1
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Beidleman BA, Figueiredo PS, Landspurg SD, Femling JK, Williams JD, Staab JE, Buller MJ, Karl JP, Reilly AJ, Mayschak TJ, Atkinson EY, Mesite TJ, Hoyt RW. Active ascent accelerates the time course but not the overall incidence and severity of acute mountain sickness at 3,600 m. J Appl Physiol (1985) 2023; 135:436-444. [PMID: 37318986 PMCID: PMC10538982 DOI: 10.1152/japplphysiol.00216.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Acute mountain sickness (AMS) typically peaks following the first night at high altitude (HA) and resolves over the next 2-3 days, but the impact of active ascent on AMS is debated. To determine the impact of ascent conditions on AMS, 78 healthy Soldiers (means ± SD; age = 26 ± 5 yr) were tested at baseline residence, transported to Taos, NM (2,845 m), hiked (n = 39) or were driven (n = 39) to HA (3,600 m), and stayed for 4 days. AMS-cerebral (AMS-C) factor score was assessed at HA twice on day 1 (HA1), five times on days 2 and 3 (HA2 and HA3), and once on day 4 (HA4). If AMS-C was ≥0.7 at any assessment, individuals were AMS susceptible (AMS+; n = 33); others were nonsusceptible (AMS-; n = 45). Daily peak AMS-C scores were analyzed. Ascent conditions (active vs. passive) did not impact the overall incidence and severity of AMS at HA1-HA4. The AMS+ group, however, demonstrated a higher (P < 0.05) AMS incidence in the active vs. passive ascent cohort on HA1 (93% vs. 56%), similar incidence on HA2 (60% vs. 78%), lower incidence (P < 0.05) on HA3 (33% vs. 67%), and similar incidence on HA4 (13% vs. 28%). The AMS+ group also demonstrated a higher (P < 0.05) AMS severity in the active vs. passive ascent cohort on HA1 (1.35 ± 0.97 vs. 0.90 ± 0.70), similar score on HA2 (1.00 ± 0.97 vs. 1.34 ± 0.70), and lower (P < 0.05) score on HA3 (0.56 ± 0.55 vs. 1.02 ± 0.75) and HA4 (0.32 ± 0.41 vs. 0.60 ± 0.72). Active compared with passive ascent accelerated the time course of AMS with more individuals sick on HA1 and less individuals sick on HA3 and HA4.NEW & NOTEWORTHY This research demonstrated that active ascent accelerated the time course but not overall incidence and severity of acute mountain sickness (AMS) following rapid ascent to 3,600 m in unacclimatized lowlanders. Active ascenders became sicker faster and recovered quicker than passive ascenders, which may be due to differences in body fluid regulation. Findings from this well-controlled large sample-size study suggest that previously reported discrepancies in the literature regarding the impact of exercise on AMS may be related to differences in the timing of AMS measurements between studies.
Collapse
Affiliation(s)
- Beth A Beidleman
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Peter S Figueiredo
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Steven D Landspurg
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jon K Femling
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Jason D Williams
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Janet E Staab
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Mark J Buller
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Aaron J Reilly
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Trevor J Mayschak
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Emma Y Atkinson
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Timothy J Mesite
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Reed W Hoyt
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
3
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
4
|
Wei CY, Chen PN, Lin SS, Huang TW, Sun LC, Tseng CW, Lin KF. Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute mountain sickness. BMC Bioinformatics 2022; 22:628. [PMID: 35641924 PMCID: PMC9153088 DOI: 10.1186/s12859-022-04749-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies on acute mountain sickness (AMS) have used fixed-location and fixed-time measurements of environmental and physiological variable to determine the influence of AMS-associated factors in the human body. This study aims to measure, in real time, environmental conditions and physiological variables of participants in high-altitude regions to develop an AMS risk evaluation model to forecast prospective development of AMS so its onset can be prevented.
