1
|
Zhou X, He D, Yan X, Chen X, Li R, Zhang G, Wang J. Moxonidine inhibits excitatory inputs to airway vagal preganglionic neurons via activation of both α 2-adrenoceptors and imidazoline I1 receptors. Brain Res 2020; 1732:146695. [PMID: 32007398 DOI: 10.1016/j.brainres.2020.146695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
As an imidazoline I1 receptor agonist with very weak binding affinity for α2-adrenoceptors, moxonidine is commonly used in the treatment of hypertension. Moxonidine also has been implicated to act centrally to reduce airway vagal outflow. However, it is unknown at which central sites moxonidine acts to affect airway vagal activity, and how moxonidine takes effect at synaptic and receptor levels. In this study, airway vagal preganglionic neurons (AVPNs) were retrogradely labeled in neonatal rats from the intrathoracic trachea; retrogradely labeled AVPNs in the external formation of the nucleus ambiguus (NA) were identified in rhythmically active medullary slices using whole-cell patch-clamp techniques; and the effects of moxonidine on the spontaneous excitatory postsynaptic currents (EPSCs) of AVPNs were observed at synaptic level. The results show that moxonidine (10 μmol·L-1) significantly inhibited the frequency of spontaneous EPSCs in both inspiratory-activated and inspiratory-inhibited AVPNs. This effect was partially blocked by SKF-86466 (10 μmol·L-1), a highly selective antagonist of α2-adrenoceptors, or AGN-192403, a selective antagonist of imidazoline I1 receptors, and was completely blocked by efaroxan (10 μmol·L-1), an antagonist of both α2-adrenoceptors and imidazoline I1 receptors. These results demonstrate that moxonidine inhibits the excitatory inputs to AVPNs via activation of both α2-adrenoceptors and imidazoline I1 receptors, and suggest that physiologically both of these two types of receptors are involved in the central regulation of airway vagal activity at preganglionic level. Moxonidine might be potentially useful in diseases with aberrant airway vagal activity such as asthma and chronic obstructive diseases.
Collapse
Affiliation(s)
- Xujiao Zhou
- Eye Institute in Eye & ENT Hospital, and NHC Key Laboratory of Myopia, Fudan University, China; Shanghai Key Laboratory of Visual Impairment and Restoration, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Ding He
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Xianxia Yan
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China
| | - Rui Li
- Department of Nursing, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, China.
| |
Collapse
|
2
|
Chen Y, Guo Y, Yan X, Zeng M, Chen H, Qiu D, Wang J. Orexin-A Excites Airway Vagal Preganglionic Neurons via Activation of Orexin Receptor Type 1 and Type 2 in Rats. Front Cell Neurosci 2019; 13:478. [PMID: 31708749 PMCID: PMC6819310 DOI: 10.3389/fncel.2019.00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022] Open
Abstract
Airway vagal nerves play a predominant role in the neural control of the airway, and augmented airway vagal activity is known to play important roles in the pathogenesis of some chronic inflammatory airway diseases. Several lines of evidence indicate that dysfunctional central orexinergic system is closely related to the severity of airway diseases, however, whether orexins affect airway vagal activity is unknown. This study investigates whether and how orexin-A regulates the activity of medullary airway vagal preganglionic neurons (AVPNs). The expression of orexin receptor type 1 (OX1R) and type 2 (OX2R) was examined using immunofluorescent staining. The effects of orexin-A on functionally identified inspiratory-activated AVPNs (IA-AVPNs), which are critical in the control of airway smooth muscle, were examined using patch-clamp in medullary slices of neonatal rats. Airway vagal response to injection of orexin-A into the magna cisterna was examined using plethysmography in juvenile rats. The results show that retrogradely labeled AVPNs were immunoreactive to anti-OX1R antibody and anti-OX2R antibody. Orexin-A dose-dependently depolarized IA-AVPNs and increased their firing rate. In synaptically isolated IA-AVPNs, the depolarization induced by orexin-A was blocked partially by OX1R antagonist SB-334867 or OX2R antagonist TCS OX2 29 alone, and completely by co-application of both antagonists. The orexin-A-induced depolarization was also mostly blocked by Na+/Ca2+ exchanger inhibitor KB-R7943. Orexin-A facilitated the glutamatergic, glycinergic and GABAergic inputs to IA-AVPNs, and the facilitation of each type of input was blocked partially by SB-334867 or TCS OX2 29 alone, and completely by co-application of both antagonists. Injection of orexin-A into the magna cisterna of juvenile rats significantly increased the inspiratory and expiratory resistance of the airway and consequently decreased the dynamic compliance of the lungs, all of which were prevented by atropine sulfate or bilateral vagotomy. These results demonstrate that orexin-A excites IA-AVPNs via activation of both OX1R and OX2R, and suggest that increased central synthesis/release of orexins might participate in the pathogenesis of airway diseases via over-activation of AVPNs.
