1
|
Yang Y, Li H, Chi Y, Frerichs I, Zhao Z, Li Y, Zhang C, Chu H, He H, Long Y. Ventilation-perfusion matching in early-stage of prone position ventilation: a prospective cohort study between COVID-19 ARDS and ARDS from other etiologies. Physiol Meas 2025; 13:015007. [PMID: 39793207 DOI: 10.1088/1361-6579/ada8f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Objective.Prone positioning has been established as a therapeutic strategy for severe acute respiratory distress syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).Approach.This was a two-center, prospective study comparing between CARDS and non-CARDS. Electrical impedance tomography (EIT) was used to compare the VQmatch between supine and early-stage prone positions (∼2 h). The study identified the areas of Deadspace, shunt, and VQmatch. Within the defined VQmatch region, the global inhomogeneity index (VQmatch-GI) was computed to evaluate the degree of heterogeneity. Paired Wilcoxon signed-rank test and Chi-square test were used in statistical analysis.Main results.15 CARDS patients and 14 non-CARDS patients undergoing mechanical ventilation were included. In comparison to the non-CARDS group, the CARDS group exhibited a higher prevalence of diffuse lung disease (15 [100%] vs. 4 [28.6%], CARDS vs. Non-CARDS,p< 0.001), along with elevated SOFA score, PCO2, PEEP, and Ppeak. Among non-CARDS patients, 11/14 demonstrated improved oxygenation, whereas only 5/15 CARDS patients exhibited oxygenation improvement in prone ventilation. In 13/29 patients with oxygenation improvement (defined as above 20% increase in SpO2/FiO2), there was a significant decreased deadspace (21.3 [11.5, 33.1] vs. 9.7 [7.3, 16.9],p= 0.039), and VQmatch showed an upward trend. When comparing prone ventilation to supine ventilation, non-CARDS patients showed a significant improvement in overall VQmatch (Supine 65.7 [49.7, 68.5] vs. Prone 67.4 [60.8, 72.6],p= 0.019). CARDS patients had a notable decrease in ventral VQmatch (VQmatch_Ventral: Supine 35.0 [26.9, 42.0] vs. Prone 22.7 [12.4, 32.9],p= 0.003), and an improvement in dorsal VQmatch (VQmatch_Dorsal: Supine 33.4 [20.4, 39.4] vs. Prone 46.4 [37.4, 48.4],p= 0.031), leading to no significant improvement in overall VQmatch. Ten CARDS patients with no improvement in VQmatch had increased shunting and VQmatch-GI.Significance.In non-CARDS patients, the improvement in oxygenation and VQmatch following prone positioning exhibits a consistent pattern. Conversely, in CARDS patients, the impact of prone positioning reveals considerable individual variability. This study indicates that the response to short-time prone ventilation can vary in ARDS patients with different etiologies.Trial registration:NCT05816928, 04/17/2023, retrospectively registered. Ventilation-Perfusion Matching in Early-stage Prone Position Ventilation, NCT05816928. Registered 17 April 2023 - Retrospectively registered,https://clinicaltrials.gov/study/NCT05816928.
Collapse
Affiliation(s)
- Yingying Yang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hantian Li
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Chi
- State Key Laboratory of Complex Severe and Rare Disease, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center of Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, People's Republic of China
- Institute of Technical Medicine, Furtwangen University, VS-Schwenningen, Germany
| | - Yuan Li
- Department of emergency medicine, Tonghua Central Hospital, 176 Xinguang Road, Tonghua City, Jilin Province, People's Republic of China
| | - Chunyang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huiwen Chu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huaiwu He
- State Key Laboratory of Complex Severe and Rare Disease, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yun Long
- State Key Laboratory of Complex Severe and Rare Disease, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Chang KW, Leu SW, Hu HC, Chan MC, Liang SJ, Yang KY, Chiu LC, Fang WF, Sheu CC, Chien YC, Peng CK, Huang CT, Kao KC. The Mechanical Power in Patients with Acute Respiratory Distress Syndrome Undergoing Prone Positioning Can Predict Mortality. Diagnostics (Basel) 2025; 15:158. [PMID: 39857042 PMCID: PMC11763726 DOI: 10.3390/diagnostics15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Mechanical power (MP) refers to ventilator-delivered energy to the lungs, which may induce lung injury. We examined the relationship between MP and mortality in patients with acute respiratory distress syndrome (ARDS) who underwent prone positioning. Methods: This multicenter retrospective study included data on all patients admitted to the intensive care units of eight referral hospitals in Taiwan from October 2015 to March 2016, and in Chang Gung Memorial Hospital Linkou branch from January 2017 to October 2023. The data were obtained from the electronic medical records of each hospital by using a standard case report form. MP was calculated as follows: MP (J/min) = 0.098 × VT × RR × (Ppeak - 1/2 × ΔP). Results: We included 135 patients who underwent prone positioning. Among them, 28-day survivors had significantly lower MP (22.6 ± 6.5 vs. 25.3 ± 6.2 J/min, p = 0.024), MP/predicted body weight (PBW) (396.9 ± 118.9 vs. 449.3 ± 118.8 10-3 J/min/kg, p = 0.018), MP/compliance values (0.8 ± 0.3 vs. 1.1 ± 0.4 J/min/mL/cmH2O, p = 0.048) after prone positioning, and significantly lower changes in MP, MP/PBW, and MP/compliance (-0.6 ± 5.7 vs. 2.5 ± 7.4 J/min, p = 0.007; -9.2 ± 97.5 vs. 42.1 ± 127.9 10-3 J/min/kg, p = 0.010; -0.1 ± 0.3 vs. 0.2 ± 0.3 J/min/mL/cmH2O, p < 0.001, respectively). Multivariate Cox regression revealed that the change in MP/compliance (HR: 7.972, p < 0.001) was an independent predictive factor for 28-day mortality. Conclusions: In ARDS patients treated with prone positioning, MP/compliance, and change in MP, MP/PBW, and MP/compliance after prone positioning differed significantly between 28-day survivors and nonsurvivors. Further randomized controlled research is required to elucidate the potential causality of decreased MP and improved clinical outcomes.
Collapse
Affiliation(s)
- Ko-Wei Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-W.C.); (S.-W.L.); (H.-C.H.); (L.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shaw-Woei Leu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-W.C.); (S.-W.L.); (H.-C.H.); (L.-C.C.)
| | - Han-Chung Hu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-W.C.); (S.-W.L.); (H.-C.H.); (L.-C.C.)
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Cheng Chan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- College of Science, Tunghai University, Taichung 407, Taiwan
| | - Shinn-Jye Liang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-W.C.); (S.-W.L.); (H.-C.H.); (L.-C.C.)
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ying-Chun Chien
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ching-Tzu Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Kuo-Chin Kao
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-W.C.); (S.-W.L.); (H.-C.H.); (L.-C.C.)
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
3
|
Martin KT, Xin Y, Gaulton TG, Victor M, Santiago RR, Kim T, Morais CCA, Kazimi AA, Connell M, Gerard SE, Herrmann J, Mueller AL, Lenart A, Shen J, Khan SS, Petrov M, Reutlinger K, Rozenberg K, Amato M, Berra L, Cereda M. Electrical Impedance Tomography Identifies Evolution of Regional Perfusion in a Porcine Model of Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:815-826. [PMID: 37566686 PMCID: PMC10840641 DOI: 10.1097/aln.0000000000004731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kevin T Martin
- Department of Anesthesia and Perioperative Care, University of California San Francisco, CA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy G Gaulton
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcus Victor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Electronics Engineering Division, Aeronautics Institute of Technology, São Paulo, Brazil
| | - Roberta R Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taehwan Kim
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Caio C A Morais
- Department of Physical Therapy, Federal University of Pernambuco, Recife, Brazil
| | - Aubrey A Kazimi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Ariel L Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Austin Lenart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiacheng Shen
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherbano S Khan
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihail Petrov
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristan Reutlinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Karina Rozenberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Amato
- Department of Cardio-Pulmonary, University of São Paulo, São Paulo, Brazil
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Abstract
The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.
Collapse
Affiliation(s)
- Susan R. Hopkins
- Department of Radiology, University of California, San Diego, California
| | - Michael K. Stickland
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| |
Collapse
|
5
|
Spina S, Marrazzo F, Morais CA, Victor M, Forlini C, Guarnieri M, Bastia L, Giudici R, Bassi G, Xin Y, Cereda M, Amato M, Langer T, Berra L, Fumagalli R. Modulation of pulmonary blood flow in patients with acute respiratory failure. Nitric Oxide 2023; 136-137:1-7. [PMID: 37172929 DOI: 10.1016/j.niox.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-minute steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.
