1
|
Wang J, Li Z, Yang G, Fang C, Yin Y, Zheng Z, Wang H, Fang S, Dai J, Wang S, Yang S, Yu B. Pseudo-targeted metabolic profile differences between emergency patients with type 1 and type 2 myocardial infarction diagnosed by optical coherence tomography. Clin Chim Acta 2024; 554:117745. [PMID: 38185283 DOI: 10.1016/j.cca.2023.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND It is difficult to distinguish type 2 myocardial infarction (T2MI) from type 1 myocardial infarction (T1MI), although their management varies. OBJECTIVES Using optical coherence tomography (OCT) and pseudo-targeted metabolomics to identify biomarkers, investigate metabolic differences, and establish a T2MI subclassification. METHODS Among 1519 patients with MI, 97 T2MI patients are identified who are 1:1 matched with 97 T1MI patients after considering age, gender, ST-segment elevation, time from onset to coronary angiography, and hs-cTnI on admission by propensity score matching. Plasma pseudo-targeted metabolomics at baseline was determined. RESULTS The clinical characteristics of the two groups were comparable, while the T1MI showed more severe coronary lesions than T2MI according to OCT imaging. 90 differential metabolites were identified between the two groups, among 1027 endogenous metabolites in 20 classes. N-Acetyl-L-Leucine, free fatty acid (15:1), Thymidine-5'-triphosphate, Mevalonic acid 5-pyrophosphate, and five oligopeptides were candidate biomarkers (AUC ≥ 0.85) distinguishing T2MI from T1MI. 12 KEGG pathways showed significant differences, mainly involving amino acid, nucleotide, and their derivatives metabolism, and signaling pathways such as mTOR, cGMP-PKG, and cAMP. Other differences were observed in TCA cycle (P = 0.08) and ROS (P = 0.05). Proteolysis and coronary heart disease risk lipid level were lower in T2MI. T2MI had a decrease of differential abundance score in almost all the KEGG enrichment pathways. Furthermore, T2MI can be subdivided into three subtypes by hierarchical cluster analysis of AUCs with causes/triggers of T2MI. CONCLUSIONS There are significant metabolic profile differences between T1MI and T2MI. Several candidate metabolic biomarkers can effectively distinguish the two groups. CLINICAL TRIAL REGISTRATION ClinicalTrials. gov NCT03297164.
Collapse
Affiliation(s)
- Jifei Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhaoying Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Chao Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yanwei Yin
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhilei Zheng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hongwei Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jiannan Dai
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shanjie Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Shuang Yang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Fang M, Meng Y, Du Z, Guo M, Jiang Y, Tu P, Hua K, Lu Y, Guo X. The Synergistic Mechanism of Total Saponins and Flavonoids in Notoginseng-Safflower against Myocardial Infarction Using a Comprehensive Metabolomics Strategy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248860. [PMID: 36557992 PMCID: PMC9782856 DOI: 10.3390/molecules27248860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Notoginseng and safflower are commonly used traditional Chinese medicines for benefiting qi and activating blood circulation. A previous study by our group showed that the compatibility of the effective components of total saponins of notoginseng (NS) and total flavonoids of safflower (SF), named NS-SF, had a preventive effect on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. However, the therapeutic effect on MI and the synergistic mechanism of NS-SF are still unclear. Therefore, integrated metabolomics, combined with immunohistochemistry and other pharmacological methods, was used to systematically research the therapeutic effect of NS-SF on MI rats and the synergistic mechanism of NS and SF. Compared to NS and SF, the results demonstrated that NS-SF exhibited a significantly better role in ameliorating myocardial damage, apoptosis, easing oxidative stress and anti-inflammation. NS-SF showed a more significant regulatory effect on metabolites involved in sphingolipid metabolism, glycine, serine, and threonine metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, and tricarboxylic acid cycle, such as sphingosine, lysophosphatidylcholine (18:0), lysophosphatidylethanolamine (22:5/0:0), chenodeoxycholic acid, L-valine, glycine, and succinate, than NS or SF alone, indicating that NS and SF produced a synergistic effect on the treatment of MI. This study will provide a theoretical basis for the clinical development of NS-SF.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuqing Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengqiu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kun Hua
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Correspondence: (K.H.); (Y.L.); (X.G.)
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (K.H.); (Y.L.); (X.G.)
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (K.H.); (Y.L.); (X.G.)
| |
Collapse
|
3
|
Nazarian A, Loiko E, Yassine HN, Finch CE, Kulminski AM. APOE alleles modulate associations of plasma metabolites with variants from multiple genes on chromosome 19q13.3. Front Aging Neurosci 2022; 14:1023493. [PMID: 36389057 PMCID: PMC9650319 DOI: 10.3389/fnagi.2022.1023493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
The APOE ε2, ε3, and ε4 alleles differentially impact various complex diseases and traits. We examined whether these alleles modulated associations of 94 single-nucleotide polymorphisms (SNPs) harbored by 26 genes in 19q13.3 region with 217 plasma metabolites using Framingham Heart Study data. The analyses were performed in the E2 (ε2ε2 or ε2ε3 genotype), E3 (ε3ε3 genotype), and E4 (ε3ε4 or ε4ε4 genotype) groups separately. We identified 31, 17, and 22 polymorphism-metabolite associations in the E2, E3, and E4 groups, respectively, at a false discovery rate P FDR < 0.05. These entailed 51 and 19 associations with 20 lipid and 12 polar analytes. Contrasting the effect sizes between the analyzed groups showed 20 associations with group-specific effects at Bonferroni-adjusted P < 7.14E-04. Three associations with glutamic acid or dimethylglycine had significantly larger effects in the E2 than E3 group and 12 associations with triacylglycerol 56:5, lysophosphatidylethanolamines 16:0, 18:0, 20:4, or phosphatidylcholine 38:6 had significantly larger effects in the E2 than E4 group. Two associations with isocitrate or propionate and three associations with phosphatidylcholines 32:0, 32:1, or 34:0 had significantly larger effects in the E4 than E3 group. Nine of 70 SNP-metabolite associations identified in either E2, E3, or E4 groups attained P FDR < 0.05 in the pooled sample of these groups. However, none of them were among the 20 group-specific associations. Consistent with the evolutionary history of the APOE alleles, plasma metabolites showed higher APOE-cluster-related variations in the E4 than E2 and E3 groups. Pathway enrichment mainly highlighted lipids and amino acids metabolism and citrate cycle, which can be differentially impacted by the APOE alleles. These novel findings expand insights into the genetic heterogeneity of plasma metabolites and highlight the importance of the APOE-allele-stratified genetic analyses of the APOE-related diseases and traits.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Hussein N. Yassine
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA, United States