Results Thirty-two participants were recruited, namely 25 men and 7 women, and they hiked from Cuifeng Mountain Forest Park parking lot (altitude: 2300 m) to Wuling (altitude: 3275 m). Regression and classification machine learning analyses were performed on physiological and environmental data, and Lake Louise Acute Mountain Sickness Scores (LLS) to establish an algorithm for AMS risk analysis. The individual R2 coefficients of determination between the LLS and the measured altitude, ambient temperature, atmospheric pressure, relative humidity, climbing speed, heart rate, blood oxygen saturation (SpO2), heart rate variability (HRV), were 0.1, 0.23, 0, 0.24, 0, 0.24, 0.27, and 0.35 respectively; incorporating all aforementioned variables, the R2 coefficient is 0.62. The bagged trees classifier achieved favorable classification results, yielding a model sensitivity, specificity, accuracy, and area under receiver operating characteristic curve of 0.999, 0.994, 0.998, and 1, respectively.
Conclusion The experiment results indicate the use of machine learning multivariate analysis have higher AMS prediction accuracies than analyses utilizing single varieties. The developed AMS evaluation model can serve as a reference for the future development of wearable devices capable of providing timely warnings of AMS risks to hikers.
Collapse
Affiliation(s)
- Chih-Yuan Wei
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ping-Nan Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan. .,Department of Biomedical Engineering, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan.
| | - Shih-Sung Lin
- Department of Computer Science and Information Engineering, Chinese Culture University, No.55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ling-Chun Sun
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Chun-Wei Tseng
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ke-Feng Lin
- Medical Informatics Office, Tri‑Service General Hospital, National Defense Medical Center, No.325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei, 11490, Taiwan.,School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| |
Collapse
|
5
|
Figueiredo PS, Sils IV, Staab JE, Fulco CS, Muza SR, Beidleman BA. Acute mountain sickness and sleep disturbances differentially influence cognition and mood during rapid ascent to 3000 and 4050 m. Physiol Rep 2022; 10:e15175. [PMID: 35133088 PMCID: PMC8822873 DOI: 10.14814/phy2.15175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
The impact of acute mountain sickness (AMS) and sleep disturbances on mood and cognition at two altitudes relevant to the working and tourist population is unknown. Twenty unacclimatized lowlanders were exposed to either 3000 m (n = 10; 526 mmHg) or 4050 m (n = 10; 460 mmHg) for 20 h in a hypobaric chamber. AMS prevalence and severity was assessed using the Environmental Symptoms Questionnaire (ESQ) and an AMS‐C score ≥ 0.7 indicated sickness. While sleeping for one night both at sea level (SL) and high altitude (HA), a wrist motion detector was used to measure awakenings (Awak, events/h) and sleep efficiency (Eff, %). If Eff was ≥85%, individuals were considered a good sleeper (Sleep+). Mood and cognition were assessed using the Automated Neuropsychological Assessment Metric and Mood Scale (ANAM‐MS). The ESQ and ANAM‐MS were administered in the morning both at SL and after 20 h at HA. AMS severity (mean ± SE; 1.82 ± 0.27 vs. 0.20 ± 0.27), AMS prevalence (90% vs. 10%), depression (0.63 ± 0.23 vs. 0.00 ± 0.24) Awak (15.6 ± 1.6 vs. 10.1 ± 1.6 events/h), and DeSHr (38.5 ± 6.3 vs. 13.3 ± 6.3 events/h) were greater (p < 0.05) and Eff was lower (69.9 ± 5.3% vs. 87.0 ± 5.3%) at 4050 m compared to 3000 m, respectively. AMS presence did not impact cognition but fatigue (2.17 ± 0.37 vs. 0.58 ± 0.39), anger (0.65 ± 0.25 vs. 0.02 ± 0.26), depression (0.63 ± 0.23 vs. 0.00 ± 0.24) and sleepiness (4.8 ± 0.4 vs. 2.7 ± 0.5) were greater (p < 0.05) in the AMS+ group. The Sleep− group, compared to the Sleep+ group, had lower (p < 0.05) working memory scores (50 ± 7 vs. 78 ± 9) assessed by the Sternberg 6‐letter memory task, and lower reaction time fatigue scores (157 ± 17 vs. 221 ± 22), assessed by the repeated reaction time test. Overall, AMS, depression, DeSHr, and Awak were increased (p < 0.05) at 4050 m compared to 3000 m. In addition, AMS presence impacted mood while poor sleep impacted cognition which may deteriorate teamwork and/or increase errors in judgement at HA.
