1
|
Scarpa J, Parazynski S, Strangman G. Space exploration as a catalyst for medical innovations. Front Med (Lausanne) 2023; 10:1226531. [PMID: 37538310 PMCID: PMC10395101 DOI: 10.3389/fmed.2023.1226531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Aerospace research has a long history of developing technologies with industry-changing applications and recent history is no exception. The expansion of commercial spaceflight and the upcoming exploration-class missions to the Moon and Mars are expected to accelerate this process even more. The resulting portable, wearable, contactless, and regenerable medical technologies are not only the future of healthcare in deep space but also the future of healthcare here on Earth. These multi-dimensional and integrative technologies are non-invasive, easily-deployable, low-footprint devices that have the ability to facilitate rapid detection, diagnosis, monitoring, and treatment of a variety of conditions, and to provide decision-making and performance support. Therefore, they are primed for applications in low-resource and remote environments, facilitating the extension of quality care delivery to all patients in all communities and empowering non-specialists to intervene early and safely in order to optimize patient-centered outcomes. Additionally, these technologies have the potential to advance care delivery in tertiary care centers by improving transitions of care, providing holistic patient data, and supporting clinician wellness and performance. The requirements of space exploration have created a number of paradigm-altering medical technologies that are primed to revitalize and elevate our standard of care here on Earth.
Collapse
Affiliation(s)
- Julia Scarpa
- Department of Anesthesiology, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, United States
| | | | - Gary Strangman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Advances in applications of head mounted devices (HMDs): Physical techniques for drug delivery and neuromodulation. J Control Release 2023; 354:810-820. [PMID: 36709924 DOI: 10.1016/j.jconrel.2023.01.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Head-mounted medical devices (HMDs) are disruptive inventions representing laboratories and clinical institutions worldwide are climbing the apexes of brain science. These complex devices are inextricably linked with a wide range knowledge containing the Physics, Imaging, Biomedical engineering, Biology and Pharmacology, particularly could be specifically designed for individuals, and finally exerting integrated bio-effect. The salient characteristics of them are non-invasive intervening in human brain's physiological structures, and alterating the biological process, such as thermal ablating the tumor, opening the BBB to deliver drugs and neuromodulating to enhance cognitive performance or manipulate prosthetic. The increasing demand and universally accepted of them have set off a dramatic upsurge in HMDs' studies, seminal applications of them span from clinical use to psychiatric disorders and neurological modulation. With subsequent pre-clinical studies and human trials emerging, the mechanisms of transcranial stimulation methods of them were widely studied, and could be basically came down to three notable approach: magnetic, electrical and ultrasonic stimulation. This review provides a comprehensive overviews of their stimulating mechanisms, and recent advances in clinic and military. We described the potential impact of HMDs on brain science, and current challenges to extensively adopt them as promising alternative treating tools.
Collapse
|
3
|
Perrey S. Evaluating brain functioning with NIRS in sports: Cerebral oxygenation and cortical activation are two sides of the same coin. FRONTIERS IN NEUROERGONOMICS 2022; 3:1022924. [PMID: 38235450 PMCID: PMC10790938 DOI: 10.3389/fnrgo.2022.1022924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2024]
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Heath in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
4
|
Lee P, Kim H, Zitouni MS, Khandoker A, Jelinek HF, Hadjileontiadis L, Lee U, Jeong Y. Trends in Smart Helmets With Multimodal Sensing for Health and Safety: Scoping Review. JMIR Mhealth Uhealth 2022; 10:e40797. [PMID: 36378505 PMCID: PMC9709670 DOI: 10.2196/40797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND As a form of the Internet of Things (IoT)-gateways, a smart helmet is one of the core devices that offers distinct functionalities. The development of smart helmets connected to IoT infrastructure helps promote connected health and safety in various fields. In this regard, we present a comprehensive analysis of smart helmet technology and its main characteristics and applications for health and safety. OBJECTIVE This paper reviews the trends in smart helmet technology and provides an overview of the current and future potential deployments of such technology, the development of smart helmets for continuous monitoring of the health status of users, and the surrounding environmental conditions. The research questions were as follows: What are the main purposes and domains of smart helmets for health and safety? How have researchers realized key features and with what types of sensors? METHODS We selected studies cited in electronic databases such as Google Scholar, Web of Science, ScienceDirect, and EBSCO on smart helmets through a keyword search from January 2010 to December 2021. In total, 1268 papers were identified (Web of Science: 87/1268, 6.86%; EBSCO: 149/1268, 11.75%; ScienceDirect: 248/1268, 19.55%; and Google Scholar: 784/1268, 61.82%), and the number of final studies included after PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) study selection was 57. We also performed a self-assessment of the reviewed articles to determine the quality of the paper. The scoring was based on five criteria: test environment, prototype quality, feasibility test, sensor calibration, and versatility. RESULTS Smart helmet research has been considered in industry, sports, first responder, and health tracking scenarios for health and safety purposes. Among 57 studies, most studies with prototype development were industrial applications (18/57, 32%), and the 2 most frequent studies including simulation were industry (23/57, 40%) and sports (23/57, 40%) applications. From our assessment-scoring result, studies tended to focus on sensor calibration results (2.3 out of 3), while the lowest part was a feasibility test (1.6 out of 3). Further classification of the purpose of smart helmets yielded 4 major categories, including activity, physiological and environmental (hazard) risk sensing, as well as risk event alerting. CONCLUSIONS A summary of existing smart helmet systems is presented with a review of the sensor features used in the prototyping demonstrations. Overall, we aimed to explore new possibilities by examining the latest research, sensor technologies, and application platform perspectives for smart helmets as promising wearable devices. The barriers to users, challenges in the development of smart helmets, and future opportunities for health and safety applications are also discussed. In conclusion, this paper presents the current status of smart helmet technology, main issues, and prospects for future smart helmet with the objective of making the smart helmet concept a reality.
