education, University of Brasilia—UnB, Brasilia 70910-900, Brazil
| | - Jessica Gaetgens
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866, USA; (J.G.); (K.A.F.)
| | - Kimberley A. Frederick
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866, USA; (J.G.); (K.A.F.)
| | - Stephen J. Ives
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA; (A.M.); (E.M.K.V.K.S.)
| |
Collapse
|
35
|
Greenhouse-Tucknott A, Butterworth JB, Wrightson JG, Harrison NA, Dekerle J. Effect of the subjective intensity of fatigue and interoception on perceptual regulation and performance during sustained physical activity. PLoS One 2022; 17:e0262303. [PMID: 34986186 PMCID: PMC8730470 DOI: 10.1371/journal.pone.0262303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Background The subjective experience of fatigue impairs an individual’s ability to sustain physical endurance performance. However, precise understanding of the specific role perceived fatigue plays in the central regulation of performance remains unclear. Here, we examined whether the subjective intensity of a perceived state of fatigue, pre-induced through prior upper body activity, differentially impacted performance and altered perceived effort and affect experienced during a sustained, isometric contraction in lower body. We also explored whether (cardiac) interoception predicted the intensity of experienced perceptual and affective responses and moderated the relationships between constructs during physical activity. Methods Using a repeated-measures study design, thirty male participants completed three experimental conditions, with the intensity of a pre-induced state of fatigue manipulated to evoke moderate (MOD), severe (SEV) and minimal (control; CON) intensity of perceptions prior to performance of the sustained contraction. Results Performance of the sustained contraction was significantly impaired under a perceived state of fatigue, with reductions of 10% and 14% observed in the MOD and SEV conditions, respectively. Performance impairment was accompanied by greater perceived effort and more negative affective valence reported during the contraction. However, effects were limited to comparisons to CON, with no difference evident between the two experimental trials (i.e. MOD vs. SEV). Individuals’ awareness of their accuracy in judging resting heartbeats was shown to predict the subjective intensity of fatigue experienced during the endurance task. However, interoception did not moderate the relationships evident between fatigue and both perceived effort and affective valence. Conclusions A perceived state of fatigue limits endurance performance, influencing both how effortful activity is perceived to be and the affective experience of activity. Though awareness of interoceptive representations of bodily states may be important to the subjective experience of fatigue, interoception does not modulate the relationships between perceived fatigue and other perceptual (i.e. effort) and affective constructs.
Collapse
Affiliation(s)
- Aaron Greenhouse-Tucknott
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- * E-mail:
| | - Jake B. Butterworth
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - James G. Wrightson
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Neil A. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jeanne Dekerle
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
36
|
Effects of graded hypoxia during exhaustive intermittent cycling on subsequent exercise performance and neuromuscular responses. Eur J Appl Physiol 2021; 121:3539-3549. [PMID: 34536112 DOI: 10.1007/s00421-021-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study examined the effect of graded hypoxia during exhaustive intermittent cycling on subsequent exercise performance and neuromuscular fatigue characteristics in normoxia. METHODS Fifteen well-trained cyclists performed an exhaustive intermittent cycling exercise (EICE 1; 15 s at 30% of anaerobic power reserve interspersed with 45 s of passive recovery) at sea level (SL; FiO2 ~ 0.21), moderate (MH; FiO2 ~ 0.16) and severe hypoxia (SH; FiO2 ~ 0.12). This was followed, after 30 min of passive recovery in normoxia, by an identical exercise bout in normoxia (EICE 2). Neuromuscular function of the knee extensors was assessed at baseline, after EICE 1 (post-EICE 1), and EICE 2 (post-EICE 2). RESULTS The number of efforts completed decreased with increasing hypoxic severity during EICE 1 (SL: 39 ± 30, MH: 22 ± 13, SH: 13 ± 6; p ≤ 0.02), whereas there was no difference between conditions during EICE 2 (SL: 16 ± 9, MH: 20 ± 14, SH: 24 ± 17; p ≥ 0.09). Maximal torque (p = 0.007), peripheral (p = 0.02) and cortical voluntary activation (p < 0.001), and twitch torque (p < 0.001) decreased from baseline to post-EICE 1. Overall, there were no significant difference in any neuromuscular parameters from post-EICE 1 to post-EICE 2 (p ≥ 0.08). CONCLUSION Increasing hypoxia severity during exhaustive intermittent cycling hampered exercise capacity, but did not influence performance and associated neuromuscular responses during a subsequent bout of exercise in normoxia performed after 30 min of rest.