Collapse
Affiliation(s)
- Peter S. Figueiredo
- Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| | - Ingrid V. Sils
- Thermal and Mountain Medicine Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| | - Janet E. Staab
- Military Performance Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| | - Charles S. Fulco
- Thermal and Mountain Medicine Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| | - Stephen R. Muza
- Strategic Science and Development Office U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| | - Beth A. Beidleman
- Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts USA
| |
Collapse
|
6
|
Bärtsch P. The Impact of Nocebo and Placebo Effects on Reported Incidence of Acute Mountain Sickness. High Alt Med Biol 2021; 23:8-17. [PMID: 34964659 DOI: 10.1089/ham.2021.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bärtsch Peter. The impact of nocebo and placebo effects on reported incidence of acute mountain sickness. High Alt Med Biol 00:000-000, 2021. Well comparable studies reporting acute mountain sickness (AMS) in nonacclimatized, acutely exposed individuals performed at 3,450-3,650 m (9 studies) and 4,559-4,675 m (18 studies) at real altitude or in hypobaric or in normobaric hypoxic chambers were analyzed with the hypothesis that the study design impacts occurrence of AMS. Individual symptoms and overall scores of AMS were not different between the three modalities of exposure to a comparable degree of hypoxia, indicating that hypobaria has, if at all, minimal influence on AMS. Studies not focusing versus those focusing on AMS report lower scores and prevalence of AMS at 3,500 m, but not at 4,559 m, while frequent assessment may be associated with more severe AMS. These data suggest that focusing on AMS creates expectations of getting AMS (nocebo effects) and increases its prevalence, while not paying attention reduces negative expectations and thus AMS. On the other hand, interventions promising improvement may cause positive expectations (placebo effect). Information about purpose and dangers of a study, repeated assessments for AMS, previous experiences of AMS, and observation of illness in other study participants are major factors contributing to negative expectations and thus nocebo effects increasing AMS. They should be considered when designing studies and subject information and be reported in detail in publications of studies on AMS.
Collapse
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine, University Clinic, Heidelberg, Germany
| |
Collapse
|
7
|
Staab JE, Muza SR, Fulco CS, Andrew SP, Beidleman BA. Impact of 2 days of staging at 2500-4300 m on sleep quality and quantity following subsequent exposure to 4300 m. Physiol Rep 2021; 9:e15063. [PMID: 34713967 PMCID: PMC8554773 DOI: 10.14814/phy2.15063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of 2 days of staging at 2500-4300 m on sleep quality and quantity following subsequent exposure to 4300 m was determined. Forty-eight unacclimatized men and women were randomly assigned to stage for 2 days at one of four altitudes (2500, 3000, 3500, or 4300 m) prior to assessment on the summit of Pikes Peak (4300 m) for 2 days. Volunteers slept for one night at sea level (SL), two nights at respective staging altitudes, and two nights at Pikes Peak. Each wore a pulse oximeter to measure sleep arterial oxygen saturation (sSpO2 , %) and number of desaturations (DeSHr, events/hr) and a wrist motion detector to estimate sleep awakenings (Awak, awakes/hr) and sleep efficiency (Eff, %). Acute mountain sickness (AMS) was assessed using the Environmental Symptoms Questionnaire and daytime SpO2 was assessed after AMS measurements. The mean of all variables for both staging days (STG) and Pikes Peak days (PP) was calculated. The sSpO2 and daytime SpO2 decreased (p < 0.05) from SL during STG in all groups in a dose-dependent manner. During STG, DeSHr were higher (p < 0.05), Eff was lower (p < 0.05), and AMS symptoms were higher (p < 0.05) in the 3500 and 4300 m groups compared to the 2500 and 3000 m groups while Awak did not differ (p > 0.05) between groups. At PP, the sSpO2 , DeSHr, Awak, and Eff were similar among all groups but the 2500 m group had greater AMS symptoms (p < 0.05) than the other groups. Two days of staging at 2500-4300 m induced a similar degree of sleep acclimatization during subsequent ascent to 4300 m but the 2500 m group was not protected against AMS at 4300 m.