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Herzog N, Laager R, Thommen E, Widmer M, Vincent AM, Keller A, Becker C, Beck K, Perrig S, Bernasconi L, Neyer P, Marsch S, Schuetz P, Sutter R, Tisljar K, Hunziker S. Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study. J Clin Med 2020; 9:jcm9051405. [PMID: 32397548 PMCID: PMC7290691 DOI: 10.3390/jcm9051405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Studies have suggested that taurine may have neuro- and cardio-protective functions, but there is little research looking at taurine levels in patients after out-of-hospital cardiac arrest (OHCA). Our aim was to evaluate the association of taurine with mortality and neurological deficits in a well-defined cohort of OHCA patients. Methods: We prospectively measured serum taurine concentration in OHCA patients upon admission to the intensive care unit (ICU) of the University Hospital Basel (Switzerland). We analyzed the association of taurine levels and in-hospital mortality (primary endpoint). We further evaluated neurological outcomes assessed by the cerebral performance category scale. We calculated logistic regression analyses and report odds ratios (OR) and 95% confidence intervals (CI). We calculated different predefined multivariable regression models including demographic variables, comorbidities, initial vital signs, initial blood markers and resuscitation measures. We assessed discrimination by means of area under the receiver operating curve (ROC). Results: Of 240 included patients, 130 (54.2%) survived until hospital discharge and 110 (45.8%) had a favorable neurological outcome. Taurine levels were significantly associated with higher in-hospital mortality (adjusted OR 4.12 (95%CI 1.22 to 13.91), p = 0.02). In addition, a significant association between taurine concentration and a poor neurological outcome was observed (adjusted OR of 3.71 (95%CI 1.13 to 12.25), p = 0.03). Area under the curve (AUC) suggested only low discrimination for both endpoints (0.57 and 0.57, respectively). Conclusion: Admission taurine levels are associated with mortality and neurological outcomes in OHCA patients and may help in the risk assessment of this vulnerable population. Further studies are needed to assess whether therapeutic modulation of taurine may improve clinical outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Naemi Herzog
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Rahel Laager
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Emanuel Thommen
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Madlaina Widmer
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Alessia M. Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Annalena Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Emergency Department, University Hospital Basel, 4031 Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland; (L.B.); (P.N.)
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland; (L.B.); (P.N.)
| | - Stephan Marsch
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
| | - Philipp Schuetz
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Internal Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland
| | - Raoul Sutter
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland
| | - Kai Tisljar
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-25-25
| |
Collapse
|
5
|
Du X, You H, Li Y, Wang Y, Hui P, Qiao B, Lu J, Zhang W, Zhou S, Zheng Y, Du J. Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI. Sci Rep 2018; 8:15809. [PMID: 30361499 PMCID: PMC6202350 DOI: 10.1038/s41598-018-34245-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
The incidence of in-hospital cardiovascular adverse events (AEs) in patients with ST-segment elevation myocardial infarction (STEMI) following primary percutaneous coronary intervention (PCI) is relatively high. Identification of metabolic markers could improve our understanding of the underlying pathological changes in these patients. We aimed to identify associations between concentrations of plasma metabolites on admission and development of in-hospital AEs in post-PCI patients with STEMI. We used targeted mass spectrometry to measure plasma concentrations of 26 amino acid metabolites on admission in 96 patients with STEMI who subsequently developed post-PCI AEs and in 96 age- and sex-matched patients without post-PCI cardiovascular AEs. Principal component analysis (PCA) revealed that PCA-derived factors, including branched chain amino acids (BCAAs), were associated with increased risks of all three pre-specified outcomes: cardiovascular mortality/acute heart failure (AHF), cardiovascular mortality, and AHF. Addition of BCAA to the Global Registry of Acute Coronary Events risk score increased the concordance C statistic from 0.702 to 0.814 (p < 0.001), and had a net reclassification index of 0.729 (95% confidence interval, 0.466–0.992, p < 0.001). These findings demonstrate that high circulating BCAA concentrations on admission are associated with subsequent in-hospital AEs after revascularization in patients with STEMI.
Collapse
Affiliation(s)
- Xiaoyu Du
- First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Hongzhao You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Peng Hui
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Lu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Weihua Zhang
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Shanshan Zhou
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Zheng
- First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
6
|
Zhang L, Wei TT, Li Y, Li J, Fan Y, Huang FQ, Cai YY, Ma G, Liu JF, Chen QQ, Wang SL, Li H, Alolga RN, Liu B, Zhao DS, Shen JH, Wang XM, Zhu W, Li P, Qi LW. Functional Metabolomics Characterizes a Key Role for N-Acetylneuraminic Acid in Coronary Artery Diseases. Circulation 2017; 137:1374-1390. [PMID: 29212895 DOI: 10.1161/circulationaha.117.031139] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND As new biomarkers of coronary artery diseases (CAD) emerge via metabolomics, the underlying functional mechanisms remain to be elucidated. Functional metabolomics aims to translate metabolomics-derived biomarkers to disease mechanisms. METHODS A cohort of 2324 patients who underwent coronary angiography from 4 independent centers was studied. A combination of ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry in the negative ion mode was used for untargeted analysis of metabolites in plasma. Significant differential metabolites were identified by cross-comparisons with and within CAD types, including normal coronary artery, nonobstructvie coronary atherosclerosis, stable angina, unstable angina, and acute myocardial infarction. A tandem liquid chromatography-mass spectrometry-based approach using isotope-labeled standard addition was subsequently performed for targeted analysis of the metabolic marker N-acetylneuraminic acid (Neu5Ac). A functional metabolomics strategy was proposed to investigate the role of Neu5Ac in the progression of CAD by using in vitro and in vivo models. RESULTS We identified a total of 36 differential metabolites, 35 of which were confirmed with reference compounds. Elevation of Neu5Ac was observed in plasma during CAD progression in center 1 (P=4.0e-64, n=2019) and replicated in 3 independent centers (n=305). The increased level of Neu5Ac in plasma was confirmed by accurate targeted quantification. Mechanistically, Neu5Ac was able to trigger myocardial injury in vitro and in vivo by activation of the Rho/Rho-associated coiled-coil containing protein kinase signaling pathway through binding to RhoA and Cdc42, but not Rac1. Silencing neuraminidase-1, the enzyme that regulates Neu5Ac generation, ameliorated oxygen-glucose deprivation-induced injury in cardiomyocytes and ligation/isoprenaline-induced myocardial ischemia injury in rats. Pharmacological inhibition of neuraminidase by anti-influenza drugs, oseltamivir and zanamivir, also protected cardiomyocytes and the heart from myocardial injury. CONCLUSIONS Functional metabolomics identified a key role for Neu5Ac in acute myocardial infarction, and targeting neuraminidase-1 may represent an unrecognized therapeutic intervention for CAD.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Yong Li
- Department of Cardiology, the Affiliated Wujin Hospital of Jiangsu University, Changzhou, China (Y.L.)