Collapse
|
37
|
Davies MJ, Lyall GK, Benson AP, Cannon DT, Birch KM, Rossiter HB, Ferguson C. Power Reserve at Intolerance in Ramp-Incremental Exercise Is Dependent on Incrementation Rate. Med Sci Sports Exerc 2021; 53:1606-1614. [PMID: 34261991 DOI: 10.1249/mss.0000000000002645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The mechanism(s) of exercise intolerance at V˙O2max remain poorly understood. In health, standard ramp-incremental (RI) exercise is limited by fatigue-induced reductions in maximum voluntary cycling power. Whether neuromuscular fatigue also limits exercise when the RI rate is slow and RI peak power at intolerance is lower than standard RI exercise, is unknown. METHODS In twelve healthy participants, maximal voluntary cycling power was measured during a short (~6 s) isokinetic effort at 80 rpm (Piso) at baseline and, using an instantaneous switch from cadence-independent to isokinetic cycling, immediately at the limit of RI exercise with RI rates of 50, 25, and 10 W·min-1 (RI-50, RI-25, and RI-10). Breath-by-breath pulmonary gas exchange was measured throughout. RESULTS Baseline Piso was not different among RI rates (analysis of variance; P > 0.05). Tolerable duration increased with decreasing RI rate (RI-50, 411 ± 58 s vs RI-25, 732 ± 93 s vs RI-10, 1531 ± 288 s; P < 0.05). At intolerance, V˙O2peak was not different among RI rates (analysis of variance; P > 0.05), but RI peak power decreased with RI rate (RI-50, 361 ± 48 W vs RI-25, 323 ± 39 W vs RI-10, 275 ± 38 W; P < 0.05). Piso at intolerance was 346 ± 43 W, 353 ± 45 W, and 392 ± 69 W for RI-50, RI-25, and RI-10, respectively (P < 0.05 for RI-10 vs RI-50 and RI-25). At intolerance, in RI-50 and RI-25, Piso was not different from RI peak power (P > 0.05), thus there was no "power reserve." In RI-10, Piso was greater than RI peak power at intolerance (P < 0.001), that is, there was a "power reserve." CONCLUSIONS In RI-50 and RI-25, the absence of a power reserve suggests the neuromuscular fatigue-induced reduction in Piso coincided with V˙O2max and limited the exercise. In RI-10, the power reserve suggests neuromuscular fatigue was insufficient to limit the exercise, and additional mechanisms contributed to intolerance at V˙O2max.
Collapse
Affiliation(s)
- Matthew J Davies
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UNITED KINGDOM
| | - Gemma K Lyall
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UNITED KINGDOM
| | - Alan P Benson
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UNITED KINGDOM
| | - Daniel T Cannon
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA
| | - Karen M Birch
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UNITED KINGDOM
| | | | - Carrie Ferguson
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UNITED KINGDOM
| |
Collapse
|
38
|
Rannou F, Nybo L, Andersen JE, Nordsborg NB. Muscle Contractile Characteristics During Exhaustive Dynamic Exercise and Recovery. Front Physiol 2021; 12:660099. [PMID: 34276393 PMCID: PMC8283014 DOI: 10.3389/fphys.2021.660099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Our aim was to provide an in vivo assessment of human muscle twitch characteristics during and following an exhaustive dynamic exercise to explore temporal alterations of the rate of force development (RFD) and relaxation (RFR). Eleven healthy participants (mean age ± SD: 24 ± 3 years) completed a dynamic knee-extensor exercise in randomized order at three different intensities, eliciting exhaustion after ∼9 min (56 ± 10 W), ∼6 min (60 ± 10 W), and ∼4 min (63 ± 10 W), in addition to a low-intensity (28 ± 5 W) bout. In a novel setup, an electrical doublet stimulation of m. vastus lateralis was applied during exercise (every 30 s) and recovery for frequent evaluation of key contractile properties (maximal force, RFD, RFR, and electromechanical delay) in addition to M-wave characteristics. RFD and RFR remained stable throughout the low-intensity trial but declined in all exhaustive trials to reach a similar level of ∼40% of pre-exercise values at task failure but with the exponential decay augmented by intensity. Following exhaustion, there was a fast initial recovery of RFD and RFR to ∼80% of pre-exercise values within 1 min, followed by a longer suppression at this level. The M-wave characteristics remained unchanged during all trials. In conclusion, this is the first study to quantify the intensity-dependent alterations of RFD and RFR during and after exhaustive dynamic exercise in humans. A hypothesized reduction and fast reversion of RFD was confirmed, and a surprising compromised RFR is reported. The present unique experimental approach allows for novel insight to exercise-induced alterations in human muscle contractile properties which is relevant in health and disease.