Collapse
Affiliation(s)
- Stefano Spina
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Francesco Marrazzo
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - CaioC A Morais
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcus Victor
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Clarissa Forlini
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Marcello Guarnieri
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Luca Bastia
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Riccardo Giudici
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Gabriele Bassi
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Amato
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thomas Langer
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Fumagalli
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
6
|
Baka M, Bagka D, Tsolaki V, Zakynthinos GE, Diakaki C, Mantzarlis K, Makris D. Hemodynamic and Respiratory Changes following Prone Position in Acute Respiratory Distress Syndrome Patients: A Clinical Study. J Clin Med 2023; 12:jcm12030760. [PMID: 36769411 PMCID: PMC9917844 DOI: 10.3390/jcm12030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Limited data are available for the oxygenation changes following prone position in relation to hemodynamic and pulmonary vascular variations in acute respiratory distress syndrome (ARDS), using reliable invasive methods. We aimed to assess oxygenation and hemodynamic changes between the supine and prone posture in patients with ARDS and identify parameters associated with oxygenation improvement. METHODS Eighteen patients with ARDS under protective ventilation were assessed using advanced pulmonary artery catheter monitoring. Physiologic parameters were recorded at baseline supine position, 1 h and 18 h following prone position. RESULTS The change in the Oxygenation Index (ΔOI) between supine and 18 h prone significantly correlated to the concurrent change in shunt fraction (r = 0.75, p = 0.0001), to the ΔOI between supine and 1 h prone (r = 0.73, p = 0.001), to the supine acute lung injury score and the OI (r = -0.73, p = 0.009 and r = 0.69, p = 0.002, respectively). Cardiac output did not change between supine and prone posture. Moreover, there was no change in pulmonary pressure, pulmonary vascular resistances, right ventricular (RV) volumes and the RV ejection fraction. CONCLUSIONS The present investigation provides physiologic clinical data supporting that oxygenation improvement following prone position in ARDS is driven by the shunt fraction reduction and not by changes in hemodynamics. Moreover, oxygenation improvement was not correlated with RV or pulmonary circulation changes.
Collapse
Affiliation(s)
- Maria Baka
- Critical Care Department, University Hospital of Larissa, 41111 Larissa, Greece
| | - Dimitra Bagka
- Critical Care Department, University Hospital of Larissa, 41111 Larissa, Greece
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, 41111 Larissa, Greece
| | | | - Chrysi Diakaki
- 2nd Critical Care Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Demosthenes Makris
- Critical Care Department, University Hospital of Larissa, 41111 Larissa, Greece
- Correspondence:
| |
Collapse
|
7
|
Okamura A, Endo H, Watanabe M, Yamamoto H, Kikuchi H, Kanaji S, Toh Y, Kakeji Y, Doki Y, Kitagawa Y. Influence of patient position in thoracoscopic esophagectomy on postoperative pneumonia: a comparative analysis from the National Clinical Database in Japan. Esophagus 2023; 20:48-54. [PMID: 36131033 DOI: 10.1007/s10388-022-00959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Two prominent patient positions during thoracoscopic esophagectomy are the left lateral decubitus position (LP) and the prone position (PP). However, whether the patient position during thoracoscopic esophagectomy influences short-term outcomes, especially postoperative pneumonia, remains unclear. We aimed to elucidate the impact of patient position on the occurrence of postoperative pneumonia. METHODS We analyzed 9850 patients who underwent oncologic thoracoscopic esophagectomies between 2016 and 2019 from the National Clinical Database. We compared the short-term outcomes between the LP and PP groups, and the primary outcome measure was the incidence of postoperative pneumonia. RESULTS This study included 2637 (26.8%) and 7213 (73.2%) patients in the LP and the PP groups, respectively. The baseline characteristics of the two groups were well-balanced. Compared with the LP group, the PP group had a longer operative time and less blood loss. There were no significant differences in the incidences of postoperative pneumonia, recurrent laryngeal nerve palsy, anastomotic leakage, severe complications, and reoperation between the groups. Meanwhile, prolonged ventilation and surgery-related mortality occurred more frequently in the LP than in the PP group (P < 0.001 and 0.046, respectively). After multivariable adjustment, the patient position did not significantly influence the incidence of postoperative pneumonia (odds ratio 0.91, 95% confidence interval 0.80-1.04). CONCLUSIONS Although prolonged ventilation and surgery-related mortality occurred more frequently in the LP group than in the PP group, the patient position did not significantly influence the occurrence of postoperative pneumonia.
Collapse
Affiliation(s)
- Akihiko Okamura
- Department of Gastroenterological Surgery, Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.,The Japan Esophageal Society, Tokyo, Japan
| | - Hideki Endo
- Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan. .,Database Committee, The Japan Esophageal Society, Tokyo, Japan.
| | - Hiroyuki Yamamoto
- Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Kikuchi
- Project Management Subcommittee, The Japanese Society of Gastroenterological Surgery, Tokyo, Japan
| | - Shingo Kanaji
- Project Management Subcommittee, The Japanese Society of Gastroenterological Surgery, Tokyo, Japan
| | - Yasushi Toh
- Database Committee, The Japan Esophageal Society, Tokyo, Japan
| | - Yoshihiro Kakeji
- Database Committee, The Japanese Society of Gastroenterological Surgery, Tokyo, Japan
| | | | - Yuko Kitagawa
- The Japanese Society of Gastroenterological Surgery, Tokyo, Japan
| |
Collapse
|
8
|
Winkler T, Kohli P, Kelly VJ, Kehl EG, Witkin AS, Rodriguez-Lopez JM, Hibbert KA, Kone MT, Systrom DM, Waxman AB, Venegas JG, Channick RN, Harris RS. Perfusion imaging heterogeneity during NO inhalation distinguishes pulmonary arterial hypertension (PAH) from healthy subjects and has potential as an imaging biomarker. Respir Res 2022; 23:325. [PMID: 36457013 PMCID: PMC9714016 DOI: 10.1186/s12931-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Without aggressive treatment, pulmonary arterial hypertension (PAH) has a 5-year mortality of approximately 40%. A patient's response to vasodilators at diagnosis impacts the therapeutic options and prognosis. We hypothesized that analyzing perfusion images acquired before and during vasodilation could identify characteristic differences between PAH and control subjects. METHODS We studied 5 controls and 4 subjects with PAH using HRCT and 13NN PET imaging of pulmonary perfusion and ventilation. The total spatial heterogeneity of perfusion (CV2Qtotal) and its components in the vertical (CV2Qvgrad) and cranio-caudal (CV2Qzgrad) directions, and the residual heterogeneity (CV2Qr), were assessed at baseline and while breathing oxygen and nitric oxide (O2 + iNO). The length scale spectrum of CV2Qr was determined from 10 to 110 mm, and the response of regional perfusion to O2 + iNO was calculated as the mean of absolute differences. Vertical gradients in perfusion (Qvgrad) were derived from perfusion images, and ventilation-perfusion distributions from images of 13NN washout kinetics. RESULTS O2 + iNO significantly enhanced perfusion distribution differences between PAH and controls, allowing differentiation of PAH subjects from controls. During O2 + iNO, CV2Qvgrad was significantly higher in controls than in PAH (0.08 (0.055-0.10) vs. 6.7 × 10-3 (2 × 10-4-0.02), p < 0.001) with a considerable gap between groups. Qvgrad and CV2Qtotal showed smaller differences: - 7.3 vs. - 2.5, p = 0.002, and 0.12 vs. 0.06, p = 0.01. CV2Qvgrad had the largest effect size among the primary parameters during O2 + iNO. CV2Qr, and its length scale spectrum were similar in PAH and controls. Ventilation-perfusion distributions showed a trend towards a difference between PAH and controls at baseline, but it was not statistically significant. CONCLUSIONS Perfusion imaging during O2 + iNO showed a significant difference in the heterogeneity associated with the vertical gradient in perfusion, distinguishing in this small cohort study PAH subjects from controls.
Collapse
Affiliation(s)
- Tilo Winkler
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Puja Kohli
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Vanessa J. Kelly
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Ekaterina G. Kehl
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Alison S. Witkin
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Josanna M. Rodriguez-Lopez
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Kathryn A. Hibbert
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Mamary T. Kone
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - David M. Systrom
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Aaron B. Waxman
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Jose G. Venegas
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Richard N. Channick
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - R. Scott Harris
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
9
|
Abstract
Noninvasive high-frequency oscillatory (NHFOV) and percussive (NHFPV) ventilation represent 2 nonconventional techniques that may be useful in selected neonatal patients. We offer here a comprehensive review of physiology, mechanics, and biology for both techniques. As NHFOV is the technique with the wider experience, we also provided a meta-analysis of available clinical trials, suggested ventilatory parameters boundaries, and proposed a physiology-based clinical protocol to use NHFOV.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Beclere" Medical Center, Paris Saclay University Hospitals, APHP, Paris - France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris - France.
| | - Roberta Centorrino
- Division of Pediatrics and Neonatal Critical Care, "A.Beclere" Medical Center, Paris Saclay University Hospitals, APHP, Paris - France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris - France
| |
Collapse
|
10
|
Hardin CC, Marini JJ. Smoothing the Edges of Lung Protection. Am J Respir Crit Care Med 2021; 203:1212-1214. [PMID: 33503400 PMCID: PMC8456477 DOI: 10.1164/rccm.202101-0111ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C Corey Hardin
- Division of Pulmonary and Critical Care Medicine Massachusetts General Hospital Boston, Massachusetts
| | - John J Marini
- Department of Medicine Regions Hospital and University of Minnesota St. Paul, Minnesota
| |
Collapse
|
11
|
Berg RMG, Hartmann JP, Iepsen UW, Christensen RH, Ronit A, Andreasen AS, Bailey DM, Mortensen J, Moseley PL, Plovsing RR. Therapeutic benefits of proning to improve pulmonary gas exchange in severe respiratory failure: focus on fundamentals of physiology. Exp Physiol 2021; 107:759-770. [PMID: 34242438 PMCID: PMC9290689 DOI: 10.1113/ep089405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
New Findings What is the topic of this review? The use of proning for improving pulmonary gas exchange in critically ill patients. What advances does it highlight? Proning places the lung in its ‘natural’ posture, and thus optimises the ventilation‐perfusion distribution, which enables lung protective ventilation and the alleviation of potentially life‐threatening hypoxaemia in COVID‐19 and other types of critical illness with respiratory failure.