| | - Jing Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing (J.L., Y.-Y.C., G.M., B.L., L.-W.Q.)
| | - Yong Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing (J.L., Y.-Y.C., G.M., B.L., L.-W.Q.)
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing (J.L., Y.-Y.C., G.M., B.L., L.-W.Q.)
| | - Jin-Feng Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Qian-Qian Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Shi-Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology (H.L.)
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Baolin Liu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing (J.L., Y.-Y.C., G.M., B.L., L.-W.Q.)
| | - Dong-Sheng Zhao
- Department of Cardiology, Second Affiliated Hospital of Nantong University, Nantong (D.-S.Z.)
| | - Jian-Hua Shen
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China (J.-H.S.)
| | | | - Wei Zhu
- Department of Oncology (W.Z.), First Affiliated Hospital of Nanjing Medical University, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.)
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing (L.Z., T.-T.W., Y.F., F.-Q.H., J.-F.L., Q.-Q.C., S.-L.W., R.N.A., P.L., L.-W.Q.) .,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing (J.L., Y.-Y.C., G.M., B.L., L.-W.Q.)
| |
Collapse
|
7
|
Liu ZY, Hu S, Zhong QW, Tian CN, Ma HM, Yu JJ. N-Methyl-D-Aspartate Receptor-Driven Calcium Influx Potentiates the Adverse Effects of Myocardial Ischemia-Reperfusion Injury Ex Vivo. J Cardiovasc Pharmacol 2017; 70:329-338. [PMID: 28777252 PMCID: PMC5673305 DOI: 10.1097/fjc.0000000000000527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite the adverse effects of N-methyl-D-aspartate receptor (NMDAR) activity in cardiomyocytes, no study has yet examined the effects of NMDAR activity under ex vivo ischemic-reperfusion (I/R) conditions. Therefore, our aim was to comprehensively evaluate the effects of NMDAR activity through an ex vivo myocardial I/R rat model. METHODS Isolated rat hearts were randomly segregated into 6 groups (n = 20 in each group): (1) an untreated control group; (2) a NMDA-treated control group; (3) an untreated I/R group; (4) an I/R+NMDA group treated with NMDA; (5) an I/R+NMDA+MK-801 group treated with NMDA and the NMDAR inhibitor MK-801; and (6) an I/R+NMDA+[Ca]-free group treated with NMDA and [Ca]-free buffer. The 4 I/R groups underwent 30 minutes of ischemia followed by 50 minutes of reperfusion. Left ventricular pressure signals were analyzed to assess cardiac performance. Myocardial intracellular calcium levels ([Ca]i) were assessed in isolated ventricular cardiomyocytes. Creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T were assayed from coronary effluents. TTC and TUNEL staining were used to measure generalized myocardial necrosis and apoptosis levels, respectively. Western blotting was applied to assess the phosphorylation of PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase. RESULTS Enhanced NMDAR activity under control conditions had no significant effects on the foregoing variables. In contrast, enhanced NMDAR activity under I/R conditions produced significant increases in [Ca]i levels (∼1.2% increase), significant losses in left ventricular function (∼5.4% decrease), significant multi-fold increases in creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T, significant increases in generalized myocardial necrosis (∼36% increase) and apoptosis (∼150% increase), and significant multi-fold increases in PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase phosphorylation (all P < 0.05). These adverse effects were rescued by the NMDAR inhibitor MK-801 or [Ca]-free buffer (all P < 0.05). CONCLUSIONS NMDAR-driven calcium influx potentiates the adverse effects of myocardial I/R injury ex vivo.