Collapse
Affiliation(s)
- Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhong Guo
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongying Qiu
- Department of Gerontology, Fudan University Affiliated Zhongshan Hospital, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chen X, Zeng M, He D, Yan X, Chen H, Chen Y, Xia C, Wang J, Shen L, Zhu D, Wang J. Asthmatic Augmentation of Airway Vagal Activity Involves Decreased Central Expression and Activity of CD73 in Rats. ACS Chem Neurosci 2019; 10:2809-2822. [PMID: 30913879 DOI: 10.1021/acschemneuro.9b00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The severity of asthma is closely related to the intensity of airway vagal activity; however, it is unclear how airway vagal activity is centrally augmented in asthma. Here we report that in an asthma model of male Sprague-Dawley rats, the expression and activity of ecto-5'-nucleotidase (CD73) were decreased in airway vagal centers, ATP concentration in cerebral spinal fluid was increased, and the inhibitory and excitatory airway vagal responses to intracisternally injected ATP (5 μmol) and CD73 inhibitor AMPCP (5 μmol), respectively, were attenuated. In airway vagal preganglionic neurons (AVPNs) identified in medullary slices of neonatal Sprague-Dawley rats, AMPCP (100 μmol·L-1) caused excitatory effects, as are shown in patch-clamp by depolarization, increased neuronal discharge, and facilitated spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, exogenous ATP (100 μmol·L-1, 1 mmol·L-1) primarily caused inhibitory effects, which are similar to those induced by exogenous adenosine (100 μmol·L-1). Adenosine A1 receptor antagonist CPT (5 μmol·L-1) blocked the inhibition of sEPSCs induced by 100 μmol·L-1 exogenous ATP and that by 100 μmol·L-1 exogenous adenosine, whereas 50 μmol·L-1 CPT converted the inhibition of sEPSCs induced by 1 mmol·L-1 ATP to facilitation that was blocked by addition of P2X receptor antagonist PPADS (20 μmol·L-1). These results demonstrate that in rat, the sEPSCs of AVPNs are facilitated by extracellular ATP via activation of P2X receptors and inhibited by extracellular adenosine via activation of A1 receptors; in experimental asthma, decreased CD73 expression and activity in airway vagal centers contribute to the augmentation of airway vagal activity through imbalanced ATP/ADO modulation of AVPNs.
Collapse
Affiliation(s)
- Xingxin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jijiang Wang
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Hou L, Zhang M, Zhang X, Liu Z, Zhang P, Qiu D, Zhu L, Zhou X. Inspiratory-Activated Airway Vagal Preganglionic Neurones Excited by Thyrotropin-Releasing Hormone via Multiple Mechanisms in Neonatal Rats. Front Physiol 2018; 9:881. [PMID: 30065655 PMCID: PMC6056682 DOI: 10.3389/fphys.2018.00881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
The airway vagal preganglionic neurons (AVPNs) providing projections to intrinsic tracheobronchial ganglia are considered to be crucial to modulation of airway resistance in physiological and pathological states. AVPNs classified into inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs) are regulated by thyrotropin-releasing hormone (TRH)-containing terminals. TRH causes a direct excitatory current and attenuates the phasic inspiratory glycinergic inputs in II-AVPNs, however, whether and how TRH influences IA-AVPNs remains unknown. In current study, TRH regulation of IA-AVPNs and its mechanisms involved were investigated. Using retrogradely fluorescent labeling method and electrophysiology techniques to identify IA-AVPNs in brainstem slices with rhythmic inspiratory hypoglossal bursts recorded by a suction electrode, the modulation of TRH was observed with patch-clamp technique. The findings demonstrate that under voltage clamp configuration, TRH (100 nM) caused a slow excitatory inward current, augmented the excitatory synaptic inputs, progressively suppressed the inhibitory synaptic inputs and elicited a distinctive electrical oscillatory pattern (OP). Such a current and an OP was independent of presynaptic inputs. Carbenoxolone (100 μM), a widely used gap junction inhibitor, fully suppressed the OP with persistence of TRH-induced excitatory slow inward current and augment of the excitatory synaptic inputs. Both tetrodotoxin (1 μM) and riluzole (20 μM) functioned to block the majority of the slow excitatory inward current and prevent the OP, respectively. Under current clamp recording, TRH caused a slowly developing depolarization and continuously progressive oscillatory firing pattern sensitive to TTX. TRH increased the firing frequency in response to injection of a square-wave current. The results suggest that TRH excited IA-AVPNs via the following multiple mechanisms: (1) TRH enhances the excitatory and depresses the inhibitory inputs; (2) TRH induces an excitatory postsynaptic slow inward current; (3) TRH evokes a distinctive OP mediated by gap junction.