Collapse
Affiliation(s)
- Janet E. Staab
- Military Performance DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Stephen R. Muza
- Strategic Scientific Management OfficeU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Charles S. Fulco
- Thermal and Mountain Medicine DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Sean P. Andrew
- Thermal and Mountain Medicine DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Beth A. Beidleman
- Biophysics and Biomedical Modeling DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
8
|
Biollaz J, Buclin T, Hildebrandt W, Décosterd LA, Nussberger J, Swenson ER, Bärtsch P. No renal dysfunction or salt and water retention in acute mountain sickness at 4,559 m among young resting males after passive ascent. J Appl Physiol (1985) 2020; 130:226-236. [PMID: 33180647 DOI: 10.1152/japplphysiol.00382.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the role and function of the kidney at high altitude in relation to fluid balance and the development of acute mountain sickness (AMS), avoiding confounders that have contributed to conflicting results in previous studies. We examined 18 healthy male resting volunteers (18-40 yr) not acclimatized to high altitude while on a controlled diet for 24 h at Lausanne (altitude: 560 m) followed by a period of 44 h after reaching the Regina Margherita hut (4,559 m) by helicopter. AMS scores peaked after 20 h at 4,559 m. AMS was defined as functional Lake Louise score ≥ 2. There were no significant differences between 10 subjects with and 8 subjects without AMS for urinary flow, fluid balance, and weight change. Sodium excretion rate was lower in those with AMS after 24 h at altitude. Microalbuminuria increased at altitude but was not different between the groups. Creatinine clearance was not affected by altitude or AMS, whereas clearances of sinistrin and p-aminohippuric acid decreased slightly, somewhat more in those without AMS. Plasma concentrations of epinephrine, norepinephrine, atrial natriuretic factor, and vasopressin increased whereas renin activity, angiotensin, and aldosterone decreased at altitude. Circulating hormone concentrations did not differ between those with and without AMS. Summarizing, in healthy resting young men flown by helicopter to 4,559 m, renal function was not affected by hypoxia except for minor microalbuminuria, high altitude diuresis did not occur, and AMS was not associated with salt and water retention or renal dysfunction.NEW & NOTEWORTHY Kidney function remained essentially unaffected and acute mountain sickness (AMS) was not associated with salt and water retention in healthy young men flown to and resting at the Margherita hut (4,559 m) under strictly controlled conditions maintaining water, salt, and food intake at pre-exposure levels. Thus, renal dysfunction and fluid retention are not essential factors contributing to the pathophysiology of AMS.
Collapse
Affiliation(s)
- Jérôme Biollaz
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany.,Department of Internal Medicine, University Clinic, Heidelberg, Germany
| | - Laurent A Décosterd
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jürg Nussberger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Erik R Swenson
- Department of Internal Medicine, University Clinic, Heidelberg, Germany.,Pulmonary and Critical Care Medicine, Medical Service, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - Peter Bärtsch
- Department of Internal Medicine, University Clinic, Heidelberg, Germany
| |
Collapse
|
9
|
Manferdelli G, Marzorati M, Easton C, Porcelli S. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness. Exp Physiol 2020; 106:76-85. [DOI: 10.1113/ep088515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Giorgio Manferdelli
- Institute of Biomedical Technologies National Research Council Segrate Italy
- School of Health and Exercise Sciences University of the West of Scotland Paisley UK
| | - Mauro Marzorati
- Institute of Biomedical Technologies National Research Council Segrate Italy
| | - Chris Easton
- School of Health and Exercise Sciences University of the West of Scotland Paisley UK
| | - Simone Porcelli
- Institute of Biomedical Technologies National Research Council Segrate Italy
- Department of Molecular Physiology University of Pavia Pavia Italy
| |
Collapse
|
10
|
Berger MM, Sareban M, Bärtsch P. Acute mountain sickness: Do different time courses point to different pathophysiological mechanisms? J Appl Physiol (1985) 2020; 128:952-959. [DOI: 10.1152/japplphysiol.00305.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute mountain sickness (AMS) is a syndrome of nonspecific symptoms (i.e., headache, anorexia, nausea, vomiting, dizziness, and fatigue) that may develop in nonacclimatized individuals after rapid exposure to altitudes ≥2,500 m. In field studies, mean AMS scores usually peak after the first night at a new altitude. Analyses of the individual time courses of AMS in four studies performed at 3,450 m and 4,559 m revealed that three different patterns are hidden in the above-described overall picture. In 41% of those who developed AMS (i.e., AMS-C score >0.70), symptoms peaked on day 1, in 39%, symptoms were most prominent on day 2, and in 20%, symptoms were most prominent on day 3. We suggest to name the different time courses of AMS type I, type II, and type III, respectively. Here, we hypothesize that the variation of time courses of AMS are caused by different pathophysiological mechanisms. This assumption could explain why no consistent correlations between an overall assessment of AMS and single pathophysiological factors have been found in a large number of studies over the past 50 yr. In this paper, we will briefly review the fundamental mechanisms implicated in the pathophysiology of AMS and discuss how they might contribute to the three different AMS time courses.