Abstract The survival benefit of proning patients with acute respiratory distress syndrome (ARDS) is well established and has recently been found to improve pulmonary gas exchange in patients with COVID‐19‐associated ARDS (CARDS). This review outlines the physiological implications of transitioning from supine to prone on alveolar ventilation‐perfusion (V˙A--Q˙) relationships during spontaneous breathing and during general anaesthesia in the healthy state, as well as during invasive mechanical ventilation in patients with ARDS and CARDS. Spontaneously breathing, awake healthy individuals maintain a small vertical (ventral‐to‐dorsal) V˙A/Q˙ ratio gradient in the supine position, which is largely neutralised in the prone position, mainly through redistribution of perfusion. In anaesthetised and mechanically ventilated healthy individuals, a vertical V˙A/Q˙ ratio gradient is present in both postures, but with better V˙A--Q˙ matching in the prone position. In ARDS and CARDS, the vertical V˙A/Q˙ ratio gradient in the supine position becomes larger, with intrapulmonary shunting in gravitationally dependent lung regions due to compression atelectasis of the dorsal lung. This is counteracted by proning, mainly through a more homogeneous distribution of ventilation combined with a largely unaffected high perfusion dorsally, and a consequent substantial improvement in arterial oxygenation. The data regarding proning as a therapy in patients with CARDS is still limited and whether the associated improvement in arterial oxygenation translates to a survival benefit remains unknown. Proning is nonetheless an attractive and lung protective manoeuvre with the potential benefit of improving life‐threatening hypoxaemia in patients with ARDS and CARDS.
Collapse
Affiliation(s)
- Ronan M G Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Jacob Peter Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Emergency Medicine, North Zealand Hospital, Hillerød, Denmark
| | - Ulrik Winning Iepsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Hvidovre Hospital, Hvidovre, Denmark
| | | | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre Hospital, Hvidovre, Denmark
| | - Anne Sofie Andreasen
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Herlev Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Jann Mortensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pope L Moseley
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronni R Plovsing
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Respiratory Physiology of Prone Positioning With and Without Inhaled Nitric Oxide Across the Coronavirus Disease 2019 Acute Respiratory Distress Syndrome Severity Spectrum. Crit Care Explor 2021; 3:e0471. [PMID: 34151287 PMCID: PMC8208401 DOI: 10.1097/cce.0000000000000471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Supplemental Digital Content is available in the text. IMPORTANCE: Prone positioning improves clinical outcomes in moderate-to-severe acute respiratory distress syndrome and has been widely adopted for the treatment of patients with acute respiratory distress syndrome due to coronavirus disease 2019. Little is known about the effects of prone positioning among patients with less severe acute respiratory distress syndrome, obesity, or those treated with pulmonary vasodilators. OBJECTIVES: We characterize the change in oxygenation, respiratory system compliance, and dead-space-to-tidal-volume ratio in response to prone positioning in patients with coronavirus disease 2019 acute respiratory distress syndrome with a range of severities. A subset analysis of patients treated with inhaled nitric oxide and subsequent prone positioning explored the influence of pulmonary vasodilation on the physiology of prone positioning. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study of all consecutively admitted adult patients with acute respiratory distress syndrome due to coronavirus disease 2019 treated with mechanical ventilation and prone positioning in the ICUs of an academic hospital between March 11, 2020, and May 1, 2020. MAIN OUTCOMES AND MEASURES: Respiratory system mechanics and gas exchange during the first episode of prone positioning. RESULTS: Among 122 patients, median (interquartile range) age was 60 years (51–71 yr), median body mass index was 31.5 kg/m2 (27–35 kg/m2), and 50 patients (41%) were female. The ratio of Pao2 to Fio2 improved with prone positioning in 90% of patients. Prone positioning was associated with a significant increase in the ratio of Pao2 to Fio2 (from median 149 [123–170] to 226 [169–268], p < 0.001) but no change in dead-space-to-tidal-volume ratio or respiratory system compliance. Supine ratio of Pao2 to Fio2, respiratory system compliance, positive end-expiratory pressure, and body mass index did not correlate with absolute change in the ratio of Pao2 to Fio2 with prone positioning. However, patients with ratio of Pao2 to Fio2 less than 150 experienced a greater relative improvement in oxygenation with prone positioning than patients with ratio of Pao2 to Fio2 greater than or equal to 150 (median percent change in ratio of Pao2 to Fio2 62 [29–107] vs 30 [10–70], p = 0.002). Among 12 patients, inhaled nitric oxide prior to prone positioning was associated with a significant increase in the ratio of Pao2 to Fio2 (from median 136 [77–168] to 170 [138–213], p = 0.003) and decrease in dead-space-to-tidal-volume ratio (0.54 [0.49–0.58] to 0.46 [0.44–0.53], p = 0.001). Subsequent prone positioning in this subgroup further improved the ratio of Pao2 to Fio2 (from 145 [122–183] to 205 [150–232], p = 0.017) but did not change dead-space-to-tidal-volume ratio. CONCLUSIONS AND RELEVANCE: Prone positioning improves oxygenation across the acute respiratory distress syndrome severity spectrum, irrespective of supine respiratory system compliance, positive end-expiratory pressure, or body mass index. There was a greater relative benefit among patients with more severe disease. Prone positioning confers an additive benefit in oxygenation among patients treated with inhaled nitric oxide.
Collapse
|
13
|
Louis D, Belen K, Farooqui M, Idiong N, Amer R, Hussain A, ElSayed Y. Prone versus Supine Position for Lung Ultrasound in Neonates with Respiratory Distress. Am J Perinatol 2021; 38:176-181. [PMID: 31480084 DOI: 10.1055/s-0039-1695776] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To study the feasibility of lung ultrasound (LUS) in prone position and to compare it with supine position in neonates with respiratory distress. STUDY DESIGN Neonates ≥ 29 weeks of gestational age with respiratory distress requiring respiratory support within first 12 hours of life were enrolled prospectively. First LUS (fLUS) was done in the position infant was nursed (supine or prone), infant's position changed, a second LUS (sLUS) was performed immediately and a third LUS (tLUS) was done 1 to 2 hours later. Primary outcome was the comparison of LUS scores (LUSsc) between fLUS and sLUS. RESULTS Sixty-four neonates were enrolled. Common respiratory diagnoses were transient tachypnea of newborn (TTN; 53%) and respiratory distress syndrome (RDS; 41%). LUSsc was different between fLUS and sLUS (fLUSsc 6 [interquatile range: 4, 7] vs. sLUSsc 7 [4, 10], p < 0.001), while there was no difference between the fLUS and tLUS (fLUSsc 6 [4, 7] vs. tLUSsc 5 [3, 7], p = 0.43). Subgroup analysis confirmed similar findings in neonates with TTN, while in babies with RDS, all the three LUSsc were similar. CONCLUSION LUS is feasible in prone position in neonates. LUS scores were higher immediately after a change in position but were similar to baseline 1 hour after the change in position.
Collapse
Affiliation(s)
- Deepak Louis
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Karen Belen
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mansoor Farooqui
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nnanake Idiong
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Reem Amer
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Abrar Hussain
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Yasser ElSayed
- Division of Neonatology, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Kizhakke Puliyakote AS, Elliott AR, Sá RC, Anderson KM, Crotty Alexander LE, Hopkins SR. Vaping disrupts ventilation-perfusion matching in asymptomatic users. J Appl Physiol (1985) 2020; 130:308-317. [PMID: 33180648 DOI: 10.1152/japplphysiol.00709.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhalation of e-cigarette's aerosols (vaping) has the potential to disrupt pulmonary gas exchange, but the effects in asymptomatic users are unknown. We assessed ventilation-perfusion (V̇A/Q̇) mismatch in asymptomatic e-cigarette users, using magnetic resonance imaging (MRI). We hypothesized that vaping induces V̇A/Q̇ mismatch through alterations in both ventilation and perfusion distributions. Nine young, asymptomatic "Vapers" with >1-yr vaping history, and no history of cardiopulmonary disease, were imaged supine using proton MRI, to assess the right lung at baseline and immediately after vaping. Seven young "Controls" were imaged at baseline only. Relative dispersion (SD/means) was used to quantify the heterogeneity of the individual ventilation and perfusion distributions. V̇A/Q̇ mismatch was quantified using the second moments of the ventilation and perfusion versus V̇A/Q̇ ratio distributions, log scale, LogSDV̇, and LogSDQ̇, respectively, analogous to the multiple inert gas elimination technique. Spirometry was normal in both groups. Ventilation heterogeneity was similar between groups at baseline (Vapers, 0.43 ± 0.13; Controls, 0.51 ± 0.11; P = 0.13) but increased after vaping (to 0.57 ± 0.17; P = 0.03). Perfusion heterogeneity was greater (P = 0.04) in Vapers at baseline (0.53 ± 0.06) compared with Controls (0.44 ± 0.10) but decreased after vaping (to 0.42 ± 0.07; P = 0.005). Vapers had greater (P = 0.01) V̇A/Q̇ mismatch at baseline compared with Controls (LogSDQ̇ = 0.61 ± 0.12 vs. 0.43 ± 0.12), which was increased after vaping (LogSDQ̇ = 0.73 ± 0.16; P = 0.03). V̇A/Q̇ mismatch is greater in Vapers and worsens after vaping. This suggests subclinical alterations in lung function not detected by spirometry.NEW & NOTEWORTHY This research provides evidence of vaping-induced disruptions in ventilation-perfusion matching in young, healthy, asymptomatic adults with normal spirometry who habitually vape. The changes in ventilation and perfusion distributions, both at baseline and acutely after vaping, and the potential implications on hypoxic vasoconstriction are particularly relevant in understanding the pathogenesis of vaping-induced dysfunction. Our imaging-based approach provides evidence of potential subclinical alterations in lung function below thresholds of detection using spirometry.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Medicine, University of California, San Diego, California