Collapse
Affiliation(s)
- Lili Hou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyi Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenwei Liu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pengyu Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Corticotropin-releasing hormone modulates airway vagal preganglionic neurons of Sprague–Dawley rats at multiple synaptic sites via activation of its type 1 receptors: Implications for stress-associated airway vagal excitation. Neuroscience 2017; 355:101-112. [DOI: 10.1016/j.neuroscience.2017.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 01/24/2023]
|
6
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
7
|
Ge D, Yan X, Guo Y, Chen X, Guan R, Chen Y, Qiu D, Wang J. Activation of α1-adrenoceptors facilitates excitatory inputs to medullary airway vagal preganglionic neurons. J Appl Physiol (1985) 2015. [PMID: 26205539 DOI: 10.1152/japplphysiol.00045.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, the neural control of airway smooth muscle is dominated by a subset of airway vagal preganglionic neurons in the ventrolateral medulla. These neurons are physiologically modulated by adrenergic/noradrenergic projections, and weakened α₂-adrenergic inhibition of them is indicated to participate in the pathogenesis and exacerbation of asthma. This study tests whether these neurons are modulated by α₁-adrenoceptors, and if so, how. In anesthetized adult rats, microinjection of the α₁A-adrenoceptor agonist A61603 (1 pmol) unilaterally into the medullary region containing these neurons caused a significant increase in airway resistance, which was prevented by intraperitoneal atropine (0.5 mg/kg). In rhythmically firing medullary slices of newborn rats, A61603 (10 nM) caused depolarization in both the inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons that were retrogradely labeled, and a significant increase in the spontaneous firing rate. Under voltage clamp, A61603 significantly enhanced the spontaneous excitatory inputs to both types of neurons and caused a tonic inward current in the inspiratory-activated neurons along with significantly increased peak amplitude of the inspiratory inward currents. The responses in vitro were prevented by α₁A-adrenoceptor antagonist RS100329 (1 μM), which alone significantly inhibited the spontaneous excitatory inputs to both types of the neurons. After pretreatment with tetrodotoxin (1 μM), A61603 (10 or 100 nM) had no effect on either type of neuron. We conclude that in rats, activation of α₁-adrenoceptors in the medullary region containing airway vagal preganglionic neurons increases airway vagal tone, and that this effect is primarily mediated by facilitation of the excitatory inputs to the preganglionic neurons.
Collapse
Affiliation(s)
- Dengyun Ge
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhong Guo
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xingxin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; and
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; and
| | - Dongying Qiu
- Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; and
| |
Collapse
|
8
|
Abstract
Autonomic neural control of the intrathoracic airways aids in optimizing air flow and gas exchange. In addition, and perhaps more importantly, the autonomic nervous system contributes to host defense of the respiratory tract. These functions are accomplished by tightly regulating airway caliber, blood flow, and secretions. Although both the sympathetic and parasympathetic branches of the autonomic nervous system innervate the airways, it is the later that dominates, especially with respect to control of airway smooth muscle and secretions. Parasympathetic tone in the airways is regulated by reflex activity often initiated by activation of airway stretch receptors and polymodal nociceptors. This review discusses the preganglionic, ganglionic, and postganglionic mechanisms of airway autonomic innervation. Additionally, it provides a brief overview of how dysregulation of the airway autonomic nervous system may contribute to respiratory diseases.
Collapse
|
9
|
Zakharova EI, Germanova EL, Kopaladze RA, Dudchenko AM. Central cholinergic systems in the mechanisms of hypoxic preconditioning: Diverse pathways of synaptic reorganization in vivo. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abstract
The airways and lungs are innervated by both sympathetic and parasympathetic nerves. Cholinergic parasympathetic innervation is well conserved in the airways while the distribution of noncholinergic parasympathetic and adrenergic sympathetic nerves varies considerably amongst species. Autonomic nerve function is regulated primarily through reflexes initiated upon bronchopulmonary vagal afferent nerves. Central regulation of autonomic tone is poorly described but some key elements have been defined.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
11
|
Vagal projections to the pylorus in the domestic pig (Sus scrofa domestica). Auton Neurosci 2012; 171:21-7. [PMID: 23103024 DOI: 10.1016/j.autneu.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/15/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023]
Abstract
The goal of the present study was to examine the precise localization of the brainstem motor and primary sensory (nodose ganglion) vagal perikarya supplying the pylorus in the domestic pig. Using the Fast Blue retrograde tracing technique it has been established that all the vagal motor neurons projecting to the pylorus (about 337 ± 59 cells per animal) were localized bilaterally in the dorsal motor nucleus of the vagus nerve (DMX, 171 - left; 167 - right) and all other regions of the porcine brainstem were devoid of labeled neurons. The vagal perikarya supplying the porcine pylorus were dispersed throughout the whole rostro-caudal extent of the DMX and no somatotopic organization of these neurons was observed. The labeled neurons occurred individually or in groups up to five cell bodies per nuclear transverse cross section area (in the middle part of the nucleus). An immunocytochemical staining procedure disclosed that all Fast Blue labeled motor neurons were choline acetyltransferase (ChAT) immunoreactive, however some differences in immunofluorescence intensity occurred. The primary sensory vagal neurons were observed within the left (215±37 cells/animal) and right (148±21 cells/animal) nodose ganglion. The traced neurons were dispersed throughout the ganglia and no characteristic arrangement of these neurons was observed. The present experiment precisely indicates the sources of origin of the vagal motor and primary sensory neurons supplying the pyloric region in the pig, the animal of an increasing significance in biomedical research.