Collapse
Affiliation(s)
- Zi-You Liu
- Department of Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jianxi, China
| | | | | | | | | | | |
Collapse
|
8
|
Sakkal LA, Rajkowski KZ, Armen RS. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors. J Comput Chem 2017; 38:1209-1228. [PMID: 28130813 PMCID: PMC5403616 DOI: 10.1002/jcc.24728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A1 R, A2A R, A3 R) and muscarinic acetylcholine (M1 R, M5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M1 R PAMs were predicted to bind in the analogous M2 R PAM LY2119620 binding site. The M5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leon A. Sakkal
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| | - Kyle Z. Rajkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| |
Collapse
|
9
|
Vincent A, Sportouch C, Covinhes A, Barrère C, Gallot L, Delgado-Betancourt V, Lattuca B, Solecki K, Boisguérin P, Piot C, Nargeot J, Barrère-Lemaire S. Cardiac mGluR1 metabotropic receptors in cardioprotection. Cardiovasc Res 2017; 113:644-655. [PMID: 28453728 DOI: 10.1093/cvr/cvx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/31/2017] [Indexed: 10/21/2023] Open
Abstract
AIMS In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium. METHODS AND RESULTS mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 μM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors. CONCLUSION This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Anne Vincent
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Catherine Sportouch
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Aurélie Covinhes
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Christian Barrère
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Laura Gallot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Viviana Delgado-Betancourt
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Benoît Lattuca
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Kamila Solecki
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | | | - Christophe Piot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| |
Collapse
|
10
|
Farthing DE, Farthing CA, Xi L. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care. Exp Biol Med (Maywood) 2015; 240:821-31. [PMID: 25956679 DOI: 10.1177/1535370215584931] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac ischemia associated with acute coronary syndrome and myocardial infarction is a leading cause of mortality and morbidity in the world. A rapid detection of the ischemic events is critically important for achieving timely diagnosis, treatment and improving the patient's survival and functional recovery. This minireview provides an overview on the current biomarker research for detection of acute cardiac ischemia. We primarily focus on inosine and hypoxanthine, two by-products of ATP catabolism. Based on our published findings of elevated plasma concentrations of inosine/hypoxanthine in animal laboratory and clinical settings, since 2006 we have originally proposed that these two purine molecules can be used as rapid and sensitive biomarkers for acute cardiac ischemia at its very early onset (within 15 min), hours prior to the release of heart tissue necrosis biomarkers such as cardiac troponins. We further developed a chemiluminescence technology, one of the most affordable and sensitive analytical techniques, and we were able to reproducibly quantify and differentiate total hypoxanthine concentrations in the plasma samples from healthy individuals versus patients suffering from ischemic heart disease. Additional rigorous clinical studies are needed to validate the plasma inosine/hypoxanthine concentrations, in conjunction with other current cardiac biomarkers, for a better revelation of their diagnostic potentials for early detection of acute cardiac ischemia.
Collapse
Affiliation(s)
- Don E Farthing
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond VA 23298, USA Bioanalytical Services and Technologies, LLC, 12111 Parklawn Drive, Suite#123, Rockville MD 20852, USA
| | - Christine A Farthing
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond VA 23298, USA
| |
Collapse
|
11
|
Cherry BH, Sumien N, Mallet RT. Neuronal injury from cardiac arrest: aging years in minutes. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9680. [PMID: 25104136 PMCID: PMC4150914 DOI: 10.1007/s11357-014-9680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Cardiac arrest is a leading cause of death and permanent disability. Most victims succumb to the oxidative and inflammatory damage sustained during cardiac arrest/resuscitation, but even survivors typically battle long-term neurocognitive impairment. Although extensive research has delineated the complex mechanisms that culminate in neuronal damage and death, no effective treatments have been developed to interrupt these mechanisms. Of importance, many of these injury cascades are also active in the aging brain, where neurons and other cells are under persistent oxidative and inflammatory stress which eventually damages or kills the cells. In light of these similarities, it is reasonable to propose that the brain essentially ages the equivalent of several years within the few minutes taken to resuscitate a patient from cardiac arrest. Accordingly, cardiac arrest-resuscitation models may afford an opportunity to study the deleterious mechanisms underlying the aging process, on an accelerated time course. The aging and resuscitation fields both stand to gain pivotal insights from one another regarding the mechanisms of injury sustained during resuscitation from cardiac arrest and during aging. This synergism between the two fields could be harnessed to foster development of treatments to not only save lives but also to enhance the quality of life for the elderly.
Collapse
Affiliation(s)
- Brandon H Cherry
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA,
| | | | | |
Collapse
|
12
|
Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 2013; 12:630-44. [PMID: 23903222 DOI: 10.1038/nrd4052] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allosteric ligands bind to G protein-coupled receptors (GPCRs; also known as seven-transmembrane receptors) at sites that are distinct from the sites to which endogenous ligands bind. The existence of allosteric ligands has enriched the ways in which the functions of GPCRs can be manipulated for potential therapeutic benefit, yet the complexity of their actions provides both challenges and opportunities for drug screening and development. Converging avenues of research in areas such as biased signalling by allosteric ligands and the mechanisms by which allosteric ligands modulate the effects of diverse endogenous ligands have provided new insights into how interactions between allosteric ligands and GPCRs could be exploited for drug discovery. These new findings have the potential to alter how screening for allosteric drugs is performed and may increase the chances of success in the development of allosteric modulators as clinical lead compounds.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
13
|
Wootten D, Savage EE, Valant C, May LT, Sloop KW, Ficorilli J, Showalter AD, Willard FS, Christopoulos A, Sexton PM. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol Pharmacol 2012; 82:281-90. [PMID: 22576254 DOI: 10.1124/mol.112.079319] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a key drug target class. Recently, allosteric drugs that can co-bind with and modulate the activity of the endogenous ligand(s) for the receptor have become a major focus of the pharmaceutical and biotechnology industry for the development of novel GPCR therapeutic agents. This class of drugs has distinct properties compared with drugs targeting the endogenous (orthosteric) ligand-binding site that include the ability to sculpt cellular signaling and to respond differently in the presence of discrete orthosteric ligands, a behavior termed "probe dependence." Here, using cell signaling assays combined with ex vivo and in vivo studies of insulin secretion, we demonstrate that allosteric ligands can cause marked potentiation of previously "inert" metabolic products of neurotransmitters and peptide hormones, a novel consequence of the phenomenon of probe dependence. Indeed, at the muscarinic M(2) receptor and glucagon-like peptide 1 (GLP-1) receptor, allosteric potentiation of the metabolites, choline and GLP-1(9-36)NH(2), respectively, was ~100-fold and up to 200-fold greater than that seen with the physiological signaling molecules acetylcholine and GLP-1(7-36)NH(2). Modulation of GLP-1(9-36)NH(2) was also demonstrated in ex vivo and in vivo assays of insulin secretion. This work opens up new avenues for allosteric drug discovery by directly targeting modulation of metabolites, but it also identifies a behavior that could contribute to unexpected clinical outcomes if interaction of allosteric drugs with metabolites is not part of their preclinical assessment.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nerve sprouting contributes to increased severity of ventricular tachyarrhythmias by upregulating iGluRs in rats with healed myocardial necrotic injury. J Mol Neurosci 2012; 48:448-55. [PMID: 22383217 DOI: 10.1007/s12031-012-9720-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/07/2012] [Indexed: 12/12/2022]
Abstract
Sympathetic nerve sprouting in healed myocardial infarction (MI) has been associated with high incidences of lethal arrhythmias, but the underlying mechanisms are largely unknown. This study sought to test that sympathetic hyperinnervation and/or MI remodels the myocardial glutamate signaling and ultimately increases the severity of ventricular tachyarrhythmias. Myocardial necrotic injury (MNI) was created by liquid nitrogen freeze-thawing across an intact diaphragm to mimic MI. Cardiac sympathetic hyperinnervation was induced by chronic subcutaneous injection of 4-methylcatechol, a potent stimulator of nerve growth factor expression. The results showed that sympathetic hyperinnervation with or without MNI upregulated the myocardial expression of ionotropic glutamate receptors (iGluRs), including NMDA receptor (NMDAR) and AMPA receptor (AMPAR), and induced cardiomyocyte apoptosis. Intravenous infusion with either NMDA (12 mg/kg) or AMPA (15 mg/kg) triggered ventricular tachycardia and ventricular fibrillation in rats with healed MNI plus sympathetic hyperinnervation; these arrhythmias were prevented by respective antagonist of NMDAR or AMPAR. We conclude that MNI with sympathetic nerve sprouting upregulates the expression of NMDAR and AMPAR in the myocardium and this impact in turn enhances cardiac responses to stimulations of iGluRs and thus increases the incidence of ventricular tachyarrhythmias.