Collapse
Affiliation(s)
- Peter Lee
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Heepyung Kim
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - M Sami Zitouni
- College of Engineering and IT, University of Dubai, Dubai, United Arab Emirates
| | - Ahsan Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Uichin Lee
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Jeong
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Kodithuwakku Arachchige SNK, Burch V RF, Chander H, Turner AJ, Knight AC. The use of wearable devices in cognitive fatigue: current trends and future intentions. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2021. [DOI: 10.1080/1463922x.2021.1965670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Reuben F. Burch V
- Industrial & Systems Engineering, Mississippi State University, Starkville, MS, USA
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA
| | - Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA
| | - Alana J. Turner
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Adam C. Knight
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
6
|
Framework for selecting and benchmarking mobile devices in psychophysiological research. Behav Res Methods 2021; 53:518-535. [PMID: 32748241 DOI: 10.3758/s13428-020-01438-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Commercially available consumer electronics in (smartwatches and wearable biosensors) are increasingly enabling acquisition of peripheral physiological and physical activity data inside and outside of laboratory settings. However, there is scant literature available for selecting and assessing the suitability of these novel devices for scientific use. To overcome this limitation, the current paper offers a framework to aid researchers in choosing and evaluating wearable technologies for use in empirical research. Our seven-step framework includes: (1) identifying signals of interest; (2) characterizing intended use cases; (3) identifying study-specific pragmatic needs; (4) selecting devices for evaluation; (5) establishing an assessment procedure; (6) performing qualitative and quantitative analyses on resulting data; and, if desired, (7) conducting power analyses to determine sample size needed to more rigorously compare performance across devices. We illustrate the application of the framework by comparing electrodermal, cardiovascular, and accelerometry data from a variety of commercial wireless sensors (Affectiva Q, Empatica E3, Empatica E4, Actiwave Cardio, Shimmer) relative to a well-validated, wired MindWare laboratory system. Our evaluations are performed in two studies (N = 10, N = 11) involving psychometrically sound, standardized tasks that include physical activity and affect induction. After applying our framework to this data, we conclude that only some commercially available consumer devices for physiological measurement are capable of wirelessly measuring peripheral physiological and physical activity data of sufficient quality for scientific use cases. Thus, the framework appears to be beneficial at suggesting steps for conducting more systematic, transparent, and rigorous evaluations of mobile physiological devices prior to deployment in studies.