Collapse
Affiliation(s)
- Marc M. Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Germany
| | - Mahdi Sareban
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bärtsch
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness? Int J Mol Sci 2019; 20:ijms20174105. [PMID: 31443549 PMCID: PMC6747186 DOI: 10.3390/ijms20174105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
Abstract
Individuals ascending rapidly to altitudes >2500 m may develop symptoms of acute mountain sickness (AMS) within a few hours of arrival and/or high-altitude pulmonary edema (HAPE), which occurs typically during the first three days after reaching altitudes above 3000-3500 m. Both diseases have distinct pathologies, but both present with a pronounced decrease in oxygen saturation of hemoglobin in arterial blood (SO2). This raises the question of mechanisms impairing the diffusion of oxygen (O2) across the alveolar wall and whether the higher degree of hypoxemia is in causal relationship with developing the respective symptoms. In an attempt to answer these questions this article will review factors affecting alveolar gas diffusion, such as alveolar ventilation, the alveolar-to-arterial O2-gradient, and balance between filtration of fluid into the alveolar space and its clearance, and relate them to the respective disease. The resultant analysis reveals that in both AMS and HAPE the main pathophysiologic mechanisms are activated before aggravated decrease in SO2 occurs, indicating that impaired alveolar epithelial function and the resultant diffusion limitation for oxygen may rather be a consequence, not the primary cause, of these altitude-related illnesses.
Collapse
|
12
|
Beidleman BA, Fulco CS, Glickman EL, Cymerman A, Kenefick RW, Cadarette BS, Andrew SP, Staab JE, Sils IV, Muza SR. Acute Mountain Sickness is Reduced Following 2 Days of Staging During Subsequent Ascent to 4300 m. High Alt Med Biol 2018; 19:329-338. [PMID: 30517038 DOI: 10.1089/ham.2018.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine whether 2 days of staging at 2500-3500 m, combined with either high or low physical activity, reduces acute mountain sickness (AMS) during subsequent ascent to 4300 m. METHODS Three independent groups of unacclimatized men and women were staged for 2 days at either 2500 m (n = 18), 3000 m (n = 16), or 3500 m (n = 15) before ascending and living for 2 days at 4300 m and compared with a control group that directly ascended to 4300 m (n = 12). All individuals departed to the staging altitudes or 4300 m after spending one night at 2000 m during which they breathed supplemental oxygen to simulate sea level conditions. Half in each group participated in ∼3 hours of daily physical activity while half were sedentary. Women accounted for ∼25% of each group. AMS incidence was assessed using the Environmental Symptoms Questionnaire. AMS was classified as mild (≥0.7 and <1.5), moderate (≥1.5 and <2.6), and severe (≥2.6). RESULTS While staging, the incidence of AMS was lower (p < 0.001) in the 2500 m (0%), 3000 m (13%), and 3500 m (40%) staged groups than the direct ascent control group (83%). After ascent to 4300 m, the incidence of AMS was lower in the 3000 m (43%) and 3500 m (40%) groups than the 2500 m group (67%) and direct ascent control (83%). Neither activity level nor sex influenced the incidence of AMS during further ascent to 4300 m. CONCLUSIONS Two days of staging at either 3000 or 3500 m, with or without physical activity, reduced AMS during subsequent ascent to 4300 m but staging at 3000 m may be recommended because of less incidence of AMS.