Collapse
|
15
|
Exogenous carbon monoxide does not affect cell membrane energy availability assessed by sarcolemmal calcium fluxes during myocardial ischaemia-reperfusion in the pig. Eur J Anaesthesiol 2011; 28:356-62. [PMID: 20811288 DOI: 10.1097/eja.0b013e32833eab96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carbon monoxide is thought to be cytoprotective and may hold therapeutic promise for mitigating ischaemic injury. The purpose of this study was to test low-dose carbon monoxide for protective effects in a porcine model of acute myocardial ischaemia and reperfusion. In acute open-thorax experiments in anaesthetised pigs, pretreatment with low-dose carbon monoxide (5% increase in carboxyhaemoglobin) was conducted for 120 min before localised ischaemia (45 min) and reperfusion (60 min) was performed using a coronary snare. Metabolic and injury markers were collected by microdialysis sampling in the ventricular wall. Recovery of radio-marked calcium delivered locally by microperfusate was measured to assess carbon monoxide treatment effects during ischaemia/reperfusion on the intracellular calcium pool. Coronary occlusion and ischaemia/reperfusion were analysed for 16 animals (eight in each group). Changes in glucose, lactate and pyruvate from the ischaemic area were observed during ischaemia and reperfusion interventions, though there was no difference between carbon monoxide-treated and control groups during ischaemia or reperfusion. Similar results were observed for glycerol and microdialysate ⁴⁵Ca(2+) recovery. These findings show that a relatively low and clinically relevant dose of carbon monoxide did not seem to provide acute protection as indicated by metabolic, energy-related and injury markers in a porcine myocardial ischaemia/reperfusion experimental model. We conclude that protective effects of carbon monoxide related to ischaemia/reperfusion either require higher doses of carbon monoxide or occur later after reperfusion than the immediate time frame studied here. More study is needed to characterise the mechanism and time frame of carbon monoxide-related cytoprotection.
Collapse
|
16
|
Gao ZG, Verzijl D, Zweemer A, Ye K, Göblyös A, Ijzerman AP, Jacobson KA. Functionally biased modulation of A(3) adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem Pharmacol 2011; 82:658-68. [PMID: 21718691 DOI: 10.1016/j.bcp.2011.06.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 10/24/2022]
Abstract
Allosteric modulators for the G(i)-coupled A(3) adenosine receptor (AR) are of considerable interest as therapeutic agents and as pharmacological tools to probe various signaling pathways. In this study, we initially characterized the effects of several imidazoquinolinamine allosteric modulators (LUF5999, LUF6000 and LUF6001) on the human A(3) AR stably expressed in CHO cells using a cyclic AMP functional assay. These modulators were found to affect efficacy and potency of the agonist Cl-IB-MECA differently. LUF5999 (2-cyclobutyl derivative) enhanced efficacy but decreased potency. LUF6000 (2-cyclohexyl derivative) enhanced efficacy without affecting potency. LUF6001 (2-H derivative) decreased both efficacy and potency. We further compared the agonist enhancing effects of LUF6000 in several other A(3) AR-mediated events. It was shown that although LUF6000 behaved somewhat differently in various signaling pathways, it was more effective in enhancing the effects of low-efficacy than of high-efficacy agonists. In an assay of cyclic AMP accumulation, LUF6000 enhanced the efficacy of all agonists examined, but in the membrane hyperpolarization assay, it only enhanced the efficacy of partial agonists. In calcium mobilization, LUF6000 did not affect the efficacy of the full agonist NECA but was able to switch the nucleoside antagonist MRS542 into a partial agonist. In translocation of β-arrestin2, the agonist-enhancing effect LUF6000 was not pronounced. In an assay of ERK1/2 phosphorylation LUF6000 did not show any effect on the efficacy of Cl-IB-MECA. The differential effects of LUF6000 on the efficacy and potency of the agonist Cl-IB-MECA in various signaling pathway were interpreted quantitatively using a mathematical model.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Loos B, Lochner A, Engelbrecht AM. Autophagy in heart disease: a strong hypothesis for an untouched metabolic reserve. Med Hypotheses 2011; 77:52-7. [PMID: 21482032 DOI: 10.1016/j.mehy.2011.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/05/2011] [Accepted: 03/09/2011] [Indexed: 12/20/2022]
Abstract
Autophagy is a conserved catabolic process for long-lived proteins and organelles and is primarily responsible for nonspecific degradation of redundant or faulty cell components. Although autophagy has been described as the cell's major adaptive strategy in response to metabolic challenges, its influence on the cell's energy profile is poorly understood. In the myocardium, autophagy is active at basal levels and is crucial for maintaining its contractile function. Defects in the autophagic machinery cause cardiac dysfunction and heart failure. In this paper we propose that (1) autophagy contributes significantly to the metabolic balance sheet of the heart. (2) Increased autophagy contributes to an improved myocardial energy profile through changing the cardiac substrate preference. (3) Substrates generated through autophagy give rise to an alternative for ATP production with an oxygen-sparing effect. These elements identify autophagy in a new context of myocardial metabolic interregulation, which we discuss in the settings of myocardial infarction, heart failure and the diabetic heart. It is hoped that the hypothesis presented can lead to new insights aimed at exploiting autophagy to improve existing metabolic-based therapy in heart disease.