Collapse
|
12
|
Zhou X, Chen Y, Ge D, Yuan W, Wang J. Nicotine enhances both excitatory and inhibitory synaptic inputs to inspiratory-activated airway vagal preganglionic neurons. Exp Physiol 2012; 98:67-80. [PMID: 22750421 DOI: 10.1113/expphysiol.2012.066589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The airway vagal preganglionic neurons (AVPNs) supply the essential excitatory drive to the postganglionic neurons and dominate the neural control of the airway both physiologically and pathophysiologically. The AVPNs express multiple subunits of nicotinic acetylcholine receptors (nAChRs), but the influences of exogenous nicotine and endogenous acetylcholine are unknown. This study examined the effects of nicotine and endogenous acetylcholine on retrogradely labelled, functionally identified inspiratory-activated AVPNs (IA-AVPNs) using the patch-clamp technique. Nicotine (10 μmol l(-1)) significantly increased the frequency and amplitude of the spontaneous EPSCs of IA-AVPNs, and these effects were insensitive to methyllycaconitine (MLA, 100 nmol l(-1)), an antagonist of the α7 type of nAChR, but was prevented by dihydro-β-erythroidine (DHβE, 3 μmol l(-1)), an antagonist of the α4β2 type of nAChR. Nicotine caused a tonic inward current in IA-AVPNs, which was reduced by MLA or DHβE alone, but was not abolished by co-application of MLA and DHβE. Nicotine caused a significant increase in the frequency of GABAergic and glycinergic spontaneous IPSCs and significantly increased the amplitude of glycinergic spontaneous IPSCs, all of which were prevented by DHβE. Nicotine had no effects on the miniature EPSCs or miniature IPSCs following pretreatment with TTX. Under current clamp, nicotine caused depolarization and increased the firing rate of IA-AVPNs during inspiratory intervals. Neostigmine (10 μmol l(-1)), an acetylcholinesterase inhibitor, mimicked the effects of nicotine. These results demonstrate that nicotine and endogenous ACh enhance the excitatory and inhibitory synaptic inputs of IA-AVPNs and cause a postsynaptic excitatory current and that the nicotinic effects are mediated presynaptically by activation of the α4β2 type of nAChR and postsynaptically by activation of multiple nAChRs, including α7 and α4β2 types.
Collapse
Affiliation(s)
- Xujiao Zhou
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
13
|
Chen Y, Wang L, Zhou X, Ge D, Yuan W, Wang J. Agonist of 5-HT1A/7 receptors but not that of 5-HT2 receptors disinhibits tracheobronchial-projecting airway vagal preganglionic neurons of rats. Neuroscience 2012; 207:78-87. [PMID: 22342968 DOI: 10.1016/j.neuroscience.2012.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/16/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
The vagus nerves supply the major cholinergic tone to airway smooth muscles physiologically and play critical roles in the genesis of airway hyperreactivity under some pathological conditions. Postganglionic airway cholinergic tone relies largely on the ongoing activity of medullary airway vagal preganglionic neurons (AVPNs), of which the tracheobronchial-projecting ones are primarily located in the external formation of the nucleus ambiguus (eNA). AVPNs are regulated by 5-HT, and 5-HT(1A/7) and 5-HT(2) receptors have been indicated to be involved. But the mechanisms at synaptic level are unknown. In the present study, tracheobronchial-projecting AVPNs (T-AVPNs) were retrogradely labeled from the trachea wall; fluorescently labeled T-AVPNs in the eNA were recorded with whole-cell voltage patch clamp; and the effects of 5-HT(1A/7) receptor agonist (±)-8-Hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT) (1 μmol L(-1)) and 5-HT(2) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10 μmol L(-1)) on the synaptic inputs were examined. 8-OH-DPAT significantly inhibited the GABAergic and glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) of T-AVPNs in both the frequency and amplitude but had no effect on the GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs). The 8-OH-DPAT inhibition of the GABAergic and glycinergic sIPSCs was prevented by 5-HT(1A/7) receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY-100635) (1 μmol L(-1)). 8-OH-DPAT had no effect on the glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) and caused no alterations in the baseline current and input resistance of T-AVPNs. DOI had no effect on any types of the synaptic inputs of T-AVPNs. These results suggest that 5-HT(1A/7) receptor agonist causes "disinhibition" of T-AVPNs, which might, in part, account for the reflex increase of airway resistance.
Collapse
Affiliation(s)
- Y Chen
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Chen Y, Hou L, Zhou X, Qiu D, Yuan W, Zhu L, Wang J. Inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons in the ventrolateral medulla of neonatal rat are different in intrinsic electrophysiological properties. Respir Physiol Neurobiol 2012; 180:323-30. [PMID: 22230746 DOI: 10.1016/j.resp.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 11/26/2022]
Abstract
This study investigates the firing properties of the inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons located in the external formation of the nucleus ambiguus. The results showed that inspiratory-activated and inspiratory-inhibited neurons are distributed with different density and site preference in this area. Inspiratory-inhibited neurons exhibit significantly more positive resting membrane potential, more negative voltage threshold and lower minimal current required to evoke an action potential under current clamp. The afterhyperpolarization in inspiratory-activated neurons was blocked by apamin, a blocker of the small-conductance Ca(2+)-activated K(+) channels; and that in inspiratory-inhibited neurons by charybdotoxin, a blocker of the large-conductance Ca(2+)-activated K(+) channels. Under voltage clamp, depolarizing voltage steps evoked tetrodotoxin-sensitive rapid inward sodium currents, 4-aminopyridine-sensitive outward potassium transients and lasting outward potassium currents. 4-Aminopyridine partially blocked the lasting outward potassium currents of inspiratory-activated neurons but was ineffective on those of inspiratory-inhibited neurons. These findings suggest that inspiratory-activated and inspiratory-inhibited neurons are differentially organized and express different types of voltage-gated ion channels.