Collapse
Affiliation(s)
- Fabrice Rannou
- Department of Sport Medicine and Functional Explorations-ASMS, CRNH, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Janni Enghave Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Romero-Morales C, Bravo-Aguilar M, Abuín-Porras V, Almazán-Polo J, Calvo-Lobo C, Martínez-Jiménez EM, López-López D, Navarro-Flores E. Current advances and novel research on minimal invasive techniques for musculoskeletal disorders. Dis Mon 2021; 67:101210. [PMID: 34099238 DOI: 10.1016/j.disamonth.2021.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present review summarized the current advances and novel research on minimal invasive techniques for musculoskeletal disorders. Different invasive approaches were proposed in the physical therapy field for the management of musculoskeletal disorders, such as ultrasound-guided percutaneous needle electrolysis, dry needling, acupuncture and other invasive therapy techniques, discussing about their worldwide status, safety and interventional ultrasound imaging. Indeed, dry needling may be one of the most useful and studies invasive physical therapy applications in musculoskeletal disorders of different body regions, such as back, upper limb, shoulder, arm, hand, pelvis, lower limb, neck, head, or temporomandibular joint, and multiple soreness location disorders, such as fibromyalgia. In addition, the assessment and treatment by acupuncture or electro-acupuncture was considered and detailed for different conditions such as plantar fasciitis, osteoarthritis, spasticity, myofascial pain syndrome, osteoporosis and rheumatoid arthritis. As an increasing technique in physical therapy, the use of ultrasound-guided percutaneous needle electrolysis was discussed in injuries of the musculoskeletal system and entrapment neuropathies. Also, ultrasound-guided percutaneous neuromodulation was established as a rising technique combined with ultrasound evaluation of the peripheral nerve system with different clinical applications which need further studies to detail their effectiveness in different musculoskeletal conditions. Thus, invasive physical therapy may be considered as a promising approach with different novel applications in several musculoskeletal disorders and a rising use in the physiotherapy field.
Collapse
Affiliation(s)
- Carlos Romero-Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - María Bravo-Aguilar
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Vanesa Abuín-Porras
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Jaime Almazán-Polo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - César Calvo-Lobo
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Eva María Martínez-Jiménez
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel López-López
- Research, Health and Podiatry Group, Department of Health Sciences, Faculty of Nursing and Podiatry, Universidade da Coruña, 15403 Ferrol, Spain.
| | - Emmanuel Navarro-Flores
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
40
|
Azevedo RDA, Silva-Cavalcante MD, Cruz R, Couto P, Lima-Silva AE, Bertuzzi R. Distinct pacing profiles result in similar perceptual responses and neuromuscular fatigue development: Why different "roads" finish at the same line? Eur J Sport Sci 2021; 22:1046-1056. [PMID: 33944683 DOI: 10.1080/17461391.2021.1922507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACTThe current study analysed the effect of distinct pacing profiles (i.e. U, J, and inverted J) in the perceptual responses and neuromuscular fatigue (NMF) development following a 4-km cycling time trial (TT). Twenty-one cyclists with similar training status were allocated into three different groups based on their pacing profile spontaneously adopted during TT. Rating of perceived exertion (RPE), oxygen uptake (⩒O2) and heart rate (HR) were continuously recorded. NMF was assessed by using isometric maximal voluntary contractions (IMVC), while the central [i.e. voluntary activation (VA)] and peripheral fatigue of knee extensors [i.e. peak torque of potentiated twitches (TwPt)] were evaluated using electrically evoked contractions performed pre and 2 min after the TT. TT performance was not different amongst pacing profiles (U = 377 ± 20 s; J = 392 ± 23 s; J-i = 381 ± 20 s) (all P > 0.05). RPE, ⩒O2 and HR increased similarly throughout the TT regardless the pacing strategy (all P > 0.05). Similarly, IMVC (U = -9.9 ± 8.8; J = -9.6 ± 4.5%; J-i = -13.8 ± 11.3%), VA (U = -2.3 ± 1.7%; J = -5.4 ± 2.2%; J-i = -6.4 ± 4.5%) and TwPt (U = -32.5 ± 12.0%; J = -29.5 ± 8.0%; J-i = -33.6 ± 13.6%) were similar amongst pacing profiles (all P > 0.05). Therefore, endurance athletes with similar training status showed the same perceived responses and NMF development regardless the pacing profile spontaneously adopted. It was suggested that these responses occurred in order to preserve a similar rate of change in systemic responses (i.e. RPE, ⩒O2 and HR) and NMF development, ultimately resulting in same TT performance.Highlights Different pacing profiles resulted in the same performance in a 4-km cycling time trial.The similar performance might be due to achievement of the same sensory tolerance limit.There was no difference for perceptual, metabolic and neuromuscular fatigue responses.
