1
|
Seow CY. Myosin Crossbridge, Contractile Unit, and the Mechanism of Contraction in Airway Smooth Muscle: A Mechanical Engineer's Perspective. ACTA ACUST UNITED AC 2019; 2:0108041-108046. [PMID: 32328570 PMCID: PMC7164502 DOI: 10.1115/1.4042479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Indexed: 11/21/2022]
Abstract
Muscle contraction is caused by the action of myosin motors within the structural
confines of contractile unit arrays. When the force generated by cyclic
interactions between myosin crossbridges and actin filaments is greater than the
average load shared by the crossbridges, sliding of the actin filaments occurs
and the muscle shortens. The shortening velocity as a function of muscle load
can be described mathematically by a hyperbola; this characteristic
force–velocity relationship stems from stochastic interactions between
the crossbridges and the actin filaments. Beyond the actomyosin interaction,
there is not yet a unified theory explaining smooth muscle contraction, mainly
because the structure of the contractile unit in smooth muscle (akin to the
sarcomere in striated muscle) is still undefined. In this review, functional and
structural data from airway smooth muscle are analyzed in an engineering
approach of quantification and correlation to support a model of the contractile
unit with characteristics revealed by mathematical analyses and behavior matched
by experimental observation.
Collapse
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada e-mail:
| |
Collapse
|
2
|
Qiao Y, Tam JKC, Tan SSL, Tai YK, Chin CY, Stewart AG, Ashman L, Sekiguchi K, Langenbach SY, Stelmack G, Halayko AJ, Tran T. CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol 2016; 139:82-92.e5. [PMID: 27233153 DOI: 10.1016/j.jaci.2016.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/22/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Airway smooth muscle (ASM) contraction underpins airway constriction; however, underlying mechanisms for airway hyperresponsiveness (AHR) remain incompletely defined. CD151, a 4-transmembrane glycoprotein that associates with laminin-binding integrins, is highly expressed in the human lung. The role of CD151 in ASM function and its relationship to asthma have yet to be elucidated. OBJECTIVE We sought to ascertain whether CD151 expression is clinically relevant to asthma and whether CD151 expression affects AHR. METHODS Using immunohistochemical analysis, we determined the expression of CD151 in human bronchial biopsy specimens from patients with varying asthma severities and studied the mechanism of action of CD151 in the regulation of ASM contraction and bronchial caliber in vitro, ex vivo, and in vivo. RESULTS The number of CD151+ ASM cells is significantly greater in patients with moderate asthma compared with those in healthy nonasthmatic subjects. From loss- and gain-of-function studies, we reveal that CD151 is required for and enhances G protein-coupled receptor (GPCR)-induced peak intracellular calcium release, the primary determinant of excitation-contraction coupling. We show that the localization of CD151 can also be perinuclear/cytoplasmic and offer an explanation for a novel functional role for CD151 in supporting protein kinase C (PKC) translocation to the cell membrane in GPCR-mediated ASM contraction at this site. Importantly, CD151-/- mice are refractory to airway hyperreactivity in response to allergen challenge. CONCLUSIONS We identify a role for CD151 in human ASM contraction. We implicate CD151 as a determinant of AHR in vivo, likely through regulation of GPCR-induced calcium and PKC signaling. These observations have significant implications in understanding the mechanism for AHR and the efficacy of new and emerging therapeutics.
Collapse
Affiliation(s)
- Yongkang Qiao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Kit Chung Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sheryl S L Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin Yein Chin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Leonie Ashman
- School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | | | - Shenna Y Langenbach
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Gerald Stelmack
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
3
|
Dowie J, Ansell TK, Noble PB, Donovan GM. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips. Respir Physiol Neurobiol 2015; 220:25-32. [PMID: 26376002 DOI: 10.1016/j.resp.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022]
Abstract
Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway.
Collapse
Affiliation(s)
- Jackson Dowie
- Department of Mathematics, University of Auckland, New Zealand
| | - Thomas K Ansell
- School of Veterinary and Life Sciences, Murdoch University, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia; Centre for Neonatal Research and Education, The University of Western Australia, Australia
| | | |
Collapse
|
4
|
Camoretti-Mercado B, Pauer SH, Yong HM, Smith DC, Deshpande DA, An SS, Liggett SB. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells. PLoS One 2015; 10:e0131582. [PMID: 26121686 PMCID: PMC4485472 DOI: 10.1371/journal.pone.0131582] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/03/2015] [Indexed: 01/25/2023] Open
Abstract
Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low-efficiency de novo [Ca2+]i stimulation, and, a high-efficiency inhibition of GPCR-stimulated [Ca2+]i. Furthermore, there is an interaction between TAS2Rs and some GPCRs that facilitates this [Ca2+]i inhibition limb.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Susan H. Pauer
- Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Hwan Mee Yong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Dan’elle C. Smith
- Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Deepak A. Deshpande
- Department of Medicine and Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Steven S. An
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Stephen B. Liggett
- Department of Medicine and the Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yeo SH, Monroy JA, Lappin AK, Nishikawa KC, Pai DK. Phenomenological models of the dynamics of muscle during isotonic shortening. J Biomech 2013; 46:2419-25. [PMID: 23938056 DOI: 10.1016/j.jbiomech.2013.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/11/2013] [Accepted: 07/14/2013] [Indexed: 11/19/2022]
Abstract
We investigated the effectiveness of simple, Hill-type, phenomenological models of the force-length-velocity relationship for simulating measured length trajectories during muscle shortening, and, if so, what forms of the model are most useful. Using isotonic shortening data from mouse soleus and toad depressor mandibulae muscles, we showed that Hill-type models can indeed simulate the shortening trajectories with sufficiently good accuracy. However, we found that the standard form of the Hill-type muscle model, called the force-scaling model, is not a satisfactory choice. Instead, the results support the use of less frequently used models, the f-max scaling model and force-scaling with parallel spring, to simulate the shortening dynamics of muscle.