Collapse
Affiliation(s)
- Yonghua Chen
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Hou L, Zhou X, Chen Y, Qiu D, Zhu L, Wang J. Thyrotropin-releasing hormone causes a tonic excitatory postsynaptic current and inhibits the phasic inspiratory inhibitory inputs in inspiratory-inhibited airway vagal preganglionic neurons. Neuroscience 2011; 202:184-91. [PMID: 22198018 DOI: 10.1016/j.neuroscience.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 10/29/2011] [Accepted: 12/03/2011] [Indexed: 11/17/2022]
Abstract
The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA), which include the inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs), predominate in the control of the trachea and bronchia. The AVPNs receive particularly dense inputs from terminals containing thyrotropin-releasing hormone (TRH). TRH microinjection into the nucleus ambiguus (NA) caused constriction of the tracheal smooth muscles. However, it is unknown whether TRH affects all subtypes of the AVPNs in the eNA, and as a result affects the control of all types of target tissues in the airway (smooth muscles, submucosal glands, and blood vessels). It is also unknown how TRH affects the AVPNs at neuronal and synaptic levels. In this study, the AVPNs in the eNA were retrogradely labeled from the extrathoracic trachea, the II-AVPNs were identified in rhythmically firing brainstem slices, and the effects of TRH were examined using patch-clamp. TRH (100 nmol L(-1)) enhanced both the rhythm and the intensity of the hypoglossal bursts, and caused a tonic excitatory inward current in the II-AVPNs at a holding voltage of -80 mV. The frequency of the spontaneous excitatory postsynaptic currents (EPSCs) in the II-AVPNs, which showed no respiratory-related change in a respiratory cycle, was not significantly changed by TRH. At a holding voltage of -50 mV, the II-AVPNs showed both spontaneous and phasic inspiratory (outward) inhibitory postsynaptic currents (IPSCs). TRH had no effect on the spontaneous IPSCs but significantly attenuated the phasic inspiratory outward currents, in both the amplitude and area. After focal application of strychnine, an antagonist of glycine receptors, to the II-AVPNs, the spontaneous IPSCs were extremely scarce and the phasic inspiratory inhibitory currents were abolished; and further application of TRH had no effect on these currents. Under current clamp configuration, TRH caused a depolarization and increased the firing rate of the II-AVPNs during inspiratory intervals. These results demonstrate that TRH affects the II-AVPNs both postsynaptically via a direct excitatory current and presynaptically via attenuation of the phasic glycinergic synaptic inputs.
Collapse
Affiliation(s)
- L Hou
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, 138 Yi-Xue-Yuan Road, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
16
|
McGovern AE, Mazzone SB. Characterization of the vagal motor neurons projecting to the Guinea pig airways and esophagus. Front Neurol 2010; 1:153. [PMID: 21188271 PMCID: PMC3007679 DOI: 10.3389/fneur.2010.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/04/2010] [Indexed: 01/07/2023] Open
Abstract
Distinct parasympathetic postganglionic neurons mediate contractions and relaxations of the guinea pig airways. We set out to characterize the vagal inputs that regulate contractile and relaxant airway parasympathetic postganglionic neurons. Single and dual retrograde neuronal tracing from the airways and esophagus revealed that distinct, but intermingled, subsets of neurons in the compact formation of the nucleus ambiguus (nAmb) innervate these two tissues. Tracheal and esophageal neurons identified in the nAmb were cholinergic. Esophageal projecting neurons also preferentially (greater than 70%) expressed the neuropeptide CGRP, but could not otherwise be distinguished immunohistochemically from tracheal projecting preganglionic neurons. Few tracheal or esophageal neurons were located in the dorsal motor nucleus of the vagus. Electrical stimulation of the vagi in vitro elicited stimulus dependent tracheal and esophageal contractions and tracheal relaxations. The voltage required to evoke tracheal smooth muscle relaxation was significantly higher than that required for evoking either tracheal contractions or esophageal longitudinal striated muscle contractions. Together our data support the hypothesis that distinct vagal preganglionic pathways regulate airway contractile and relaxant postganglionic neurons. The relaxant preganglionic neurons can also be differentiated from the vagal motor neurons that innervate the esophageal striated muscle.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland St Lucia, QLD, Australia
| | | |
Collapse
|
17
|
Kc P, Martin RJ. Role of central neurotransmission and chemoreception on airway control. Respir Physiol Neurobiol 2010; 173:213-22. [PMID: 20359553 DOI: 10.1016/j.resp.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/14/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
This review summarizes work on central neurotransmission, chemoreception and CNS control of cholinergic outflow to the airways. First, we describe the neural transmission of bronchoconstrictive signals from airway afferents to the airway-related vagal preganglionic neurons (AVPNs) via the nucleus of the solitary tract (nTS) and, second, we characterize evidence for a modulatory effect of excitatory glutamatergic, and inhibitory GABAergic, noradrenergic and serotonergic pathways on AVPN output. Excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second order neurons within the nTS, via a glutamate-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling pathway. These nTS neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command through descending fibers and airway intramural ganglia to airway smooth muscle, submucosal secretory glands, and the vasculature. The strength and duration of this reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs. In addition, central noradrenergic and serotonergic inhibitory pathways appear to participate in the regulation of cholinergic drive to the tracheobronchial system. Down-regulation of these inhibitory influences results in a shift from inhibitory to excitatory drive, which may lead to increased excitability of AVPNs, heightened airway responsiveness, greater cholinergic outflow to the airways and consequently bronchoconstriction. In summary, centrally coordinated control of airway tone and respiratory drive serve to optimize gas exchange and work of breathing under normal homeostatic conditions. Greater understanding of this process should enhance our understanding of its disruption under pathophysiologic states.