Collapse
Affiliation(s)
- Beth A Beidleman
- 1 Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Charles S Fulco
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Allen Cymerman
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Robert W Kenefick
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Bruce S Cadarette
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Sean P Andrew
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- 3 Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Ingrid V Sils
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen R Muza
- 4 Strategic Scientific Management Office, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
13
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Canetti EFD, Keane J, McLellan CP, Gray AB. Comparison of capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. Eur J Appl Physiol 2016; 116:1583-93. [PMID: 27306382 DOI: 10.1007/s00421-016-3413-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/06/2016] [Indexed: 01/30/2023]
Abstract
PURPOSE Compare capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. This study hypothesised that capillary samples may be used in a site-specific manner as an alternative source of blood samples for assays of leucocyte concentration and neutrophilic phagocytic function and reactive oxygen species (ROS) production, allowing acquisition of multiple samples to better monitor transient but significant post-exercise immune modulation. METHODS Resting blood samples were simultaneously obtained from vein, finger and earlobe of healthy subjects (n = 10, age: 25.1 ± 3.1 years). Leucocyte concentrations were measured using a five-part differential haematological analyser. Leucocyte sub-populations (CD3, CD4, CD8, CD19, CD56, CD14) and granulocytic functional-related (CD11b, CD18, CD16b, CD66b) surface antigen markers, neutrophil phagocytosis (FITC-labelled Escherichia coli) and stimulated ROS production (DHR) were quantified utilizing flow cytometry. A MANOVA (α < 0.05 significance) analysed the effects of the different sampling sites in the concentrations of leucocyte populations, their surface antigen expression and granulocytic functions. RESULTS Leucocyte concentration and neutrophilic ROS production yielded non-significant differences between sampling sites. Expression of granulocytic surface antigens was increased in both capillary sites compared to venous site (p = 0.008), particularly for adhesion markers CD11b/CD18. The percentage of neutrophils performing phagocytosis was higher in venous samples compared to finger (p = 0.025). Increased number of E. coli ingested was observed in venous sample compared to finger (p = 0.001) and to earlobe (p = 0.006). CONCLUSION Whilst attention must be paid for varying neutrophilic surface antigen expression and further studies are needed to establish appropriate reference ranges, this study supports the use of capillary blood samples in a site-specific manner to enhance sampling capabilities field-based research.
Collapse
Affiliation(s)
- Elisa F D Canetti
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia.
| | - J Keane
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| | - C P McLellan
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| | - A B Gray
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| |
Collapse
|
15
|
Van Thienen R, Hespel P. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia. J Appl Physiol (1985) 2015; 120:351-61. [PMID: 26607244 DOI: 10.1152/japplphysiol.00210.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023] Open
Abstract
High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude.
Collapse
Affiliation(s)
- Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Sikri G, Chawla A. Role of remote ischemic preconditioning against acute mountain sickness during early phase. Physiol Rep 2015; 3:3/8/e12499. [PMID: 26265758 PMCID: PMC4562584 DOI: 10.14814/phy2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gaurav Sikri
- Department of Physiology; Armed Forces Medical College; Pune India
| | - Anuj Chawla
- Department of Physiology; Armed Forces Medical College; Pune India
| |
Collapse
|
17
|
Avnstorp MB, Rasmussen P, Brassard P, Seifert T, Overgaard M, Krustrup P, Secher NH, Nordsborg NB. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 2015; 16:18-25. [PMID: 25761236 DOI: 10.1089/ham.2014.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Intense physical activity increases the prevalence of acute mountain sickness (AMS) that can occur within 10 h after ascent to altitudes above 1500 m and is likely related to development of cerebral edema. This study evaluated whether disturbed cerebral water and ion homeostasis can be detected when intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic trial (∼120 W; n=9). RESULTS Exercise in hypoxia affected muscle metabolism, as evidenced by higher (p<0.05) leg lactate release at 7.5 min and a continuous decline in arterial pH (p<0.001) that was not observed in normoxia. Middle cerebral artery flow velocity increased (p<0.01) with exercise under both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION Challenging exercise in hypoxia for 30 min affected muscle metabolism and increased an index of cerebral blood flow, but cerebral net water and ion homeostasis remained stable. Thus, although AMS develops within hours and may be related to exercise-induced disturbance of cerebral ion and water balance, such changes are not detectable when subjects are exposed to acute 30 min maximal exercise in hypoxia.