Collapse
Affiliation(s)
- Rafael de Almeida Azevedo
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | | | - Ramon Cruz
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Patrícia Couto
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Adriano E Lima-Silva
- Faculty of Nutrition, Federal University of Alagoas, Maceio, Alagoas, Brazil.,Human Performance Research Group, Technological Federal University of Parana, Parana, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Gouraud E, Connes P, Gauthier-Vasserot A, Faes C, Merazga S, Poutrel S, Renoux C, Boisson C, Joly P, Bertrand Y, Hot A, Cannas G, Hautier C. Impact of a submaximal mono-articular exercise on the skeletal muscle function of patients with sickle cell disease. Eur J Appl Physiol 2021; 121:2459-2470. [PMID: 34023973 DOI: 10.1007/s00421-021-04716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Sickle cell disease (SCD) patients exhibit a limited exercise tolerance commonly attributed to anaemia, as well as hemorheological and cardio-respiratory abnormalities, but the functional status of skeletal muscle at exercise is unknown. Moreover, the effect of SCD genotype on exercise tolerance and skeletal muscle function has been poorly investigated. The aim of this study was to investigate skeletal muscle function and fatigue during a submaximal exercise in SCD patients. METHODS Nineteen healthy individuals (AA), 28 patients with sickle cell anaemia (SS) and 18 with sickle cell-haemoglobin C disease (SC) performed repeated knee extensions exercise (FAT). Maximal isometric torque (Tmax) was measured before and after the FAT to quantify muscle fatigability. Electromyographic activity and oxygenation by near-infrared spectroscopy of the Vastus Lateralis were recorded. RESULTS FAT caused a reduction in Tmax in SS (- 17.0 ± 12.1%, p < 0.001) and SC (- 21.5 ± 14.5%, p < 0.05) but not in AA (+ 0.58 ± 29.9%). Root-mean-squared value of EMG signal (RMS) decreased only in SS after FAT, while the median power frequency (MPF) was unchanged in all groups. Oxygenation kinetics were determined in SS and AA and were not different. CONCLUSION These results show skeletal muscle dysfunction during exercise in SCD patients, and suggest different fatigue aetiology between SS and SC. The changes in EMG signal and oxygenation kinetics during exercise suggest that the greater skeletal muscle fatigue occurring in SCD patients would be rather due to intramuscular alterations modifications than decreased tissue oxygenation. Moreover, SS patients exhibit greater muscle fatigability than SC.
Collapse
Affiliation(s)
- Etienne Gouraud
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Connes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Institute of Universities of France, Paris, France
| | - Alexandra Gauthier-Vasserot
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Camille Faes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Salima Merazga
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Céline Renoux
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Camille Boisson
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Joly
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Yves Bertrand
- Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Giovanna Cannas
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Christophe Hautier
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France. .,Laboratory of Excellence "GR-Ex", Paris, France.