Collapse
Affiliation(s)
- Prabha Kc
- Division of Neonatology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-6010, USA.
| | | |
Collapse
|
18
|
Kohn AZ, Hoxha Z, Balan KV, Martin RJ, Haxhiu MA, Wilson CG, Mayer CA, Kc P. Developmental changes in brainstem neurons regulating lower airway caliber. Pediatr Res 2009; 65:509-13. [PMID: 19190536 PMCID: PMC2761216 DOI: 10.1203/pdr.0b013e31819da270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Premature infants are at risk for lower airway obstruction; however, maturation of reflex pathways regulating lower airway patency is inadequately studied. We hypothesized that postnatal maturation causes developmental change in brainstem efferent airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) that project to the airways and in pulmonary afferent fibers that terminate in the nucleus tractus solitarius (NTS). Ferrets aged 7, 14, 21, and 42 d received intrapulmonary injection of cholera toxin (CT)-beta subunit, a transganglionic retrograde tracer. Five days later, their brainstem was processed for dual immunolabeling of CT-beta and the cholinergic marker, choline acetyl transferase. CT-beta-labeled AVPNs and CT-beta-labeled afferent fiber optical density (OD) were analyzed. There was a significantly higher CT-beta-labeled cell number within the rNA at the youngest compared with older ages. All efferent CT-beta-labeled cells expressed choline acetyl transferase. OD of CT-beta-labeled afferent fibers was also higher at 7 d compared with 14 d. We conclude that the number of efferent AVPNs and afferent fiber OD both diminish over the second postnatal week. We speculate that exposure to injurious agents in early postnatal life may inhibit natural remodeling and thereby enhance later vulnerability to airway hyperreactivity.
Collapse
Affiliation(s)
- Amitai Z Kohn
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Haxhiu MA, Kc P, Balan KV, Wilson CG, Martin RJ. Modeling of sleep-induced changes in airway function: implication for nocturnal worsening of bronchial asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:469-74. [PMID: 18085319 DOI: 10.1007/978-0-387-73693-8_82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Here we describe the model of sleep-induced worsening of airway function in patients with airway disorders. Our model is based on the noradrenergic pathways that link central neuronal structures responsible for alternating wakefulness and sleep with the neuronal networks regulating the activity of airway-related vagal preganglionic neurons (AVPNs). Our previous studies showed that cholinergic outflow to the airways depend on the activity of inhibitory inputs to AVPNs. Major inhibitory cell groups, regulating AVPNs discharge, include brainstem noradrenaline (NA)-containing cells receiving projections from the hypothalamic sleep-promoting neurons of the ventrolateral preoptic region (VLPO). When activated, VLPO cells, using GABA and/or galanin as mediators, downregulate the activity of inhibitory NA neurons projecting to AVPNs. Therefore, changes that occur during sleep lead to a shift from inhibitory to excitatory transmission of the AVPNs, thereby increasing cholinergic outflow to the airways. Our model, based on neuroanatomical and molecular studies, and physiology experiments, can be used to explain sleep-related worsening of bronchial asthma and might contribute to development of clinically meaningful treatment for patients with sleep-induced worsening of airway function and respiratory symptoms.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
20
|
Wilson CG, Akhter S, Mayer CA, Kc P, Balan KV, Ernsberger P, Haxhiu MA. Allergic lung inflammation affects central noradrenergic control of cholinergic outflow to the airways in ferrets. J Appl Physiol (1985) 2007; 103:2095-104. [PMID: 17872402 DOI: 10.1152/japplphysiol.01182.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain stem noradrenergic cell groups mediating autonomic responses to stress project to airway-related vagal preganglionic neurons (AVPNs). In ferrets, their activation produces withdrawal of cholinergic outflow to the airways via release of norepinephrine and activation of alpha(2A)-adrenergic receptors (alpha(2A)-AR) expressed by AVPNs. In these studies, we examined the effects of allergen exposure of the airway (AE) with ovalbumin on noradrenergic transmission regulating the activity of AVPNs and, consequently, airway smooth muscle tone. Experiments were performed in vehicle control (Con) and AE ferrets. Microperfusion of an alpha(2A)-AR agonist (guanabenz) in close proximity to AVPNs elicited more pronounced effects in Con than AE ferrets, including a decrease in unit activity and reflexly evoked responses of putative AVPN neurons with a corresponding decrease in cholinergic outflow to the airways. Although no differences were found in the extent of noradrenergic innervation of the AVPNs, RT-PCR and Western blot studies demonstrated that AE and repeated exposure to antigen significantly reduced expression of alpha(2A)-ARs at message and protein levels. These findings indicate that, in an animal model of allergic asthma, sensitization and repeated challenges with a specific allergen diminish central inhibitory noradrenergic modulation of AVPNs, possibly via downregulation of alpha(2A)-AR expression by these neurons.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 2007; 133:35-54. [PMID: 17350348 PMCID: PMC1989147 DOI: 10.1016/j.autneu.2007.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/20/2007] [Accepted: 01/22/2007] [Indexed: 11/20/2022]
Abstract
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.