| | - Rui C Sá
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Medicine, University of California, San Diego, California
| | - Kevin M Anderson
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | | | - Susan R Hopkins
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California.,Department of Medicine, University of California, San Diego, California
| |
Collapse
|
15
|
Hopkins SR, Sá RC, Prisk GK, Elliott AR, Kim NH, Pazar BJ, Printz BF, El-Said HG, Davis CK, Theilmann RJ. Abnormal pulmonary perfusion heterogeneity in patients with Fontan circulation and pulmonary arterial hypertension. J Physiol 2020; 599:343-356. [PMID: 33026102 DOI: 10.1113/jp280348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The distribution of pulmonary perfusion is affected by gravity, vascular branching structure and active regulatory mechanisms, which may be disrupted by cardiopulmonary disease, but this is not well studied, particularly in rare conditions. We evaluated pulmonary perfusion in patients who had undergone Fontan procedure, patients with pulmonary arterial hypertension (PAH) and two groups of controls using a proton magnetic resonance imaging technique, arterial spin labelling to measure perfusion. Heterogeneity was assessed by the relative dispersion (SD/mean) and gravitational gradients. Gravitational gradients were similar between all groups, but heterogeneity was significantly increased in both patient groups compared to controls and persisted after removing contributions from large blood vessels and gravitational gradients. Patients with Fontan physiology and patients with PAH have increased pulmonary perfusion heterogeneity that is not explainable by differences in mean perfusion, gravitational gradients, or large vessel anatomy. This probably reflects vascular remodelling in PAH and possibly in Fontan physiology. ABSTRACT Many factors affect the distribution of pulmonary perfusion, which may be disrupted by cardiopulmonary disease, but this is not well studied, particularly in rare conditions. An example is following the Fontan procedure, where pulmonary perfusion is passive, and heterogeneity may be increased because of the underlying pathophysiology leading to Fontan palliation, remodelling, or increased gravitational gradients from low flow. Another is pulmonary arterial hypertension (PAH), where gravitational gradients may be reduced secondary to high pressures, but remodelling may increase perfusion heterogeneity. We evaluated regional pulmonary perfusion in Fontan patients (n = 5), healthy young controls (Fontan control, n = 5), patients with PAH (n = 6) and healthy older controls (PAH control) using proton magnetic resonance imaging. Regional perfusion was measured using arterial spin labelling. Heterogeneity was assessed by the relative dispersion (SD/mean) and gravitational gradients. Mean perfusion was similar (Fontan = 2.50 ± 1.02 ml min-1 ml-1 ; Fontan control = 3.09 ± 0.58, PAH = 3.63 ± 1.95; PAH control = 3.98 ± 0.91, P = 0.26), and the slopes of gravitational gradients were not different (Fontan = -0.23 ± 0.09 ml min-1 ml-1 cm-1 ; Fontan control = -0.29 ± 0.23, PAH = -0.27 ± 0.09, PAH control = -0.25 ± 0.18, P = 0.91) between groups. Perfusion relative dispersion was greater in both Fontan and PAH than controls (Fontan = 1.46 ± 0.18; Fontan control = 0.99 ± 0.21, P = 0.005; PAH = 1.22 ± 0.27, PAH control = 0.91 ± 0.12, P = 0.02) but similar between patient groups (P = 0.13). These findings persisted after removing contributions from large blood vessels and gravitational gradients (all P < 0.05). We conclude that patients with Fontan physiology and PAH have increased pulmonary perfusion heterogeneity that is not explained by differences in mean perfusion, gravitational gradients, or large vessel anatomy. This probably reflects the effects of remodelling in PAH and possibly in Fontan physiology.
Collapse
Affiliation(s)
- Susan R Hopkins
- Department of Radiology, University of California, San Diego, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Rui C Sá
- Department of Medicine, University of California, San Diego, CA, USA
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Ann R Elliott
- Department of Medicine, University of California, San Diego, CA, USA
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, CA, USA
| | - Beni J Pazar
- Department of Radiology, University of California, San Diego, CA, USA
| | - Beth F Printz
- Department of Radiology, University of California, San Diego, CA, USA.,Rady Children's Hospital-San Diego, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA
| | - Howaida G El-Said
- Rady Children's Hospital-San Diego, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA
| | - Christopher K Davis
- Rady Children's Hospital-San Diego, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA
| | | |
Collapse
|
16
|
Shin KM, Choi J, Chae KJ, Jin GY, Eskandari A, Hoffman EA, Hall C, Castro M, Lee CH. Quantitative CT-based image registration metrics provide different ventilation and lung motion patterns in prone and supine positions in healthy subjects. Respir Res 2020; 21:254. [PMID: 33008396 PMCID: PMC7531138 DOI: 10.1186/s12931-020-01519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies suggested that the prone position (PP) improves oxygenation and reduces mortality among patients with acute respiratory distress syndrome (ARDS). However, the mechanism of this clinical benefit of PP is not completely understood. The aim of the present study was to quantitatively compare regional characteristics of lung functions in the PP with those in the supine position (SP) using inspiratory and expiratory computed tomography (CT) scans. Methods Ninety subjects with normal pulmonary function and inspiration and expiration CT images were included in the study. Thirty-four subjects were scanned in PP, and 56 subjects were scanned in SP. Non-rigid image registration-based inspiratory-expiratory image matching assessment was used for regional lung function analysis. Tissue fractions (TF) were computed based on the CT density and compared on a lobar basis. Three registration-derived functional variables, relative regional air volume change (RRAVC), volumetric expansion ratio (J), and three-dimensional relative regional displacement (s*) were used to evaluate regional ventilation and deformation characteristics. Results J was greater in PP than in SP in the right middle lobe (P = 0 .025), and RRAVC was increased in the upper and right middle lobes (P < 0.001). The ratio of the TF on inspiratory and expiratory scans, J, and RRAVC at the upper lobes to those at the middle and lower lobes and that ratio at the upper and middle lobes to those at the lower lobes of were all near unity in PP, and significantly higher than those in SP (0.98–1.06 vs 0.61–0.94, P < 0.001). Conclusion We visually and quantitatively observed that PP not only induced more uniform contributions of regional lung ventilation along the ventral-dorsal axis but also minimized the lobar differences of lung functions in comparison with SP. This may help in the clinician’s search for an understanding of the benefits of the application of PP to the patients with ARDS or other gravitationally dependent pathologic lung diseases. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jiwoong Choi
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA.,Department of Bioengineering, The University of Kansas, Lawrence, Kansas, USA
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Ali Eskandari
- Department of Radiology, University of Iowa, Iowa City, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, USA.,Internal Medicine, University of Iowa, Iowa City, USA.,Biomedical Engineering, University of Iowa, Iowa City, USA
| | - Chase Hall
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA
| | - Mario Castro
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA
| | - Chang Hyun Lee
- Department of Radiology, University of Iowa, Iowa City, USA. .,Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongnogu, Seoul, 03080, South Korea.
| |
Collapse
|
17
|
Chuchalin AG, Gusev EI, Martynov MY, Kim TG, Shogenova LV. [Pulmonary insufficiency in acute stroke: risk factors and mechanisms of development]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:7-16. [PMID: 32790970 DOI: 10.17116/jnevro20201200717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Various degrees of pulmonary insufficiency (PI) (PaO2 ≤60 mm Hg, SaO2 ≤90%) are diagnosed in most of patients with severe acute stroke (AS). Frequency and severity of PI positively correlates with the severity of AS. PI worsens patient's condition, prolongs the hospitalization period, and increases the probability of fatal outcome. Early clinical signs of PI may be undiagnosed due to the severity of stroke and thus not treated. The initiating pathogenic mechanism of PI is stress-related activation of sympathetic nervous system (SNS) and systemic immunosuppression. In severe stroke with mass effect, the rapid and significant increase in intracranial pressure may additionally activate the SNS. Risk factors of PI include older age, previous pulmonary disease, prolonged supine position, respiratory muscle dysfunction, apnea, and concomitant somatic diseases. Decompensation of somatic diseases leads to multiple stage reactions with facilitation of functional and morphologic changes in the pulmonary system, hypoxemia and hypoxia, promotes infectious complications and multiple organ failure and worsens neurological outcome. Diagnosis and treatment of PI in AS decreases mortality and improves rehabilitation prognosis.