Collapse
Affiliation(s)
- Magnus B Avnstorp
- 1 Department of Anesthesia, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen , Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Berger MM, Köhne H, Hotz L, Hammer M, Schommer K, Bärtsch P, Mairbäurl H. Remote ischemic preconditioning delays the onset of acute mountain sickness in normobaric hypoxia. Physiol Rep 2015; 3:3/3/e12325. [PMID: 25742960 PMCID: PMC4393159 DOI: 10.14814/phy2.12325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute mountain sickness (AMS) is a neurological disorder occurring when ascending too fast, too high. Remote ischemic preconditioning (RIPC) is a noninvasive intervention protecting remote organs from subsequent hypoxic damage. We hypothesized that RIPC protects against AMS and that this effect is related to reduced oxidative stress. Fourteen subjects were exposed to 18 hours of normoxia (21% oxygen) and 18 h of normobaric hypoxia (12% oxygen, equivalent to 4500 m) on different days in a blinded, randomized order. RIPC consisted of four cycles of lower limb ischemia (5 min) and 5 min of reperfusion, and was performed immediately before the study room was entered. A control group was exposed to hypoxia (12% oxygen, n = 14) without RIPC. AMS was evaluated by the Lake Louise score (LLS) and the AMS-C score of the Environmental Symptom Questionnaire. Plasma concentrations of ascorbate radicals, oxidized sulfhydryl (SH) groups, and electron paramagnetic resonance (EPR) signal intensity were measured as biomarkers of oxidative stress. RIPC reduced AMS scores (LLS: 1.9 ± 0.4 vs. 3.2 ± 0.5; AMS-C score: 0.4 ± 0.1 vs. 0.8 ± 0.2), ascorbate radicals (27 ± 7 vs. 65 ± 18 nmol/L), oxidized SH groups (3.9 ± 1.4 vs. 14.3 ± 4.6 μmol/L), and EPR signal intensity (0.6 ± 0.2 vs. 1.5 ± 0.4 × 10(6)) after 5 h in hypoxia (all P < 0.05). After 18 hours in hypoxia there was no difference in AMS and oxidative stress between RIPC and control. AMS and plasma markers of oxidative stress did not correlate. This study demonstrates that RIPC transiently reduces symptoms of AMS and that this effect is not associated with reduced plasma levels of reactive oxygen species.
Collapse
Affiliation(s)
- Marc M Berger
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital Paracelsus Medical University, Salzburg, Austria
| | - Hannah Köhne
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | - Lorenz Hotz
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital Paracelsus Medical University, Salzburg, Austria
| | - Moritz Hammer
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kai Schommer
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Luks AM. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses. J Appl Physiol (1985) 2014; 118:509-19. [PMID: 25539941 DOI: 10.1152/japplphysiol.00955.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management.
Collapse
Affiliation(s)
- Andrew M Luks
- Division of Pulmonary and Critical Care Medicine, University of Washington Seattle, Washington
| |
Collapse
|
20
|
Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab 2014; 34:1802-9. [PMID: 25160673 PMCID: PMC4269757 DOI: 10.1038/jcbfm.2014.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Abstract
The present study assessed the isolated and synergetic effects of hypoxic exposure and prolonged exercise on cerebral volume and subedema and symptoms of acute mountain sickness (AMS). Twelve healthy males performed three semirandomized blinded 11-hour sessions with (1) an inspiratory oxygen fraction (FiO2) of 12% and 4-hour cycling, (2) FiO2=21% and 4-hour cycling, and (3) FiO2=8.5% to 12% at rest (matching arterial oxygen saturation measured during the first hypoxic session). Volumetric, apparent diffusion coefficient (ADC), and arterial spin labelling 3T magnetic resonance imaging sequences were performed after 30 minutes and 10 hours in each session. Thirty minutes of hypoxia at rest induced a significant increase in white-matter volume (+0.8±1.0% compared with normoxia) that was exacerbated after 10 hours of hypoxia at rest (+1.5±1.1%) or with cycling (+1.6±1.1%). Total brain parenchyma volume increased significantly after 10 hours of hypoxia with cycling only (+1.3±1.1%). Apparent diffusion coefficient was significantly reduced after 10 hours of hypoxia at rest or with cycling. No significant change in cerebral blood flow was observed. These results demonstrate changes in white-matter volume as early as after 30 minutes of hypoxia that worsen after 10 hours, probably due to cytotoxic edema. Exercise accentuates the effect of hypoxia by increasing total brain volume. These changes do not however correlate with AMS symptoms.