Collapse
Affiliation(s)
- Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Room 450, Bldg. 420, Main Quad, Stanford University, Stanford, CA 94305-2130, USA.
| |
Collapse
|
22
|
Dehkordi O, Kc P, Balan KV, Haxhiu MA. Airway-related vagal preganglionic neurons express multiple nicotinic acetylcholine receptor subunits. Auton Neurosci 2006; 128:53-63. [PMID: 16616705 PMCID: PMC1828904 DOI: 10.1016/j.autneu.2006.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/21/2006] [Indexed: 12/27/2022]
Abstract
Nicotine acting centrally increases bronchomotor tone and airway secretion, suggesting that airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) express nicotinic acetylcholine receptors (nAChRs). In the present study, we examined the three main functionally characterized subtypes of nAChRs in the CNS, the alpha7 homomeric and alpha4beta2 heteromeric receptors. First, we characterized the expression of these subunits at the message (mRNA) and protein levels in brain tissues taken from the rNA region, the site where AVPNs are located. In addition, double labeling fluorescent immunohistochemistry and confocal laser microscopy were used to define the presence of alpha7, alpha4, and beta2 nAChRs on AVPNs that were retrogradely labeled with cholera toxin beta subunit (CTb), injected into the upper lung lobe (n=4) or extrathoracic trachea (n=4). Our results revealed expression of all three studied subunits at mRNA and protein levels within the rNA region. Furthermore, virtually all identified AVPNs innervating intrapulmonary airways express alpha7 and alpha4 nAChR subunits. Similarly, a majority of labeled AVPNs projecting to extrathoracic trachea contain alpha7 and beta2 subunits, but less than half of them show detectable alpha4 nAChR traits. These results suggest that AVPNs express three major nAChR subunits (alpha7, alpha4, and beta2) that could assemble into functional homologous or heterologous pentameric receptors, mediating fast and sustained nicotinic effects on cholinergic outflow to the airways.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Surgery, Howard University, Washington, DC, United States.
| | | | | | | |
Collapse
|
23
|
Haxhiu MA, Rust CF, Brooks C, Kc P. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma. Respir Physiol Neurobiol 2005; 151:1-30. [PMID: 16198640 DOI: 10.1016/j.resp.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/19/2022]
Abstract
This review summarizes the recent neuroanatomical and physiological studies that form the neural basis for the state-dependent changes in airway resistance. Here, we review only the interactions between the brain regions generating quiet (non-rapid eye movement, NREM) and active (rapid eye movement, REM) sleep stages and CNS pathways controlling cholinergic outflow to the airways. During NREM and REM sleep, bronchoconstrictive responses are heightened and conductivity of the airways is lower as compared to the waking state. The decrease in conductivity of the lower airways parallels the sleep-induced decline in the discharge of brainstem monoaminergic cell groups and GABAergic neurons of the ventrolateral periaqueductal midbrain region, all of which provide inhibitory inputs to airway-related vagal preganglionic neurons (AVPNs). Withdrawal of central inhibitory influences to AVPNs results in a shift from inhibitory to excitatory transmission that leads to an increase in airway responsiveness, cholinergic outflow to the lower airways and consequently, bronchoconstriction. In healthy subjects, these changes are clinically unnoticed. However, in patients with bronchial asthma, sleep-related alterations in lung functions are troublesome, causing intensified bronchopulmonary symptoms (nocturnal asthma), frequent arousals, decreased quality of life, and increased mortality. Unquestionably, the studies revealing neural mechanisms that underlie sleep-related alterations of airway function will provide new directions in the treatment and prevention of sleep-induced worsening of airway diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Department of Physiology and Biophysics, Specialized Neuroscience Research Program, Howard University College of Medicine, 520 W. St., NW, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
24
|
Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaidi SI, Massari VJ, Ferguson DG. Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol (1985) 2005; 98:1961-82. [PMID: 15894534 DOI: 10.1152/japplphysiol.01340.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Dept. of Physiology and Biophysics, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu M, Kc P, Mack SO, Haxhiu MA. Ablation of vagal preganglionic neurons innervating the extra-thoracic trachea affects ventilatory responses to hypercapnia and hypoxia. Respir Physiol Neurobiol 2005; 152:36-50. [PMID: 16099224 DOI: 10.1016/j.resp.2005.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/01/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