Collapse
Affiliation(s)
- A G Chuchalin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E I Gusev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Yu Martynov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - T G Kim
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Shogenova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Hopkins SR. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches. Compr Physiol 2020; 10:1155-1205. [PMID: 32941684 DOI: 10.1002/cphy.c180042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ventilation-perfusion ( V ˙ A / Q ˙ ) matching, the regional matching of the flow of fresh gas to flow of deoxygenated capillary blood, is the most important mechanism affecting the efficiency of pulmonary gas exchange. This article discusses the measurement of V ˙ A / Q ˙ matching with three broad classes of techniques: (i) those based in gas exchange, such as the multiple inert gas elimination technique (MIGET); (ii) those derived from imaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), computed tomography (CT), and electrical impedance tomography (EIT); and (iii) fluorescent and radiolabeled microspheres. The focus is on the physiological basis of these techniques that provide quantitative information for research purposes rather than qualitative measurements that are used clinically. The fundamental equations of pulmonary gas exchange are first reviewed to lay the foundation for the gas exchange techniques and some of the imaging applications. The physiological considerations for each of the techniques along with advantages and disadvantages are briefly discussed. © 2020 American Physiological Society. Compr Physiol 10:1155-1205, 2020.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, California, USA
| |
Collapse
|
19
|
McNicholas B, Cosgrave D, Giacomini C, Brennan A, Laffey JG. Prone positioning in COVID-19 acute respiratory failure: just do it? Br J Anaesth 2020; 125:440-443. [PMID: 32571573 PMCID: PMC7280095 DOI: 10.1016/j.bja.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bairbre McNicholas
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland; Anaesthesia and Intensive Care Medicine, School of Medicine, National Unversity of Ireland, Galway, Ireland
| | - David Cosgrave
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland; Anaesthesia and Intensive Care Medicine, School of Medicine, National Unversity of Ireland, Galway, Ireland
| | - Camilla Giacomini
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Aoife Brennan
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland; Anaesthesia and Intensive Care Medicine, School of Medicine, National Unversity of Ireland, Galway, Ireland
| | - John G Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland; Anaesthesia and Intensive Care Medicine, School of Medicine, National Unversity of Ireland, Galway, Ireland; Regenerative Medicine Institute at the CURAM Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Minaeizaeim H, Kumar H, Tawhai M, King C, Hoffman E, Wilsher M, Milne D, Clark A. Do pulmonary cavity shapes influence lung function? J Biomech Eng 2019; 141:2737110. [PMID: 31233096 DOI: 10.1115/1.4044092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/08/2022]
Abstract
Distribution of lung tissue within the chest cavity is a key contributor to delivery of both blood and air to the gas exchange regions of the lung. This distribution is multifactorial with influences from parenchyma, gravity and level of inflation. We hypothesize that the manner in which lung inflates, for example, the primarily diaphragmatic nature of normal breathing, is an important contributor to regional lung tissue distribution. To investigate this hypothesis, we present an organ-level model of lung tissue mechanics which incorporates pleural cavity change due to change in lung volume or posture. We quantify the changes using shape and density metrics in ten healthy subjects scanned supine at end-inspiratory and end-expiratory volumes and ten subjects scanned at both supine and prone end-inspiratory volumes. Comparing end-expiratory to end-inspiratory volume, we see primarily a change in the cranial-caudal dimension of the lung, reflective of movement of diaphragm. In the diaphragmatic region there is greater regional lung expansion than in the cranial aspect, which is restricted by the chest wall. When moving from supine to prone, a restriction of lung was observed anteriorly, resulting in a generally reduced lung volume and a redistribution of air volume posteriorly. In general, we see the highest in lung tissue density heterogeneity in regions of the lung that are most inflated. Using our computational model, we quantify the impact of pleural cavity shape change on regional lung distribution, and predict the impact on regional elastic recoil pressure.
Collapse
Affiliation(s)
- Hamed Minaeizaeim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Clair King
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand
| | - Eric Hoffman
- The University of Iowa, Iowa City, Iowa, United States
| | - Margaret Wilsher
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand
| | - David Milne
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand
| | - Alys Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Jordan AR, Claxton D, Purvis A, Barnes A, Fysh M. Sprint interval training on the vertical treadmill improves aerobic and anaerobic running performance. J Exerc Rehabil 2018; 14:106-112. [PMID: 29511660 PMCID: PMC5833954 DOI: 10.12965/jer.1835122.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/13/2018] [Indexed: 11/22/2022] Open
Abstract
The vertical treadmill (VertiRun) is an unresearched mode of exercise where users engage in a “running-like” action whilst body weight is supported by a recumbent bench and overhanging resistance cables are tethered to the user’s ankles. The purpose of this study was to determine the effects of training on a VertiRun and any cross-training effect on running performance. Thirty active males (age, 22±4 years; stature, 1.79±0.08 m; body mass, 78.5±12.6 kg) volunteered for this study. Participants’ aerobic and anaerobic running performance were determined by incremental maximum rate of oxygen consumption (VO2max) treadmill test and a maximum anaerobic running test (MART), respectively. Participants were matched and then randomly assigned to either a VertiRun group, 20-m shuttle sprint group or control group. The intervention consisted of 4–6, 30-sec all-out efforts with 4-min recovery between bouts, 3 days a week for 6 weeks. The pre- and postintervention VO2max and MART were analysed using a mixed repeated measures analysis of variance. MART increased by 4.5% in the VertiRun group (P=0.006) and 4% in the sprint group (P<0.001). VO2max increased by 6.2% in the VertiRun group (P=0.009) and 5.5% in the sprint group (P=0.020). The MART and VO2max of the control group were unchanged (P=0.910 and P=0.915, respectively). These data suggest that the VertiRun could be an effective cross-training mode for running and could supplement training programmes. Also, as VertiRun is a low-impact exercise it might be useful in the physical preparation of athletes returning to sport following lower limb injury.
Collapse
Affiliation(s)
- Alastair Ross Jordan
- School of Sport, York St. John's University, Lord Mayor's Walk, York, United Kingdom
| | - David Claxton
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Alison Purvis
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Andrew Barnes
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Mary Fysh
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
23
|
Subramaniam K, Clark AR, Hoffman EA, Tawhai MH. Metrics of lung tissue heterogeneity depend on BMI but not age. J Appl Physiol (1985) 2018; 125:328-339. [PMID: 29470150 DOI: 10.1152/japplphysiol.00510.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered parenchymal microstructure and complexity have been observed in older age. How to distinguish between healthy, expected changes and early signs of pathology remains poorly understood. An objective quantitative analysis of computed tomography imaging was conducted to compare mean lung density, tissue density distributions, and tissue heterogeneity in 16 subjects, 8 aged >60 yr who were gender and body mass index matched with 8 subjects aged <30 yr. Subjects had never been smokers, with no prior respiratory disease, and no radiologically identified abnormalities on computed tomography. Volume-controlled breath hold imaging acquired at 80% vital capacity (end inspiration) and 55% vital capacity (end expiration) were used for analysis. Mean lung density was not different between the age groups at end inspiration ( P = 0.806) but was larger in the younger group at end expiration (0.26 ± 0.033 vs. 0.22 ± 0.026, P = 0.008), as is expected due to increased air trapping in the older population. However, gravitational gradients of tissue density did not differ with age; the only difference in distribution of tissue density between the two age groups was a lower density in the apices of the older group at end expiration. The heterogeneity of the lung tissue assessed using two metrics showed significant differences between end inspiration and end expiration, no dependence on age, and a significant relationship with body mass index at both lung volumes when heterogeneity was calculated using quadtree decomposition but only at end expiration when using a fractal dimension. NEW & NOTEWORTHY Changes to lung tissue heterogeneity can be a normal part of aging but can also be an early indicator of disease. We use novel techniques, which have previously not been used on thoracic computed tomography imaging, to quantify lung tissue heterogeneity in young and old healthy subjects. Our results show no dependence on age but a significant correlation with body mass index.
Collapse
Affiliation(s)
- K Subramaniam
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - A R Clark
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - E A Hoffman
- Departments of Radiology and Bioengineering, University of Iowa , Iowa City, Iowa
| | - M H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| |
Collapse
|
24
|
Felloni P, Duhamel A, Faivre JB, Giordano J, Khung S, Deken V, Remy J, Remy-Jardin M. Regional Distribution of Pulmonary Blood Volume with Dual-Energy Computed Tomography: Results in 42 Subjects. Acad Radiol 2017; 24:1412-1421. [PMID: 28711443 DOI: 10.1016/j.acra.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE AND OBJECTIVES The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. MATERIALS AND METHODS The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. RESULTS The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. CONCLUSION Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions.
Collapse
|
25
|
Kang W, Clark AR, Tawhai MH. Gravity outweighs the contribution of structure to passive ventilation-perfusion matching in the supine adult human lung. J Appl Physiol (1985) 2017; 124:23-33. [PMID: 29051337 DOI: 10.1152/japplphysiol.00791.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravity and matched airway/vascular tree geometries are both hypothesized to be key contributors to ventilation-perfusion (V̇/Q̇) matching in the lung, but their relative contributions are challenging to quantify experimentally. We used a structure-based model to conduct an analysis of the relative contributions of tissue deformation (the "Slinky" effect), other gravitational mechanisms (weight of blood and gravitational gradient in tissue elastic recoil), and matched airway and arterial tree geometry to V̇/Q̇ matching and therefore to total lung oxygen exchange. Our results showed that the heterogeneity in V̇ and Q̇ were lowest and the correlation between V̇ and Q̇ was highest when the only mechanism for V̇/Q̇ matching was either tissue deformation or matched geometry. Heterogeneity in V̇ and Q̇ was highest and their correlation was poorest when all mechanisms were active (that is, at baseline). Eliminating the contribution of matched geometry did not change the correlation between V̇ and Q̇ at baseline. Despite the much larger heterogeneities in V̇ and Q̇ at baseline, the contribution of in-common (to V̇ and Q̇) gravitational mechanisms provided sufficient compensatory V̇/Q̇ matching to minimize the impact on oxygen transfer. In summary, this model predicts that during supine normal breathing under gravitational loading, passive V̇/Q̇ matching is predominantly determined by shared gravitationally induced tissue deformation, compliance distribution, and the effect of the hydrostatic pressure gradient on vessel and capillary size and blood pressures. Contribution from the matching airway and arterial tree geometries in this model is minor under normal gravity in the supine adult human lung. NEW & NOTEWORTHY We use a computational model to systematically analyze contributors to ventilation-perfusion matching in the lung. The model predicts that the multiple effects of gravity are the predominant mechanism in providing passive ventilation-perfusion matching in the supine adult human lung under normal gravitational loads, while geometric matching of airway and arterial trees plays a minor role.
Collapse
Affiliation(s)
- W Kang
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - A R Clark
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - M H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| |
Collapse
|
26
|
Ax M, Sanchez-Crespo A, Lindahl SGE, Mure M, Petersson J. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture. J Appl Physiol (1985) 2017; 122:1445-1451. [PMID: 28336539 DOI: 10.1152/japplphysiol.00887.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022] Open
Abstract
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99mTc or 113mIn, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions.NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures.