Collapse
Affiliation(s)
- B Loos
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | | | | |
Collapse
|
18
|
Veres G, Radovits T, Seres L, Horkay F, Karck M, Szabó G. Effects of inosine on reperfusion injury after cardiopulmonary bypass. J Cardiothorac Surg 2010; 5:106. [PMID: 21059208 PMCID: PMC2990750 DOI: 10.1186/1749-8090-5-106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 11/08/2010] [Indexed: 11/28/2022] Open
Abstract
Objective Inosine, a break-down product of adenosine has been recently shown to exert inodilatory and anti-inflammatory properties. Furthermore inosine might be a key substrate of pharmacological post-conditioning. In the present pre-clinical study, we investigated the effects of inosine on cardiac function during reperfusion in an experimental model of cardioplegic arrest and extracorporal circulation. Methods Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 minutes of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or inosine (100 mg/kg, n = 6). Left ventricular end-systolic pressure volume relationship (ESPVR) was measured by a combined pressure-volume-conductance catheter at baseline and after 60 minutes of reperfusion. Left anterior descendent coronary blood flow (CBF), endothelium-dependent vasodilatation to acetylcholine (ACh) and endothelium-independent vasodilatation to sodium nitroprusside (SNP) were also determined. Results The administration of inosine led to a significantly better recovery (given as percent of baseline) of ESPVR 90 ± 9% vs. 46 ± 6%, p < 0.05. CBF and was also significantly higher in the inosine group (56 ± 8 vs. 23 ± 4, ml/min, p < 0.05). While the vasodilatatory response to SNP was similar in both groups, ACh resulted in a significantly higher increase in CBF (58 ± 6% vs. 25 ± 5%, p < 0.05) in the inosine group. Conclusions Application of inosine improves myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Liu Z, Vuohelainen V, Tarkka M, Tenhunen J, Lappalainen RS, Narkilahti S, Paavonen T, Oksala N, Wu Z, Mennander A. Glutamate release predicts ongoing myocardial ischemia of rat hearts. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:217-24. [PMID: 20233036 DOI: 10.3109/00365511003663655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Glutamate metabolism is associated with myocardial ischemia-reperfusion, but it is not clear whether glutamate reveals ongoing ischemia (OI). We evaluated whether microdialysis would detect OI induced by coronary artery ligation in a rat cardiac transplantation model. MATERIAL AND METHODS A total of 24 Fischer 344 rats underwent syngeneic heterotopic cardiac transplantation. Of these, 16 rats underwent ligation of the left anterior coronary artery (LAD) of the heart to induce ongoing ischemia (OI), of which eight grafts received intra-aortally Gabapentin (12 mg/graft), a glutamate-release inhibitor and eight grafts with transplantation only served as the control. With a microdialysis catheter samples for glucose, lactate, pyruvate, glutamate, and glycerol were analysed spectrophotometrically. Histology and aquaporin 7 evaluations were performed after graft harvesting. RESULTS Glutamate was elevated after 15 min of reperfusion in OI as compared with Control (14.31 +/- 5.03 microM vs 6.75 +/- 2.21 microM, p = 0.05), respectively. Glycerol remained high in OI (61.89 +/- 46.13 microM to 15.84 +/- 0.85 microM, p = ns) and low in Control (12.33 +/- 3.36 microM to 5.52 +/- 0.25 microM, p = ns). Gabapentin decreased glutamate release from 7.32 +/- 1.57 microM to 2.71 +/- 0.64 microM, (p < 0.05) and resulted in decrease of glycerol levels from 24.64 +/- 4.03 microM to 10.43 +/- 2.49 microM, (p < 0.05) in OI. The expression of aquaporin 7 and histology confirmed OI. CONCLUSIONS We suggest that glutamate release may be used as an early indicator of OI after cardiac arrest.
Collapse
Affiliation(s)
- Ziyou Liu
- Heart Center, Heart Research, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baumgartner C, Lewis GD, Netzer M, Pfeifer B, Gerszten RE. A new data mining approach for profiling and categorizing kinetic patterns of metabolic biomarkers after myocardial injury. ACTA ACUST UNITED AC 2010; 26:1745-51. [PMID: 20483816 DOI: 10.1093/bioinformatics/btq254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The discovery of new and unexpected biomarkers in cardiovascular disease is a highly data-driven process that requires the complementary power of modern metabolite profiling technologies, bioinformatics and biostatistics. Clinical biomarkers of early myocardial injury are lacking. A prospective biomarker cohort study was carried out to identify, categorize and profile kinetic patterns of early metabolic biomarkers of planned myocardial infarction (PMI) and spontaneous (SMI) myocardial infarction. We applied a targeted mass spectrometry (MS)-based metabolite profiling platform to serial blood samples drawn from carefully phenotyped patients undergoing alcohol septal ablation for hypertrophic obstructive cardiomyopathy serving as a human model of PMI. Patients with SMI and patients undergoing catheterization without induction of myocardial infarction served as positive and negative controls to assess generalizability of markers identified in PMI. RESULTS To identify metabolites of high predictive value in tandem mass spectrometry data, we introduced a new feature selection method for the categorization of metabolic signatures into three classes of weak, moderate and strong predictors, which can be easily applied to both paired and unpaired samples. Our paradigm outperformed standard null-hypothesis significance testing and other popular methods for feature selection in terms of the area under the receiver operating curve and the product of sensitivity and specificity. Our results emphasize that this new method was able to identify, classify and validate alterations of levels in multiple metabolites participating in pathways associated with myocardial injury as early as 10 min after PMI. AVAILABILITY The algorithm as well as supplementary material is available for download at: www.umit.at/page.cfm?vpath=departments/technik/iebe/tools/bi
Collapse
Affiliation(s)
- Christian Baumgartner
- Research Group for Clinical Bioinformatics, Institute of Electrical, Electronic and Bioengineering, University for Health Sciences, Medical Informatics and Technology (UMIT), A-6060 Hall in Tirol, Austria.