| |
Collapse
|
42
|
Laginestra FG, Amann M, Kirmizi E, Giuriato G, Barbi C, Ruzzante F, Pedrinolla A, Martignon C, Tarperi C, Schena F, Venturelli M. Electrically induced quadriceps fatigue in the contralateral leg impairs ipsilateral knee extensors performance. Am J Physiol Regul Integr Comp Physiol 2021; 320:R747-R756. [PMID: 33729017 PMCID: PMC8163605 DOI: 10.1152/ajpregu.00363.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Muscle fatigue induced by voluntary exercise, which requires central motor drive, causes central fatigue that impairs endurance performance of a different, nonfatigued muscle. This study investigated the impact of quadriceps fatigue induced by electrically induced (no central motor drive) contractions on single-leg knee-extension (KE) performance of the subsequently exercising ipsilateral quadriceps. On two separate occasions, eight males completed constant-load (85% of maximal power-output) KE exercise to exhaustion. In a counterbalanced manner, subjects performed the KE exercise with no pre-existing quadriceps fatigue in the contralateral leg on one day (No-PreF), whereas on the other day, the same KE exercise was repeated following electrically induced quadriceps fatigue in the contralateral leg (PreF). Quadriceps fatigue was assessed by evaluating pre- to postexercise changes in potentiated twitch force (ΔQtw,pot; peripheral fatigue), and voluntary muscle activation (ΔVA; central fatigue). As reflected by the 57 ± 11% reduction in electrically evoked pulse force, the electrically induced fatigue protocol caused significant knee-extensors fatigue. KE endurance time to exhaustion was shorter during PreF compared with No-PreF (4.6 ± 1.2 vs 7.7 ± 2.4 min; P < 0.01). Although ΔQtw,pot was significantly larger in No-PreF compared with PreF (-60% vs -52%, P < 0.05), ΔVA was greater in PreF (-14% vs -10%, P < 0.05). Taken together, electrically induced quadriceps fatigue in the contralateral leg limits KE endurance performance and the development of peripheral fatigue in the ipsilateral leg. These findings support the hypothesis that the crossover effect of central fatigue is mainly mediated by group III/IV muscle afferent feedback and suggest that impairments associated with central motor drive may only play a minor role in this phenomenon.
Collapse
Affiliation(s)
| | - Markus Amann
- Department of Anaesthesiology, University of Utah, Salt Lake City, Utah
| | - Emine Kirmizi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Department of Physiology, Faculty of Medicine, Uludag University, Eskisehir, Turkey
| | - Gaia Giuriato
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Behm DG, Alizadeh S, Hadjizedah Anvar S, Hanlon C, Ramsay E, Mahmoud MMI, Whitten J, Fisher JP, Prieske O, Chaabene H, Granacher U, Steele J. Non-local Muscle Fatigue Effects on Muscle Strength, Power, and Endurance in Healthy Individuals: A Systematic Review with Meta-analysis. Sports Med 2021; 51:1893-1907. [PMID: 33818751 DOI: 10.1007/s40279-021-01456-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The fatigue of a muscle or muscle group can produce global responses to a variety of systems (i.e., cardiovascular, endocrine, and others). There are also reported strength and endurance impairments of non-exercised muscles following the fatigue of another muscle; however, the literature is inconsistent. OBJECTIVE To examine whether non-local muscle fatigue (NLMF) occurs following the performance of a fatiguing bout of exercise of a different muscle(s). DESIGN Systematic review and meta-analysis. SEARCH AND INCLUSION A systematic literature search using a Boolean search strategy was conducted with PubMed, SPORTDiscus, Web of Science, and Google Scholar in April 2020, and was supplemented with additional 'snowballing' searches up to September 2020. To be included in our analysis, studies had to include at least one intentional performance measure (i.e., strength, endurance, or power), which if reduced could be considered evidence of muscle fatigue, and also had to include the implementation of a fatiguing protocol to a location (i.e., limb or limbs) that differed to those for which performance was measured. We excluded studies that measured only mechanistic variables such as electromyographic activity, or spinal/supraspinal excitability. After search and screening, 52 studies were eligible for inclusion including 57 groups of participants (median sample = 11) and a total of 303 participants. RESULTS The main multilevel meta-analysis model including all effects sizes (278 across 50 clusters [median = 4, range = 1 to 18 effects per cluster) revealed a trivial point estimate with high precision for the interval estimate [- 0.02 (95% CIs = - 0.14 to 0.09)], yet with substantial heterogeneity (Q(277) = 642.3, p < 0.01), I2 = 67.4%). Subgroup and meta-regression analyses showed that NLMF effects were not moderated by study design (between vs. within-participant), homologous vs. heterologous effects, upper or lower body effects, participant training status, sex, age, the time of post-fatigue protocol measurement, or the severity of the fatigue protocol. However, there did appear to be an effect of type of outcome measure where both strength [0.11 (95% CIs = 0.01-0.21)] and power outcomes had trivial effects [- 0.01 (95% CIs = - 0.24 to 0.22)], whereas endurance outcomes showed moderate albeit imprecise effects [- 0.54 (95% CIs = - 0.95 to - 0.14)]. CONCLUSIONS Overall, the findings do not support the existence of a general NLMF effect; however, when examining specific types of performance outcomes, there may be an effect specifically upon endurance-based outcomes (i.e., time to task failure). However, there are relatively fewer studies that have examined endurance effects or mechanisms explaining this possible effect, in addition to fewer studies including women or younger and older participants, and considering causal effects of prior training history through the use of longitudinal intervention study designs. Thus, it seems pertinent that future research on NLMF effects should be redirected towards these still relatively unexplored areas.