Collapse
Affiliation(s)
- M Ax
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden; .,Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - A Sanchez-Crespo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S G E Lindahl
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - M Mure
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - J Petersson
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
27
|
Mase K, Noguchi T, Tagami M, Imura S, Tomita K, Monma M, Nozoe M, Takashima S, Kawakatsu K. Compression of the lungs by the heart in supine, side-lying, semi-prone positions. J Phys Ther Sci 2016; 28:2470-2473. [PMID: 27799672 PMCID: PMC5080154 DOI: 10.1589/jpts.28.2470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Clarification of the differences in the compression volume of the lungs by the
heart (CVLH) between postures may facilitate the selection of optimal postures in
respiratory care. Determining CVLH in the supine, semi-prone (Sim’s position), and
side-lying positions was the aim of this study. [Subjects and Methods] Eight healthy
volunteers (six males, two females; mean age, 29.0 ± 9.2 years) were enrolled in the
study. Measurements were performed in the supine, right and left semi-prone, and right and
left side-lying positions. semi-prone position was inclined 45° ventrally from the
side-lying position. A 1.5-T system with a fast advanced spin-echo sequence in the coronal
plane was used for magnetic resonance imaging. [Results] CVLH and heart compression ratio
were significantly lower in the semi-prone position on both sides than the other
positions. The heart was displaced ventrally when semi-prone and a larger area of the
heart leaned on the ventral chest wall, localizing compression to part of the ventral
region of the dependent lung. [Conclusion] The region of lungs compressed by the heart is
reduced in the semi-prone position due to ventral displacement of the heart. These results
suggest that maintaining expansion of the dependent lung is easier in the semi-prone
position.
Collapse
Affiliation(s)
- Kyoushi Mase
- Department of Physical Therapy, Faculty of Nursing and Rehabilitation, Konan Women's University, Japan
| | - Tisa Noguchi
- Department of Rehabilitation, Konan Hospital, Japan
| | - Miki Tagami
- Department of Physical Therapy, Uekusa Gakuen University, Japan
| | - Shigeyuki Imura
- Department of Physical Therapy, Uekusa Gakuen University, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Japan
| | - Masahiko Monma
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Japan
| | - Masafumi Nozoe
- Department of Physical Therapy, Faculty of Nursing and Rehabilitation, Konan Women's University, Japan
| | - Sachie Takashima
- Department of Physical Therapy, Faculty of Nursing and Rehabilitation, Konan Women's University, Japan
| | - Kunihiro Kawakatsu
- Department of Physical Therapy, Faculty of Nursing and Rehabilitation, Konan Women's University, Japan
| |
Collapse
|
28
|
Arai TJ, Theilmann RJ, Sá RC, Villongco MT, Hopkins SR. The effect of lung deformation on the spatial distribution of pulmonary blood flow. J Physiol 2016; 594:6333-6347. [PMID: 27273807 PMCID: PMC5088230 DOI: 10.1113/jp272030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes. The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution. Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. ABSTRACT Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation-perfusion matching. Density-normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non-dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non-dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = -0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = -0.058(0.126), +1 litre = -0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non-dependent [+500 ml = -0.075(0.152), +1 litre = -0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non-dependent lung.
Collapse
Affiliation(s)
- Tatsuya J Arai
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Michael T Villongco
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Scholten EL, Beitler JR, Prisk GK, Malhotra A. Treatment of ARDS With Prone Positioning. Chest 2016; 151:215-224. [PMID: 27400909 DOI: 10.1016/j.chest.2016.06.032] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
Prone positioning was first proposed in the 1970s as a method to improve gas exchange in ARDS. Subsequent observations of dramatic improvement in oxygenation with simple patient rotation motivated the next several decades of research. This work elucidated the physiological mechanisms underlying changes in gas exchange and respiratory mechanics with prone ventilation. However, translating physiological improvements into a clinical benefit has proved challenging; several contemporary trials showed no major clinical benefits with prone positioning. By optimizing patient selection and treatment protocols, the recent Proning Severe ARDS Patients (PROSEVA) trial demonstrated a significant mortality benefit with prone ventilation. This trial, and subsequent meta-analyses, support the role of prone positioning as an effective therapy to reduce mortality in severe ARDS, particularly when applied early with other lung-protective strategies. This review discusses the physiological principles, clinical evidence, and practical application of prone ventilation in ARDS.
Collapse
Affiliation(s)
- Eric L Scholten
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, CA.
| | - Jeremy R Beitler
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, CA
| | - G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, La Jolla, CA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
30
|
Saure EW, Bakke PS, Lind Eagan TM, Aanerud M, Jensen RL, Grydeland TB, Johannessen A, Nilsen RM, Thorsen E, Hardie JA. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients. Eur Clin Respir J 2016; 3:29141. [PMID: 27178139 PMCID: PMC4867045 DOI: 10.3402/ecrj.v3.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. OBJECTIVE To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. METHODS The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). RESULTS Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CONCLUSION CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.
Collapse
Affiliation(s)
- Eirunn Waatevik Saure
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway;
| | - Per Sigvald Bakke
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Tomas Mikal Lind Eagan
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway.,Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Aanerud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Robert Leroy Jensen
- Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah, USA
| | | | - Ane Johannessen
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Roy Miodini Nilsen
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Einar Thorsen
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Jon Andrew Hardie
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Karch SB. The problem of police-related cardiac arrest. J Forensic Leg Med 2016; 41:36-41. [PMID: 27126838 DOI: 10.1016/j.jflm.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
The term "positional asphyxia" was originally used to describe the situation in which the upper airways becomes compromised by sharp angulation of the head or neck, or where the chest wall is splinted and the diaphragm is prevented from moving because of an unusual position of the body. The term was redefined in the early 1980s to describe sudden death during physical restraint of an individual who is in a prone position. A large percent of reported victims were overweight males. Most were in early middle age and manifesting psychotic behavior at the time of death. Most were reported to have unremarkable autopsies, save for the finding, in many cases, of cocaine or methamphetamine (more recently synthetic cannabinoids and cathinones as well). As no cause of death was apparent (other than non-specific signs such as pulmonary edema), it became common practice to attribute death to force exerted on the decedent's back. When experimental studies with human volunteers disproved this notion, the term "restraint asphyxia" was substituted for positional asphyxia, but with nearly the exact same meaning. No experimental study has ever determined the actual amount of force necessary to cause asphyxia by force applied to the back (although the range of required static force is known), nor the duration for which it must be applied. This review discusses the epidemiology and the evidence for and against the theory of "restraint/positional" asphyxia. It also considers alternative theories of causation, including the findings of studies suggesting that cardiac channelopathies/cardiomyopathies may explain many cases of ARD.
Collapse
Affiliation(s)
- Steven B Karch
- Consultant Pathologist/Toxicologist, P.O. Box 5139, Berkeley, CA, 94705, USA.
| |
Collapse
|
32
|
Walker SC, Asadi AK, Hopkins SR, Buxton RB, Prisk GK. A statistical clustering approach to discriminating perfusion from conduit vessel signal contributions in a pulmonary ASL MR image. NMR IN BIOMEDICINE 2015; 28:1117-1124. [PMID: 26182890 PMCID: PMC4537803 DOI: 10.1002/nbm.3358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/17/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
The measurement of pulmonary perfusion (blood delivered to the capillary bed within a voxel) using arterial spin labeling (ASL) magnetic resonance imaging is often complicated by signal artifacts from conduit vessels that carry blood destined for voxels at a distant location in the lung. One approach to dealing with conduit vessel contributions involves the application of an absolute threshold on the ASL signal. While useful for identifying a subset of the most dominant high signal conduit image features, signal thresholding cannot discriminate between perfusion and conduit vessel contributions at intermediate and low signal. As an alternative, this article discusses a data-driven statistical approach based on statistical clustering for characterizing and discriminating between capillary perfusion and conduit vessel contributions over the full signal spectrum. An ASL flow image is constructed from the difference between a pair of tagged magnetic resonance images. However, when viewed as a bivariate projection that treats the image pair as independent measures (rather than the univariate quantity that results from the subtraction of the two images), the signal associated with capillary perfusion contributions is observed to cluster independently of the signal associated with conduit vessel contributions. Analyzing the observed clusters using a Gaussian mixture model makes it possible to discriminate between conduit vessel and capillary-perfusion-dominated signal contributions over the full signal spectrum of the ASL image. As a demonstration of feasibility, this study compares the proposed clustering approach with the standard absolute signal threshold strategy in a small number of test images.
Collapse
Affiliation(s)
| | - Amran K. Asadi
- Department of Medicine, University of California, San Diego
| | - Susan R. Hopkins
- Department of Medicine, University of California, San Diego
- Department of Radiology, University of California, San Diego
| | | | - G. Kim Prisk
- Department of Medicine, University of California, San Diego
- Department of Radiology, University of California, San Diego
| |
Collapse
|
33
|
Miller GW, Mugler JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR IN BIOMEDICINE 2014; 27:1542-56. [PMID: 24990096 PMCID: PMC4515033 DOI: 10.1002/nbm.3156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 05/05/2023]
Abstract
The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.