Collapse
|
7
|
Hupfeld KE, McGregor HR, Reuter-Lorenz PA, Seidler RD. Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neurosci Biobehav Rev 2021; 122:176-189. [PMID: 33454290 DOI: 10.1016/j.neubiorev.2020.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Emerging plans for travel to Mars and other deep space destinations make it critical for us to understand how spaceflight affects the human brain and behavior. Research over the past decade has demonstrated two co-occurring patterns of spaceflight effects on the brain and behavior: dysfunction and adaptive plasticity. Evidence indicates the spaceflight environment induces adverse effects on the brain, including intracranial fluid shifts, gray matter changes, and white matter declines. Past work also suggests that the spaceflight environment induces adaptive neural effects such as sensory reweighting and neural compensation. Here, we introduce a new conceptual framework to synthesize spaceflight effects on the brain, Spaceflight Perturbation Adaptation Coupled with Dysfunction (SPACeD). We review the literature implicating neurobehavioral dysfunction and adaptation in response to spaceflight and microgravity analogues, and we consider pre-, during-, and post-flight factors that may interact with these processes. We draw several instructive parallels with the aging literature which also suggests co-occurring neurobehavioral dysfunction and adaptive processes. We close with recommendations for future spaceflight research, including: 1) increased efforts to distinguish between dysfunctional versus adaptive effects by testing brain-behavioral correlations, and 2) greater focus on tracking recovery time courses.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - P A Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
8
|
Yan W, Zheng K, Weng L, Chen C, Kiartivich S, Jiang X, Su X, Wang Y, Wang X. Bibliometric evaluation of 2000-2019 publications on functional near-infrared spectroscopy. Neuroimage 2020; 220:117121. [PMID: 32619709 DOI: 10.1016/j.neuroimage.2020.117121] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore and analyze research trends and frontiers on functional near-infrared spectroscopy (fNIRS) in the past 20 years and identify collaboration networks. fNIRS-related publications from 2000 to 2019 were retrieved from the Web of Science database. A total of 1727 publications satisfied the search criteria. Bibliometric visualization analysis of active authors, journals, institutions, countries, references, and keywords were conducted. The number of annual related publications remarkably increased over the years. Fallgatter published the largest number of fNIRS-related papers (83). Neuroimage not only had the largest number of papers published in the first 10 journals (157 articles) but also had the highest impact factor (IF, 2018 = 5.812). The University of Tubingen had the highest number of fNIRS-related publications in the past 20 years. The United States ranked first in terms of comprehensive influence in this field. In recent years, burst keywords (e.g., infant, social interaction, and older adult) and a series of references with citation burst provided clues on research frontiers.
Collapse
Affiliation(s)
- Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Linman Weng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Suparata Kiartivich
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
9
|
Strangman GE, Sawyer A, Fabre KM, Urquieta E, Hury J, Wu J, Peterman A, Hoffman J, Donoviel D. Deep-space applications for point-of-care technologies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zafonte R, Pascual‐Leone A, Baggish A, Weisskopf MG, Taylor HA, Connor A, Baker J, Cohan S, Valdivia C, Courtney TK, Cohen IG, Speizer FE, Nadler LM. The Football Players' Health Study at Harvard University: Design and objectives. Am J Ind Med 2019; 62:643-654. [PMID: 31210374 PMCID: PMC6772014 DOI: 10.1002/ajim.22991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The Football Players Health Study at Harvard University (FPHS) is a unique transdisciplinary, strategic initiative addressing the challenges of former players’ health after having participated in American style football (ASF). The whole player focused FPHS is designed to deepen understanding of the benefits and risks of participation in ASF, identify risks that are potentially reversible or preventable, and develop interventions or approaches to improve the health and wellbeing of former players. We are recruiting and following a cohort of former professional ASF players who played since 1960 (current n = 3785). At baseline, participants complete a self‐administered standardized questionnaire, including initial reporting of exposure history and physician‐diagnosed health conditions. Additional arms of the initiative are addressing targeted studies, including promising primary, secondary, and tertiary interventions; extensive in‐person clinical phenotyping, and legal and ethical concerns of the play. This paper describes the components of the FPHS studies undertaken and completed thus far, as well as those studies currently underway or planned for the near future. We present our initiatives herein as a potential paradigm of one way to proceed (acknowledging that it is not the only way). We share what we have learned so that it may be useful to others, particularly in regard to trying to make professional sports meet the needs of multiple stakeholders ranging from players to owners, to fans, and possibly even to parents making decisions for their children.
Collapse
Affiliation(s)
- Ross Zafonte
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts
| | - Alvaro Pascual‐Leone
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Berenson‐Allen Center and Division for Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | - Aaron Baggish
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Cardiovascular Performance Program, Department of Medicine, Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Marc G. Weisskopf
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Department of Environmental Health Harvard TH Chan School of Public Health Boston Massachusetts
| | - Herman A. Taylor
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Department of Medicine, Cardiovascular Research Institute Morehouse Medical School Atlanta Georgia
| | - Ann Connor
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Berenson‐Allen Center and Division for Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | - Jillian Baker
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
| | - Sarah Cohan
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
| | - Chelsea Valdivia
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
| | - Theodore K. Courtney
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Department of Environmental Health Harvard TH Chan School of Public Health Boston Massachusetts
| | - I. Glenn Cohen
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Harvard Law School Cambridge Massachusetts
| | - Frank E. Speizer
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Department of Environmental Health Harvard TH Chan School of Public Health Boston Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts
| | - Lee M. Nadler
- Football Players Health Study at Harvard University, Harvard Medical School Boston Massachusetts
- Dana Farber Cancer Center Harvard Medical School Boston Massachusetts
| |
Collapse
|
11
|
A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go? PHOTONICS 2019. [DOI: 10.3390/photonics6030087] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This mini-review is aimed at briefly summarizing the present status of functional near-infrared spectroscopy (fNIRS) and predicting where the technique should go in the next decade. This mini-review quotes 33 articles on the different fNIRS basics and technical developments and 44 reviews on the fNIRS applications published in the last eight years. The huge number of review articles about a wide spectrum of topics in the field of cognitive and social sciences, functional neuroimaging research, and medicine testifies to the maturity achieved by this non-invasive optical vascular-based functional neuroimaging technique. Today, fNIRS has started to be utilized on healthy subjects while moving freely in different naturalistic settings. Further instrumental developments are expected to be done in the near future to fully satisfy this latter important aspect. In addition, fNIRS procedures, including correction methods for the strong extracranial interferences, need to be standardized before using fNIRS as a clinical tool in individual patients. New research avenues such as interactive neurosciences, cortical activation modulated by different type of sport performance, and cortical activation during neurofeedback training are highlighted.