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizedah Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,University of Tehran, Tehran, Iran
| | - Courtney Hanlon
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Emma Ramsay
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Joseph Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James P Fisher
- School of Sport, Health and Social Science, Solent University, Southampton, UK
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Helmi Chaabene
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - James Steele
- School of Sport, Health and Social Science, Solent University, Southampton, UK.,Ukactive Research Institute, London, UK
| |
Collapse
|
44
|
Abstract
Rating of perceived effort (RPE) scales are the most frequently used single-item scales in exercise science. They offer an easy and useful way to monitor and prescribe exercise intensity. However, RPE scales suffer from methodological limitations stemming from multiple perceived effort definitions and measurement strategies. In the present review, we attend these issues by covering (1) two popular perceived effort definitions, (2) the terms included within these definitions and the reasons they can impede validity, (3) the problems associated with using different effort scales and instructions, and (4) measuring perceived effort from specific body parts and the body as a whole. We pose that the large number of interactions between definitions, scales, instructions and applications strategies, threatens measurement validity of RPE. We suggest two strategies to overcome these limitations: (1) to reinforce consistency by narrowing the number of definitions of perceived effort, the number of terms included within them, and the number of scales and instructions used. (2) Rather than measuring solely RPE as commonly done, exercise sciences will benefit from incorporating other single-item scales that measure affect, fatigue and discomfort, among others. By following these two recommendations, we expect the field will increase measurement validity and become more comprehensive.
Collapse
Affiliation(s)
- Israel Halperin
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel.
| | - Aviv Emanuel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
45
|
Whitten JHD, Hodgson DD, Drinkwater EJ, Prieske O, Aboodarda SJ, Behm DG. Unilateral Quadriceps Fatigue Induces Greater Impairments of Ipsilateral versus Contralateral Elbow Flexors and Plantar Flexors Performance in Physically Active Young Adults. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:300-309. [PMID: 34211323 DOI: 10.52082/jssm.2021.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Non-local muscle fatigue (NLMF) studies have examined crossover impairments of maximal voluntary force output in non-exercised, contralateral muscles as well as comparing upper and lower limb muscles. Since prior studies primarily investigated contralateral muscles, the purpose of this study was to compare NLMF effects on elbow flexors (EF) and plantar flexors (PF) force and activation (electromyography: EMG). Secondly, possible differences when testing ipsilateral or contralateral muscles with a single or repeated isometric maximum voluntary contractions (MVC) were also investigated. Twelve participants (six males: (27.3 ± 2.5 years, 186.0 ± 2.2 cm, 91.0 ± 4.1 kg; six females: 23.0 ± 1.6 years, 168.2 ± 6.7 cm, 60.0 ± 4.3 kg) attended six randomized sessions where ipsilateral or contralateral PF or EF MVC force and EMG activity (root mean square) were tested following a dominant knee extensors (KE) fatigue intervention (2×100s MVC) or equivalent rest (control). Testing involving a single MVC (5s) was completed by the ipsilateral or contralateral PF or EF prior to and immediately post-interventions. One minute after the post-intervention single MVC, a 12×5s MVCs fatigue test was completed. Two-way repeated measures ANOVAs revealed that ipsilateral EF post-fatigue force was lower (-6.6%, p = 0.04, d = 0.18) than pre-fatigue with no significant changes in the contralateral or control conditions. EF demonstrated greater fatigue indexes for the ipsilateral (9.5%, p = 0.04, d = 0.75) and contralateral (20.3%, p < 0.01, d = 1.50) EF over the PF, respectively. There were no significant differences in PF force, EMG or EF EMG post-test or during the MVCs fatigue test. The results suggest that NLMF effects are side and muscle specific where prior KE fatigue could hinder subsequent ipsilateral upper body performance and thus is an important consideration for rehabilitation, recreation and athletic programs.