Collapse
Affiliation(s)
- G. Wilson Miller
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
- Address correspondence to: Wilson Miller, Radiology Research, 480 Ray C. Hunt Dr., Box 801339, Charlottesville, VA 22908, Phone: 434-243-9216, Fax: 434-924-9435,
| | - John P. Mugler
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
| | - Rui C. Sá
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
| | - Talissa A. Altes
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
| | - G. Kim Prisk
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| | - Susan R. Hopkins
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| |
Collapse
|
34
|
Asadi AK, Sá RC, Kim NH, Theilmann RJ, Hopkins SR, Buxton RB, Prisk GK. Inhaled nitric oxide alters the distribution of blood flow in the healthy human lung, suggesting active hypoxic pulmonary vasoconstriction in normoxia. J Appl Physiol (1985) 2014; 118:331-43. [PMID: 25429099 DOI: 10.1152/japplphysiol.01354.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is thought to actively regulate ventilation-perfusion (V̇a/Q̇) matching, reducing perfusion in regions of alveolar hypoxia. We assessed the extent of HPV in the healthy human lung using inhaled nitric oxide (iNO) under inspired oxygen fractions (FiO2 ) of 0.125, 0.21, and 0.30 (a hyperoxic stimulus designed to abolish HPV without the development of atelectasis). Dynamic measures of blood flow were made in a single sagittal slice of the right lung of five healthy male subjects using an arterial spin labeling (ASL) MRI sequence, following a block stimulus pattern (3 × 60 breaths) with 40 ppm iNO administered in the central block. The overall spatial heterogeneity, spatiotemporal variability, and regional pattern of pulmonary blood flow was quantified as a function of condition (FiO2 × iNO state). While spatial heterogeneity did not change significantly with iNO administration or FiO2 , there were statistically significant increases in Global Fluctuation Dispersion, (a marker of spatiotemporal flow variability) when iNO was administered during hypoxia (5.4 percentage point increase, P = 0.003). iNO had an effect on regional blood flow that was FiO2 dependent (P = 0.02), with regional changes in the pattern of blood flow occurring in hypoxia (P = 0.007) and normoxia (P = 0.008) tending to increase flow to dependent lung at the expense of nondependent lung. These findings indicate that inhaled nitric oxide significantly alters the distribution of blood flow in both hypoxic and normoxic healthy subjects, and suggests that some baseline HPV may indeed be present in the normoxic lung.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Radiology, University of California, San Diego, La Jolla, California
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
35
|
Berteloot L, Taam RA, Emond-Gonsard S, Mamou-Mani T, Lambot K, Grévent D, Elie C, Le Bourgeois M, Delacourt C, Brunelle F, de Blic J. Primary pulmonary alveolar proteinosis: computed tomography features at diagnosis. Pediatr Radiol 2014; 44:795-802. [PMID: 24599270 DOI: 10.1007/s00247-014-2888-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is characterized by an abnormal accumulation of periodic acid-schiff-positive lipoproteinaceous material in the alveoli. Early diagnosis allows setting up of therapeutic lung lavages, which reduces the need for oxygen supplementation and weight gain. OBJECTIVE To provide a description of radiological features by CT at the onset of primary PAP in children. MATERIALS AND METHODS The clinical and radiological data of 24 patients, including 16 boys and 8 girls (median age: 12 months), diagnosed with a primary form of PAP between April 1992 and May 2012 in a tertiary referral hospital, were retrospectively reviewed. CT images were examined for the presence of alveolar and interstitial elementary lesions. Correlation between clinical and radiological findings was assessed. RESULTS The types of elementary lesions detected were: ground-glass opacities (n = 24), intralobular lines (n = 24), thickened interlobular septa (n = 22), thickened fissures (n = 21), airspace consolidation (n = 16), hyperinflation (n = 16), cystic lesions (n = 2) and micronodules (n = 1). A crazy-paving pattern was found in 92% of cases. Consolidation and hyperinflation were especially detected in younger children (median age, 8 months, P < 0.01). A density dependent gradient was found. The distribution of the lesions was symmetrical. There was no correlation between radiological and clinical data of severity of the disease. CONCLUSION CT findings are suggestive of diagnosis of PAP in immunocompetent children with chronic respiratory failure.
Collapse
Affiliation(s)
- Laureline Berteloot
- Department of Pediatric Radiology, Hôpital Necker Enfants-Malades, Assistance Publique des Hôpitaux de Paris, 149 rue de Sèvres, 75743, Paris Cedex 15, France,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hall ET, Sá RC, Holverda S, Arai TJ, Dubowitz DJ, Theilmann RJ, Prisk GK, Hopkins SR. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI. J Appl Physiol (1985) 2013; 116:451-61. [PMID: 24356515 DOI: 10.1152/japplphysiol.00659.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min(-1)·ml(-1)) (perfusion), and also normalized for density and quantified (in ml·min(-1)·g(-1)) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min(-1)·g(-1), P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions.
Collapse
Affiliation(s)
- E T Hall
- Department of Medicine, University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Efficient gas exchange in the lung depends on the matching of ventilation and perfusion. However, the human lung is a readily deformable structure and as a result gravitational stresses generate gradients in both ventilation and perfusion. Nevertheless, the lung is capable of withstanding considerable change in the applied gravitational load before pulmonary gas exchange becomes impaired. The postural changes that are part of the everyday existence for most bipedal species are well tolerated, as is the removal of gravity (weightlessness). Increases in the applied gravitational load result only in a large impairment in pulmonary gas exchange above approximately three times that on the ground, at which point the matching of ventilation to perfusion is so impaired that efficient gas exchange is no longer possible. Much of the tolerance of the lung to alterations in gravitation stress comes from the fact that ventilation and perfusion are inextricably coupled. Deformations in the lung that alter ventilation necessarily alter perfusion, thus maintaining a degree of matching and minimizing the disruption in ventilation to perfusion ratio and thus gas exchange.
Collapse
Affiliation(s)
- G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, USA.
| |
Collapse
|
38
|
Abstract
Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions.
Collapse
Affiliation(s)
- Robb Glenny
- Departments of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
39
|
Kaushik SS, Freeman MS, Cleveland ZI, Davies J, Stiles J, Virgincar RS, Robertson SH, He M, Kelly KT, Foster WM, McAdams HP, Driehuys B. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging. J Appl Physiol (1985) 2013; 115:850-60. [PMID: 23845983 DOI: 10.1152/japplphysiol.00092.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.
Collapse
Affiliation(s)
- S Sivaram Kaushik
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol (1985) 2013; 115:313-24. [PMID: 23620488 DOI: 10.1152/japplphysiol.01531.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.
Collapse
Affiliation(s)
- A Cortney Henderson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Asadi AK, Cronin MV, Sá RC, Theilmann RJ, Holverda S, Hopkins SR, Buxton RB, Prisk GK. Spatial-temporal dynamics of pulmonary blood flow in the healthy human lung in response to altered FI(O2). J Appl Physiol (1985) 2012; 114:107-18. [PMID: 23104691 DOI: 10.1152/japplphysiol.00433.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The temporal dynamics of blood flow in the human lung have been largely unexplored due to the lack of appropriate technology. Using the magnetic resonance imaging method of arterial spin labeling (ASL) with subject-gated breathing, we produced a dynamic series of flow-weighted images in a single sagittal slice of the right lung with a spatial resolution of ~1 cm(3) and a temporal resolution of ~10 s. The mean flow pattern determined from a set of reference images was removed to produce a time series of blood flow fluctuations. The fluctuation dispersion (FD), defined as the spatial standard deviation of each flow fluctuation map, was used to quantify the changes in distribution of flow in six healthy subjects in response to 100 breaths of hypoxia (FI(O(2)) = 0.125) or hyperoxia (FI(O(2)) = 1.0). Two reference frames were used in calculation, one determined from the initial set of images (FD(global)), and one determined from the mean of each corresponding baseline or challenge period (FD(local)). FD(local) thus represented changes in temporal variability as a result of intervention, whereas FD(global) encompasses both FD(local) and any generalized redistribution of flow associated with switching between two steady-state patterns. Hypoxic challenge resulted in a significant increase (96%, P < 0.001) in FD(global) from the normoxic control period and in FD(local) (46%, P = 0.0048), but there was no corresponding increase in spatial relative dispersion (spatial standard deviation of the images divided by the mean; 8%, not significant). There was a smaller increase in FD(global) in response to hyperoxia (47%, P = 0.0015) for the single slice, suggestive of a more general response of the pulmonary circulation to a change from normoxia to hyperoxia. These results clearly demonstrate a temporal change in the sampled distribution of pulmonary blood flow in response to hypoxia, which is not observed when considering only the relative dispersion of the spatial distribution.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0852, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To describe the most recent advances and clinical applications of adjunctive techniques in mechanical ventilation, focusing on their overall impact on mortality and their potential indications in critically ill patients. RECENT FINDINGS The modern variants of extracorporeal membrane oxygenation are not only rescue alternatives but also therapeutic options for patients with severe but potentially reversible acute respiratory distress syndrome. Prone positioning returns as a desirable therapeutic option for patients with severe acute respiratory distress syndrome. Recent reports suggest that permissive hypercapnia, therapeutic paralysis, sedation, and controlled hypothermia could potentially improve important clinical outcomes. Although more clinical trials are clearly needed to support the use of inhaled prostacyclins in severe respiratory failure, encouraging results have been described in recent publications. SUMMARY Giving the complexity and dynamism of acute lung injury, timing, severity, and pathophysiologic pertinence are mandatory components of decision-making when considering the application of adjunctive measures to support mechanical ventilation.