This study tested the hypothesis that during hypercapnia or hypoxia, airway-related vagal preganglionic neurons (AVPNs) of the nucleus ambiguus (NA) release acetylcholine (ACh), which in a paracrine fashion, activates ACh receptors expressed by inspiratory rhythm generating cells. AVPNs in the NA were ablated by injecting a saporin- (SA) cholera toxin b subunit (CTb-SA) conjugate into the extra-thoracic trachea (n=6). Control animals were injected with free CTb (n=6). In CTb treated rats, baseline ventilation and ventilatory responses to hypercapnia (5 and 12% CO(2) in O(2)) or hypoxia (8% O(2) in N(2)) were similar (p>0.05) prior to and 5 days after injection. CTb-SA injected rats maintained rhythmic breathing patterns 5 days post injection, however, tachypneic responses to hypercapnia or hypoxia were significantly reduced. The number of choline acetyltransferase (ChAT) immunoreactive cells in the NA was much lower (p<0.05) in CTb-SA rats as compared to animals receiving CTb only. These results suggest that AVPNs participate in the respiratory frequency response to hypercapnia or hypoxia.
Collapse
Affiliation(s)
- Mingfei Wu
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 'W' Street NW, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
26
|
Yao Q, Haxhiu MA, Zaidi SI, Liu S, Jafri A, Martin RJ. Hyperoxia enhances brain-derived neurotrophic factor and tyrosine kinase B receptor expression in peribronchial smooth muscle of neonatal rats. Am J Physiol Lung Cell Mol Physiol 2005; 289:L307-14. [PMID: 15821016 DOI: 10.1152/ajplung.00030.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway hyperreactivity is one of the hallmarks of hyperoxic lung injury in early life. As neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are potent mediators of neuronal plasticity, we hypothesized that neurotrophin levels in the pulmonary system may be disturbed by hyperoxic exposure. We therefore evaluated the effects of hyperoxia on the expression of BDNF, NGF, and their corresponding high-affinity receptors, TrkB and TrkA, respectively, in the lung of rat pups. Five-day-old Sprague-Dawley rat pups were randomized to hyperoxic or control groups and then continuously exposed to hyperoxia (>95% oxygen) or normoxia over 7 days. At both mRNA and protein levels, BDNF was detected in lung but not in trachea; its level was substantially enhanced in lungs from the hyperoxia-exposed rat pups. Distribution of BDNF mRNA by in situ hybridization indicates that peribronchial smooth muscle was the major source of increased BDNF production in response to hyperoxic exposure. Interestingly, hyperoxia-induced elevation of BDNF was not accompanied by any changes of NGF levels in lung. Furthermore, hyperoxic exposure increased the expression of TrkB in peribronchial smooth muscle but had no effect on the distribution of the specific NGF receptor TrkA. These findings indicate that hyperoxic stress not only upregulates BDNF at mRNA and protein levels but also enhances TrkB within peribronchial smooth muscle. However, there was no corresponding effect on NGF and TrkA receptors. We speculate that the increased level of BDNF may contribute to hyperoxia-induced airway hyperresponsiveness in early postnatal life.
Collapse
Affiliation(s)
- Qin Yao
- Div. of Neonatology, Rainbow Babies and Children's Hospital, Case Western Reserve Univ., 11100 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Zaidi SIA, Jafri A, Doggett T, Haxhiu MA. Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: implications for neuronal plasticity. Brain Res 2005; 1044:133-43. [PMID: 15885212 DOI: 10.1016/j.brainres.2005.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/28/2005] [Accepted: 02/03/2005] [Indexed: 01/19/2023]
Abstract
Recent evidence indicates that brain-derived neurotrophic factor (BDNF) is present in neurons and may affect neurotransmitter release, cell excitability, and synaptic plasticity via activation of tyrosine kinase B (TrkB) receptors. However, whether airway-related vagal preganglionic neurons (AVPNs) produce BDNF and contain TrkB receptors is not known. Hence, in ferrets, we examined BDNF and TrkB receptor expression in identified AVPNs using in situ hybridization and immunohistochemistry. BDNF protein levels were measured within the rostral nucleus ambiguus (rNA) region by ELISA. We observed that the subpopulation of AVPNs, identified by neuroanatomical tract tracing, within the rNA region express BDNF mRNA, BDNF protein, as well as TrkB receptor. In addition, brain tissue from the rNA region contained measurable amounts of BDNF that were comparable to the hippocampal region of the brain. These data indicate, for the first time, that the BDNF-TrkB system is expressed by AVPNs and may play a significant role in regulating cholinergic outflow to the airways.
Collapse
Affiliation(s)
- Syed I A Zaidi
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|