Collapse
Affiliation(s)
- Sang Hoon Yeo
- Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
6
|
Gobbi A, Pellegrino R, Gulotta C, Antonelli A, Pompilio P, Crimi C, Torchio R, Dutto L, Parola P, Dellacà RL, Brusasco V. Short-term variability in respiratory impedance and effect of deep breath in asthmatic and healthy subjects with airway smooth muscle activation and unloading. J Appl Physiol (1985) 2013; 115:708-15. [PMID: 23766502 DOI: 10.1152/japplphysiol.00013.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inspiratory resistance (RINSP) and reactance (XINSP) were measured for 7 min at 5 Hz in 10 subjects with mild asymptomatic asthma and 9 healthy subjects to assess the effects of airway smooth muscle (ASM) activation by methacholine (MCh) and unloading by chest wall strapping (CWS) on the variability of lung function and the effects of deep inspiration (DI). Subjects were studied at control conditions, after MCh, with CWS, and after MCh with CWS. In all experimental conditions XINSP was significantly more negative in subjects with asthma than in healthy subjects, suggesting greater inhomogeneity in the former. However, the variability in both RINSP and XINSP was increased by either ASM activation or CWS, without significant difference between groups. DI significantly reversed MCh-induced changes in RINSP both in subjects with asthma and healthy subjects, but XINSP in the former only. This effect was impaired by CWS more in subjects with asthma than in healthy subjects. The velocity of RINSP and XINSP recovery after DI was faster in subjects with asthma than healthy subjects. In conclusion, these results support the opinion that the short-term variability in respiratory impedance is related to ASM tone or operating length, rather than to the disease. Nevertheless, ASM in individuals with asthma differs from that in healthy individuals in an increased velocity of shortening and a reduced sensitivity to mechanical stress when strain is reduced.
Collapse
Affiliation(s)
- Alessandro Gobbi
- TBM Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Donovan GM. Modelling airway smooth muscle passive length adaptation via thick filament length distributions. J Theor Biol 2013; 333:102-8. [PMID: 23721681 DOI: 10.1016/j.jtbi.2013.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/28/2013] [Accepted: 05/18/2013] [Indexed: 11/16/2022]
Abstract
We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force-length behaviour across multiple scales. Principally these are (nonlinear) force-length loops at short timescales (seconds), parabolic force-length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used crossbridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics.
Collapse
|
8
|
West AR, Syyong HT, Siddiqui S, Pascoe CD, Murphy TM, Maarsingh H, Deng L, Maksym GN, Bossé Y. Airway contractility and remodeling: links to asthma symptoms. Pulm Pharmacol Ther 2012; 26:3-12. [PMID: 22989721 DOI: 10.1016/j.pupt.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023]
Abstract
Respiratory symptoms are largely caused by obstruction of the airways. In asthma, airway narrowing mediated by airway smooth muscle (ASM) contraction contributes significantly to obstruction. The spasmogens produced following exposure to environmental triggers, such as viruses or allergens, are initially responsible for ASM activation. However, the extent of narrowing of the airway lumen due to ASM shortening can be influenced by many factors and it remains a real challenge to decipher the exact role of ASM in causing asthmatic symptoms. Innovative tools, such as the forced oscillation technique, continue to develop and have been proven useful to assess some features of ASM function in vivo. Despite these technologic advances, it is still not clear whether excessive narrowing in asthma is driven by ASM abnormalities, by other alterations in non-muscle factors or simply because of the overexpression of spasmogens. This is because a multitude of forces are acting on the airway wall, and because not only are these forces constantly changing but they are also intricately interconnected. To counteract these limitations, investigators have utilized in vitro and ex vivo systems to assess and compare asthmatic and non-asthmatic ASM contractility. This review describes: 1- some muscle and non-muscle factors that are altered in asthma that may lead to airway narrowing and asthma symptoms; 2- some technologies such as the forced oscillation technique that have the potential to unveil the role of ASM in airway narrowing in vivo; and 3- some data from ex vivo and in vitro methods that probe the possibility that airway hyperresponsiveness is due to the altered environment surrounding the ASM or, alternatively, to a hypercontractile ASM phenotype that can be either innate or acquired.
Collapse
Affiliation(s)
- Adrian R West
- School of Biomedical Engineering, Dalhousie University, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|