Collapse
Affiliation(s)
- Joseph H D Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Daniel D Hodgson
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Eric J Drinkwater
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sports and Management Potsdam, Potsdam, Germany
| | | | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
46
|
Finn HT, Kennedy DS, Green S, Taylor JL. Fatigue-related Feedback from Calf Muscles Impairs Knee Extensor Voluntary Activation. Med Sci Sports Exerc 2021; 52:2136-2144. [PMID: 32936591 DOI: 10.1249/mss.0000000000002362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fatigue-related group III/IV muscle afferent firing from agonist, antagonist or distal muscles impairs the ability to drive the elbow flexors maximally, that is, reduces voluntary activation. In the lower limb, the effect of feedback from distal muscles on the proximal knee extensors is unknown. Here, we test whether maintained group III/IV afferent feedback from the plantarflexor muscles reduces voluntary activation of the knee extensors. METHODS On 2 d, voluntary activation of the knee extensors during maximal voluntary contractions (MVCs) was assessed in 12 participants before and after a 3-min fatiguing task of the plantarflexors. On 1 d, an inflatable cuff around the calf occluded blood flow for 2 min immediately postexercise (cuff day). The other day had no occlusion (no-cuff day). Supramaximal stimulation of the femoral nerve elicited superimposed twitches during MVC of the knee extensors and resting twitches 2 to 3 s after relaxation. Pain (0-10 point scale) was reported throughout. RESULTS In the 2 min after the 3-min fatiguing plantarflexor task, voluntary activation was 5.3% (SD, 7%) lower on the cuff day than on the no-cuff day (P = 0.045), and MVC force was reduced by 13% (SD, 16%) (P = 0.021). The resting twitch was similar on both days (P = 0.98). Pain rated 4.9 points higher with the cuff inflated (P = 0.001). CONCLUSIONS Maintained group III/IV afferent feedback from the fatigued plantarflexor muscles reduced maximal force and voluntary activation of the unfatigued knee extensors, suggesting that afferents from the calf act centrally to inhibit the ability to drive the motoneurones of the knee extensors.
Collapse
Affiliation(s)
| | - David S Kennedy
- Discipline of Physiotherapy, Graduate School of Health, University of Technology Sydney, NSW, AUSTRALIA
| | - Simon Green
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, AUSTRALIA
| | | |
Collapse
|
47
|
Almeida F, Padial P, Bonitch-Góngora J, de la Fuente B, Schoenfeld BJ, Morales-Artacho AJ, Benavente C, Feriche B. Effects of Power-Oriented Resistance Training During an Altitude Camp on Strength and Technical Performance of Elite Judokas. Front Physiol 2021; 12:606191. [PMID: 33679430 PMCID: PMC7930574 DOI: 10.3389/fphys.2021.606191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effect of a 3-week power-oriented resistance training program performed at moderate altitude on leg power output variables in a countermovement jump, a related judo technique (ippon-seoi-nage) and the relationship between them. Twenty-four elite male judokas were randomly assigned to a hypobaric hypoxia or normoxia group. Mechanical outputs from an incremental loaded countermovement jump test and the kinematic variables transferred to a dummy during an ippon-seoi-nage test (time to execution and movement accelerations) were assessed before, after, 1 and 2 weeks after training. Results indicated an increase in explosive leg capacity both at moderate altitude (2320 m.a.s.l.) and sea level. The hypoxia group showed additional benefits when compared to normoxia group for peak velocities with different percentages of the body weight, maximal theoretical velocity and jump height after the training period, and these additional benefits in jump height were maintained 2 weeks after training. The hypoxia group achieved a higher peak performance in peak velocity and jump height than normoxia group (peak velocity: 8.8 vs. 5.6%, jump height: 8.2 vs. 1.4%, respectively) and was achieved earlier in hypoxia (after training) than in normoxia (1 week after training). However, there was a detrimental effect for the hypoxia group on the times of execution and acceleration of the ippon-seoi-nage compared to the normoxia group. These results suggest that altitude training may induce faster and greater improvements in explosive leg extension capacity. Specific technique-oriented training should be included at altitude to prevent technique impairment.