Collapse
|
43
|
Hopkins SR, Wielpütz MO, Kauczor HU. Imaging lung perfusion. J Appl Physiol (1985) 2012; 113:328-39. [PMID: 22604884 PMCID: PMC3404706 DOI: 10.1152/japplphysiol.00320.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022] Open
Abstract
From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1-12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, Pulmonary Imaging Laboratory, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
44
|
Malagoli RDC, Santos FFA, Oliveira EA, Bouzada MCF. Influência da posição prona na oxigenação, frequência respiratória e na força muscular nos recém-nascidos pré-termo em desmame da ventilação mecânica. REVISTA PAULISTA DE PEDIATRIA 2012. [DOI: 10.1590/s0103-05822012000200015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJETIVO: Verificar a influência do posicionamento do recém-nascido prematuro sobre a força da musculatura respiratória, oxigenação e frequência respiratória. MÉTODOS: Estudo transversal com amostra pareada de recém-nascidos com idade gestacional inferior a 34 semanas, intubados, em processo final de desmame de ventilação mecânica. Foram excluídos aqueles com malformações, síndromes genéticas, doenças neuromusculares, traqueostomizados e em pós-operatório de cirurgias abdominais ou torácicas. As medidas de pressão inspiratória máxima foram aferidas utilizando-se manovacuômetro digital; a frequência respiratória através da observação das incursões respiratórias das crianças em um minuto e a saturação de oxigênio por oxímetro, nas posturas prona e supino. Os testes estatísticos aplicados foram Kruskal-Wallis, o teste t de Student e o coeficiente de correlação de Pearson, sendo significante p<0,05. RESULTADOS: Foram estudadas 45 crianças com síndrome do desconforto respiratório. A idade gestacional média foi de 30,4 semanas e o peso médio ao nascer de 1522g. Os valores de saturação de oxigênio foram mais elevados (p<0,001) e os de pressão inspiratória máxima mais baixos (p<0,001) na posição prona. Os valores de frequência respiratória foram semelhantes nas duas posições estudadas (p=0,072). CONCLUSÕES: Observaram-se menores valores de pressão inspiratória além de aumento da saturação de oxigênio na posição prona quando comparada à supino. Em relação à frequência respiratória, não foi observada variação entre as posturas prona e supino.
Collapse
|
45
|
Burrowes KS, Buxton RB, Prisk GK. Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model. J Appl Physiol (1985) 2012; 113:130-41. [PMID: 22539167 DOI: 10.1152/japplphysiol.00894.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.
Collapse
Affiliation(s)
- K S Burrowes
- Department of Computer Science, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
46
|
Henderson AC, Sá RC, Barash IA, Holverda S, Buxton RB, Hopkins SR, Prisk GK. Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans. Respir Physiol Neurobiol 2011; 180:331-41. [PMID: 22227320 DOI: 10.1016/j.resp.2011.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 12/09/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
Rapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (p<0.0001). Forced expiratory volume in 1s was reduced by 5.1% post-20 mL/kg (p=0.007). Infusion increased perfusion in nondependent lung by up to 16% (6.4 ± 1.6 mL/min/g baseline, 7.3 ± 1.8 post, 7.4 ± 1.7 recovery, p=0.03). Including conduit vessels, blood delivered in dependent lung was unchanged post-infusion; however, was increased at recovery (9.4 ± 2.7 mL/min/g baseline, 9.7 ± 2.0 post, 11.3 ± 2.2 recovery, p=0.01). After accounting for changes in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature.
Collapse
Affiliation(s)
- A C Henderson
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, United States.
| | | | | | | | | | | | | |
Collapse
|
47
|
Contesini AM, Garcia Jr A, Caromano FA. Influência das variações da postura sentada na função respiratória: revisão de literatura. FISIOTERAPIA EM MOVIMENTO 2011. [DOI: 10.1590/s0103-51502011000400021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: Os efeitos da postura sobre a função respiratória têm motivado pesquisas com o objetivo de rastrear alterações nos mecanismos de adaptação à mudança da postura corporal. A importância desse conhecimento está em compreender como essas alterações podem interferir na função respiratória de indivíduos saudáveis e em condições especiais, como obesos e gestantes. OBJETIVO: Realizar uma revisão bibliográfica para descrever o conhecimento produzido sobre as alterações da função respiratória em diferentes posturas corporais, em especial na postura sentada. MÉTODOS: Foram definidos os conceitos-chave da pesquisa: postura, postura sentada, testes respiratórios e função respiratória ou pulmonar; em seguida determinou-se o período de pesquisa que envolveu os anos de 2000 a 2010 (inclusive) e as bases de dados pesquisadas: SciELO, PEDro, Cochrane e Pubmed. RESULTADO: Encontrou-se que as primeiras pesquisas sobre função respiratória enfocavam alterações encontradas em mudanças significativas da postura corporal, geralmente em indivíduos saudáveis. O aprimoramento científico permitiu a incorporação tecnológica aos métodos de avaliação da função respiratória. Nos estudos sobre postura sentada, observa-se que as alterações são significativas em indivíduos com doenças pulmonares, cardíacas e idosos, entre outros, e que, mesmo em indivíduos saudáveis, as alterações nos testes de função podem ultrapassar a variação dos valores considerados normais para uma dada posição. CONCLUSÃO: São necessários maiores estudos para determinar o momento em que essas alterações podem ser significativas em indivíduos saudáveis e quais as alternativas possíveis para minimizar esses efeitos.
Collapse
|
48
|
BRÜCKEN U, GRENSEMANN J, WAPPLER F, SAKKA SG. Influence of prone positioning on the measurement of transpulmonary thermodilution-derived variables in critically ill patients. Acta Anaesthesiol Scand 2011; 55:1061-7. [PMID: 22092202 DOI: 10.1111/j.1399-6576.2011.02519.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with respiratory failure undergoing prone positioning (PP) are often monitored by the transpulmonary thermodilution (TPTD) technique. However, it remains unclear whether the measurement of TPTD-derived variables is influenced by PP. We investigated the effects of 135° PP on the accuracy of TPTD-derived variables and their changes over an 8-10 h period of time. METHODS We studied 16 mechanically ventilated patients who underwent PP for acute respiratory distress syndrome or acute lung injury and received hemodynamic monitoring by the TPTD technique. Measurements of extravascular lung water index (EVLWI), global end-diastolic volume index (GEDVI), ejection fraction corrected GEDVI (cGEDVI), pulmonary vascular permeability index (PVPI) and hemodynamic variables were obtained 10 min before and after positioning and repositioning. One-way analysis of variance and Friedman's test with Student-Newman-Keuls method for all pairwise multiple comparisons were used for statistical analysis. RESULTS EVLWI increased after proning (12.7 ± 4.7 vs. 14.8 ± 7.8 ml/kg) and remained elevated until end of prone positioning (15.1 ± 7.2 vs. 12.8 ± 4.9 ml/kg) with P < 0.05 for difference between respective time points. After proning, GEDVI remained unchanged (571 ± 153 vs. 593 ± 152 ml/m²). At the end of prone positioning GEDVI was 610 ± 55 ml/m² and decreased after returning to supine to 553 ± 14 ml/m². Proning increased cGEDVI from 525 ± 136 to 570 ± 11 ml/m² and repositioning decreased cGEDVI from 558 ± 116 to 496 ± 121 ml/m². No significant changes in PVPI were observed during the study period. CONCLUSIONS EVLWI and GEDVI measurements are possibly influenced by prone positioning. In spite of statistical significance, the differences in EVLWI and GEDVI are low and presumably of no clinical relevance.
Collapse
Affiliation(s)
- U. BRÜCKEN
- Department of Anaesthesiology and Operative Intensive Care Medicine; University Hospital Witten/Herdecke; Köln; Germany
| | - J. GRENSEMANN
- Department of Anaesthesiology and Operative Intensive Care Medicine; University Hospital Witten/Herdecke; Köln; Germany
| | - F. WAPPLER
- Department of Anaesthesiology and Operative Intensive Care Medicine; University Hospital Witten/Herdecke; Köln; Germany
| | - S. G. SAKKA
- Department of Anaesthesiology and Operative Intensive Care Medicine; University Hospital Witten/Herdecke; Köln; Germany
| |
Collapse
|
49
|
Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:155-62. [DOI: 10.1007/s10334-011-0271-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/09/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
50
|
Holverda S, Theilmann RJ, Sá RC, Arai TJ, Hall ET, Dubowitz DJ, Prisk GK, Hopkins SR. Measuring lung water: ex vivo validation of multi-image gradient echo MRI. J Magn Reson Imaging 2011; 34:220-4. [PMID: 21698711 PMCID: PMC3122154 DOI: 10.1002/jmri.22600] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To validate a fast gradient echo sequence for rapid (9 s) quantitative imaging of lung water. MATERIALS AND METHODS Eleven excised pig lungs were imaged with a fast GRE sequence in triplicate, in the sagittal plane at 2 levels of inflation pressure (5 and 15 cm H(2) O), an intervention that alters T(2) *, but not total lung water. Images were acquired alternating between two closely-spaced echoes and data were fit (voxel-by-voxel) to a single exponential to determine T(2) * and water content, and compared with gravimetric measurements of total water. RESULTS T(2) * averaged 1.08 ± 0.02 ms at 5 cm H(2) O and 1.02 ± 0.02 ms at 15 cm H(2) O (P < 0.05). The measure was reliable (R(2) = 0.99), with an average mean error of 1.8%. There was a significant linear relationship between the two measures of water content: The regression equations for the relationship were y = 0.92x + 19 (R(2) = 0.94), and y = 1.04x + 4 (R(2) = 0.96), for 5 and 15 cm H(2) O inflation pressure respectively. Y-intercepts were not statistically different from zero (P = 0.86). CONCLUSION The multi-echo GRE sequence is a reliable and valid technique to assess water content in the lung. This technique enables rapid assessment of lung water, which is advantageous for in vivo studies.
Collapse
Affiliation(s)
- Sebastiaan Holverda
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, California 92093-0852, USA.
| | | | | | | | | | | | | | | |
Collapse
|