| | | | | | | | | |
Collapse
|
21
|
Farvin K, Surendrara A, Anandan R. Protective Effect of Squalene on Certain Lysosomal Hydrolases and Free Amino
Acids in Isoprenaline-Induced Myocardial Infarction in Rats. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.97.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Povlsen JA, Løfgren B, Rasmussen LE, Nielsen JM, Nørregaard R, Kristiansen SB, Bøtker HE, Nielsen TT. CARDIOPROTECTIVE EFFECT OF l-GLUTAMATE IN OBESE TYPE 2 DIABETIC ZUCKER FATTY RATS. Clin Exp Pharmacol Physiol 2009; 36:892-8. [DOI: 10.1111/j.1440-1681.2009.05166.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Løfgren B, Povlsen JA, Rasmussen LE, Støttrup NB, Solskov L, Krarup PM, Kristiansen SB, Bøtker HE, Nielsen TT. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate. Exp Physiol 2009; 95:140-52. [PMID: 19717487 DOI: 10.1113/expphysiol.2009.049452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have found that cardioprotection by l-glutamate mimics protection by classical ischaemic preconditioning (IPC). We investigated whether the effect of IPC involves amino acid transamination and whether IPC modulates myocardial glutamate metabolism. In a glucose-perfused, isolated rat heart model subjected to 40 min global no-flow ischaemia and 120 min reperfusion, the effects of IPC (2 cycles of 5 min ischaemia and 5 min reperfusion) and continuous glutamate (20 mm) administration during reperfusion on infarct size and haemodynamic recovery were studied. The effect of inhibiting amino acid transamination was evaluated by adding the amino acid transaminase inhibitor amino-oxyacetate (AOA; 0.025 mm) during reperfusion. Changes in coronary effluent, interstitial (microdialysis) and intracellular glutamate ([GLUT](i)) concentrations were measured. Ischaemic preconditioning and postischaemic glutamate administration reduced infarct size to the same extent (41 and 40%, respectively; P < 0.05 for both), without showing an additive effect. Amino-oxyacetate abolished infarct reduction by IPC and glutamate, and increased infarct size in both control and IPC hearts in a dose-dependent manner. Ischaemic preconditioning increased [GLUT](i) before ischaemia (P < 0.01) and decreased the release of glutamate during the first 10 min of reperfusion (P = 0.03). A twofold reduction in [GLUT](i) from the preischaemic state to 45 min of reperfusion (P = 0.0001) suggested increased postischaemic glutamate utilization in IPC hearts. While IPC and AOA changed haemodynamics in accordance with infarct size, glutamate decreased haemodynamic recovery despite reduced infarct size. In conclusion, ischaemic cardioprotection of the normal and IPC-protected heart depends on amino acid transamination and activity of the malate-aspartate shuttle during reperfusion. Underlying mechanisms of IPC include myocardial glutamate metabolism.
Collapse
Affiliation(s)
- Bo Løfgren
- Department of Cardiology B, Arhus University Hospital, Skejby, 8200 Arhus N, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pöling J, Leptien A, Klaus S, Rees W, Kraatz E, Wiebe K, Bahlmann L. Analysis of the myocardial metabolism by microdialysis during open beating heart surgery. SCAND CARDIOVASC J 2009; 41:114-9. [PMID: 17454837 DOI: 10.1080/14017430601091706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Microdialysis allows the in vivo biochemical analysis of interstitial fluids. Our aim was to reveal in vivo reliable data of the myocardium during open beating heart surgery. DESIGN In ten patients undergoing routine beating coronary artery bypass grafting a microdialysis catheter was inserted into the left ventricle. Measurements were performed up to 45 min after anastomosis. Data were retrospectively compared with standard on-pump procedures. RESULTS The myocardial lactate remained stable during anastomosis, followed by a significant decrease of lactate after revascularisation. Myocardial glucose levels showed a slight decrease, followed by a significant increase after revascularisation. Myocardial purines showed a slight increase during anastomosis, followed by a sharp decrease during reperfusion period. CONCLUSIONS In contrast to on-pump procedures myocardial lactate and purines showed less increasing trend during the ischemic period, while myocardial glucose remained stable as a sign of preserved tissue blood flow. Myocardial microdialysis showed different values compared to the elective on-pump CABG and previous animal studies. This technique allows bedside monitoring of biochemical changes, suggesting its possible role as a clinical monitoring tool.
Collapse
Affiliation(s)
- Jochen Pöling
- Department of Cardiac Surgery, Schüchtermann-Klinik Bad Rothenfelde, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, Farrell L, Asnani A, Cyrille M, Ramanathan A, Shaham O, Berriz G, Lowry PA, Palacios IF, Taşan M, Roth FP, Min J, Baumgartner C, Keshishian H, Addona T, Mootha VK, Rosenzweig A, Carr SA, Fifer MA, Sabatine MS, Gerszten RE. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 2008; 118:3503-12. [PMID: 18769631 DOI: 10.1172/jci35111] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/09/2008] [Indexed: 11/17/2022] Open
Abstract
Emerging metabolomic tools have created the opportunity to establish metabolic signatures of myocardial injury. We applied a mass spectrometry-based metabolite profiling platform to 36 patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of planned myocardial infarction (PMI). Serial blood samples were obtained before and at various intervals after PMI, with patients undergoing elective diagnostic coronary angiography and patients with spontaneous myocardial infarction (SMI) serving as negative and positive controls, respectively. We identified changes in circulating levels of metabolites participating in pyrimidine metabolism, the tricarboxylic acid cycle and its upstream contributors, and the pentose phosphate pathway. Alterations in levels of multiple metabolites were detected as early as 10 minutes after PMI in an initial derivation group and were validated in a second, independent group of PMI patients. A PMI-derived metabolic signature consisting of aconitic acid, hypoxanthine, trimethylamine N-oxide, and threonine differentiated patients with SMI from those undergoing diagnostic coronary angiography with high accuracy, and coronary sinus sampling distinguished cardiac-derived from peripheral metabolic changes. Our results identify a role for metabolic profiling in the early detection of myocardial injury and suggest that similar approaches may be used for detection or prediction of other disease states.