Collapse
Affiliation(s)
- Filipa Almeida
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Juan Bonitch-Góngora
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Blanca de la Fuente
- High Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, NY, United States
| | - Antonio J Morales-Artacho
- Department of Physical Education and Sport, University of Granada, Granada, Spain.,Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
| | - Cristina Benavente
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Brownstein CG, Millet GY, Thomas K. Neuromuscular responses to fatiguing locomotor exercise. Acta Physiol (Oxf) 2021; 231:e13533. [PMID: 32627930 DOI: 10.1111/apha.13533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
Over the last two decades, an abundance of research has explored the impact of fatiguing locomotor exercise on the neuromuscular system. Neurostimulation techniques have been implemented prior to and following locomotor exercise tasks of a wide variety of intensities, durations, and modes. These techniques have allowed for the assessment of alterations occurring within the central nervous system and the muscle, while techniques such as transcranial magnetic stimulation and spinal electrical stimulation have permitted further segmentalization of locomotor exercise-induced changes along the motor pathway. To this end, the present review provides a comprehensive synopsis of the literature pertaining to neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity intermittent exercise, and differences in neuromuscular responses between exercise modalities. During maximal and severe intensity exercise, alterations in neuromuscular function reside primarily within the muscle. Although post-exercise reductions in voluntary activation following maximal and severe intensity exercise are generally modest, several studies have observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and moderate intensity exercise, impairments in contractile function are attenuated with respect to severe intensity exercise, but are still widely observed. While reductions in voluntary activation are greater during heavy and moderate intensity exercise, the specific alterations occurring within the central nervous system remain unclear. Further work utilizing stimulation techniques during exercise and integrating new and emerging techniques such as high-density electromyography is warranted to provide further insight into neuromuscular responses to locomotor exercise.
Collapse
Affiliation(s)
- Callum G. Brownstein
- Inter‐University Laboratory of Human Movement Biology Université LyonUJM‐Saint‐Etienne Saint‐Etienne France
| | - Guillaume Y. Millet
- Inter‐University Laboratory of Human Movement Biology Université LyonUJM‐Saint‐Etienne Saint‐Etienne France
- Institut Universitaire de France (IUF) France
| | - Kevin Thomas
- Faculty of Health and Life Sciences Northumbria University Newcastle upon Tyne United Kingdom
| |
Collapse
|
49
|
Lanferdini FJ, Vaz MA. Influence of muscle fatigue on the pedaling kinetic and kinematics in different cycling protocols: a scoping review. REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2021. [DOI: 10.1590/rbce.43.e008621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The aim of this study was to review the literature on the effects of muscle fatigue generated by different cycling protocols, on the kinetics and kinematics of the crank cycle. Twenty-two studies were included in the review. The establishment of the fatigue processes caused an increase in the resulting and effective forces (all tests), together with the pedaling efficiency (incremental and constant tests). In addition, fatigue caused joint changes in the lower limbs (increased range of motion in the ankle and reduced contribution to total torque) in different cycling tests. Therefore, these pedaling strategies may be related to the maintenance of muscle work to postpone the cyclists’ exhaustion.
Collapse
Affiliation(s)
- Fábio J. Lanferdini
- Universidade Federal do Rio Grande do Sul, Brasil; Universidade Federal de Santa Catarina, Brasil
| | - Marco A. Vaz
- Universidade Federal do Rio Grande do Sul, Brasil
| |
Collapse
|
50
|
Amann M, Wan HY, Thurston TS, Georgescu VP, Weavil JC. On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance. Exerc Sport Sci Rev 2020; 48:209-216. [PMID: 32658041 DOI: 10.1249/jes.0000000000000233] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses evidence suggesting that group III/IV muscle afferents affect locomotor performance by influencing neuromuscular fatigue. These neurons regulate the hemodynamic and ventilatory response to exercise and, thus, assure appropriate locomotor muscle O2 delivery, which optimizes peripheral fatigue development and facilitates endurance performance. In terms of central fatigue, group III/IV muscle afferents inhibit motoneuronal output and thereby limit exercise performance.
Collapse
Affiliation(s)
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah
| | - Taylor S Thurston
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Vincent P Georgescu
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| |
Collapse
|