Collapse
|
12
|
Kim YH, Paik SH, V ZP, Jeon NJ, Kim BJ, Kim BM. Cerebral Perfusion Monitoring Using Near-Infrared Spectroscopy During Head-Up Tilt Table Test in Patients With Orthostatic Intolerance. Front Hum Neurosci 2019; 13:55. [PMID: 30837856 PMCID: PMC6389826 DOI: 10.3389/fnhum.2019.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
The head-up tilt table test (HUT) is one of the primary clinical examinations for evaluating orthostatic intolerance (OI). HUT can be divided into three phases: dynamic tilt phase (supine to tilt up), static tilt phase (remain tilted at 70°), and post tilt phase (tilt down back to supine position). Commonly, blood pressure (BP) and heart rate (HR) are monitored to observe for OI symptoms, but are indirect measurements of cerebral perfusion and can lead to inaccurate HUT evaluation. In this study, we implemented a 108-channel near-infrared spectroscopy (NIRS) probe to characterize HUT performance by monitoring cerebral hemodynamic changes for healthy controls (HCs), OI patients with normal HUT results, and OI patients with positive HUT results: vasovagal syncope (VS), postural orthostatic tachycardia syndrome (POTS), orthostatic hypotension (OH), and orthostatic hypertension (OHT). By the end of the static tilt phase, OI patients typically did not show a complete recovery back to baseline cerebral oxygenation and total blood volume compared to HCs. We characterized the return to cerebral homeostasis by polynomial fitting total blood volume changes and determining the inflection point. The OI patients with normal HUT results, VS, OH, or OHT showed a delay in the return to cerebral homeostasis compared to the HC group during HUT.
Collapse
Affiliation(s)
- Yoo Hwan Kim
- Department of Neurology, Hallym University College of Medicine, Seoul, South Korea.,Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Seung-Ho Paik
- Department of Bio-convergence Engineering, Korea University College of Health Science, Seoul, South Korea
| | - Zephaniah Phillips V
- Department of Bio-convergence Engineering, Korea University College of Health Science, Seoul, South Korea
| | - Nam-Joon Jeon
- Neurophysiology Laboratory, Korea University Anam Hospital, Seoul, South Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, Seoul, South Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, South Korea
| | - Beop-Min Kim
- Department of Bio-convergence Engineering, Korea University College of Health Science, Seoul, South Korea
| |
Collapse
|
13
|
Friedl KE. Military applications of soldier physiological monitoring. J Sci Med Sport 2018; 21:1147-1153. [DOI: 10.1016/j.jsams.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/10/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
|
14
|
Talboom JS, Huentelman MJ. Big data collision: the internet of things, wearable devices and genomics in the study of neurological traits and disease. Hum Mol Genet 2018; 27:R35-R39. [DOI: 10.1093/hmg/ddy092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Joshua S Talboom
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85004, USA
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85004, USA
| |
Collapse
|
15
|
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, Boutelle MG. Chemical Monitoring in Clinical Settings: Recent Developments toward Real-Time Chemical Monitoring of Patients. Anal Chem 2017; 90:2-18. [PMID: 29083872 DOI: 10.1021/acs.analchem.7b04224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marsilea A Booth
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Sally A N Gowers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Michelle L Rogers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Isabelle C Samper
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Aidan P Wickham
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Sawka MN, Friedl KE. Emerging Wearable Physiological Monitoring Technologies and Decision Aids for Health and Performance. J Appl Physiol (1985) 2017; 124:430-431. [PMID: 29097633 DOI: 10.1152/japplphysiol.00964.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Michael N Sawka
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Karl E Friedl
- Department of Neurology, University of California at San Francisco , San Francisco, California
| |
Collapse
|