Collapse
Affiliation(s)
- Gregory D Lewis
- Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kristiansen SB, Lfgren B, Stttrup NB, Kimose HH, Nielsen-Kudsk JE, Btker HE, Nielsen TT. CARDIOPROTECTION BY l-GLUTAMATE DURING POSTISCHAEMIC REPERFUSION: REDUCED INFARCT SIZE AND ENHANCED GLYCOGEN RESYNTHESIS IN A RAT INSULIN-FREE HEART MODEL. Clin Exp Pharmacol Physiol 2008; 35:884-8. [DOI: 10.1111/j.1440-1681.2008.04914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 2008; 52:117-23. [PMID: 18598890 DOI: 10.1016/j.jacc.2008.03.043] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 02/22/2008] [Accepted: 03/24/2008] [Indexed: 02/04/2023]
Abstract
Emerging technologies based on mass spectrometry and nuclear magnetic resonance enable the monitoring of hundreds of metabolites from tissues or body fluids, that is, "metabolomics." Because metabolites change rapidly in response to physiologic perturbations, they represent proximal reporters of disease phenotypes. The profiling of low molecular weight biochemicals, including lipids, sugars, nucleotides, organic acids, and amino acids, that serve as substrates and products in metabolic pathways is particularly relevant to cardiovascular diseases. In addition to serving as disease biomarkers, circulating metabolites may participate in previously unanticipated roles as regulatory signals with hormone-like functions. Cellular metabolic pathways are highly conserved among species, facilitating complementary functional studies in model organisms to provide insight into metabolic changes identified in humans. Although metabolic profiling technologies and methods of pattern recognition and data reduction remain under development, the coupling of metabolomics with other functional genomic approaches promises to extend our ability to elucidate biological pathways and discover biomarkers of human disease.
Collapse
Affiliation(s)
- Gregory D Lewis
- Center for Immunology and Inflammatory Diseases and Cardiology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
28
|
Barba I, Jaimez-Auguets E, Rodriguez-Sinovas A, Garcia-Dorado D. 1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:265-71. [DOI: 10.1007/s10334-007-0097-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 11/24/2007] [Accepted: 11/26/2007] [Indexed: 11/28/2022]
|
29
|
van der Meer P, Lipsic E, Henning RH, de Boer RA, Suurmeijer AJH, van Veldhuisen DJ, van Gilst WH. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail 2006; 6:853-9. [PMID: 15556046 DOI: 10.1016/j.ejheart.2004.03.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Revised: 02/03/2004] [Accepted: 03/03/2004] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recent studies show that erythropoietin (EPO) plays a protective role in brain ischemia. In this condition, administration of EPO protects neurons from ischemic damage. Recently, it has been shown that in patients with chronic heart failure (CHF), EPO treatment improved cardiac function. In the present study we assessed the role of EPO and EPO-receptor (EPO-R) in the heart. METHODS AND RESULTS We studied the presence and functionality of the EPO-R in isolated rat hearts in the Langendorff set-up. Hearts were perfused for 20 min with 10 U/ml EPO or vehicle. Immunohistochemistry revealed the presence of the EPO-R on endothelial cells, fibroblasts and to a lesser extent cardiomyocytes. Furthermore, perfusion with EPO resulted in a 50% increase in the phosphorylated MAP kinases p42/p44. To evaluate the protective role of EPO in cardiac ischemia, we performed low-flow (0.6 ml/min) ischemia/reperfusion experiments in isolated rat hearts. Administration of EPO (10 U/ml) reduced the cellular damage by 56% (P<0.05) during reperfusion, diminished apoptosis by 15% (P<0.05) and resulted in a significantly improved recovery of left ventricular pressure (P=0.02) and coronary flow (P=0.01). CONCLUSION The present data suggest that a functional EPO-R is present in rat adult cardiac tissue and that exogenous EPO administration improves cardiac function after ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Peter van der Meer
- Department of Cardiology, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Kawada T, Yamazaki T, Akiyama T, Shishido T, Mori H, Sugimachi M. Myocardial interstitial choline and glutamate levels during acute myocardial ischaemia and local ouabain administration. ACTA ACUST UNITED AC 2005; 184:187-93. [PMID: 15954986 DOI: 10.1111/j.1365-201x.2005.01444.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Noradrenaline (NA) uptake transporters are known to reverse their action during acute myocardial ischaemia and to contribute to ischaemia-induced myocardial interstitial NA release. By contrast, functional roles of choline and glutamate transporters during acute myocardial ischaemia remain to be investigated. Because both transporters are driven by the normal Na+ gradient across the plasma membrane in a similar manner to NA transporters, the loss of Na+ gradient would affect the transporter function, which would in turn alter myocardial interstitial choline and glutamate levels. The aim of the present study was to examine the effects of acute myocardial ischaemia and the inhibition of Na+,K+-ATPase on myocardial interstitial glutamate and choline levels. METHODS In anaesthetized cats, we measured myocardial interstitial glutamate and choline levels while inducing acute myocardial ischaemia or inhibiting Na+,K+-ATPase by local administration of ouabain. RESULTS The choline level was not changed significantly by ischaemia (from 0.93 +/- 0.06 to 0.82 +/- 0.13 microm, mean +/- SE, n = 6) and was decreased slightly by ouabain (from 1.30 +/- 0.06 to 1.05 +/- 0.07 microm, P < 0.05, n = 6). The glutamate level was significantly increased from 9.5 +/- 1.9 to 34.7 +/- 6.1 microm by ischaemia (P < 0.01, n = 6) and from 8.9 +/- 1.0 to 15.9 +/- 2.3 microm by ouabain (P < 0.05, n = 6). Inhibition of glutamate transport by trans-L-pyrrolidine-2,4-dicarboxylate (t-PDC) suppressed ischaemia- and ouabain-induced glutamate release. CONCLUSION Myocardial interstitial choline level was not increased by acute myocardial ischaemia or by Na+,K+-ATPase inhibition. By contrast, myocardial interstitial glutamate level was increased by both interventions. The glutamate transporter contributed to glutamate release via retrograde transport.
Collapse
Affiliation(s)
- T Kawada
- Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|