Collapse
|
21
|
Debevec T, Pialoux V, Mekjavic IB, Eiken O, Mury P, Millet GP. Moderate exercise blunts oxidative stress induced by normobaric hypoxic confinement. Med Sci Sports Exerc 2014; 46:33-41. [PMID: 23846158 DOI: 10.1249/mss.0b013e31829f87ef] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. METHODS Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 ± 0.003, PIO2 = 88.2 ± 0.6 mm Hg, ∼4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. RESULTS Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). CONCLUSIONS These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
Collapse
Affiliation(s)
- Tadej Debevec
- 1Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute, Ljubljana, SLOVENIA; 2Center of Research and Innovation on Sports, University Claude Bernard Lyon 1, Villeurbanne, FRANCE; 3Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Stockholm, SWEDEN; and 4Faculty of Biology and Medicine, ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | | | | | | | | |
Collapse
|
22
|
Sightings edited by Erik R. Swenson and Peter Bärtsch. High Alt Med Biol 2014. [DOI: 10.1089/ham.2014.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Affiliation(s)
- Mark H. Wilson
- The Brain Injury Centre—St Mary's Hospital, Imperial College, London, United Kingdom
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
- The Institute of Pre-Hospital Care, London's Air Ambulance, Barts and the London Medical School, Queen Mary University of London, The Helipad, The Royal London Hospital, Whitechapel, United Kingdom
| | - Alex Wright
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
| | - Christopher H.E. Imray
- University Hospital Coventry and Warwickshire NHS Trust and Warwick Medical School, Coventry, United Kingdom
| |
Collapse
|
24
|
Hoshikawa M, Suzuki Y, Oriishi M. Effects of Normobaric Hypoxia Equivalent to 2,000-m Altitude on Sleep and Physiological Conditions of Athletes. J Strength Cond Res 2013; 27:2309-13. [DOI: 10.1519/jsc.0b013e318295d338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Willie CK, Smith KJ, Day TA, Ray LA, Lewis NCS, Bakker A, Macleod DB, Ainslie PN. Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m. J Appl Physiol (1985) 2013; 116:905-10. [PMID: 23813533 DOI: 10.1152/japplphysiol.00594.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interindividual variation in ventilatory acclimatization to high altitude is likely reflected in variability in the cerebrovascular responses to high altitude, particularly between brain regions displaying disparate hypoxic sensitivity. We assessed regional differences in cerebral blood flow (CBF) measured with Duplex ultrasound of the left internal carotid and vertebral arteries. End-tidal Pco2, oxyhemoglobin saturation (SpO2), blood pressure, and heart rate were measured during a trekking ascent to, and during the first 2 wk at, 5,050 m. Transcranial color-coded Duplex ultrasound (TCCD) was employed to measure flow and diameter of the middle cerebral artery (MCA). Measures were collected at 344 m (TCCD-baseline), 1,338 m (CBF-baseline), 3,440 m, and 4,371 m. Following arrival to 5,050 m, regional CBF was measured every 12 h during the first 3 days, once at 5-9 days, and once at 12-16 days. Total CBF was calculated as twice the sum of internal carotid and vertebral flow and increased steadily with ascent, reaching a maximum of 842 ± 110 ml/min (+53 ± 7.6% vs. 1,338 m; mean ± SE) at ∼ 60 h after arrival at 5,050 m. These changes returned to +15 ± 12% after 12-16 days at 5,050 m and were related to changes in SpO2 (R(2) = 0.36; P < 0.0001). TCCD-measured MCA flow paralleled the temporal changes in total CBF. Dilation of the MCA was sustained on days 2 (+12.6 ± 4.6%) and 8 (+12.9 ± 2.9%) after arrival at 5,050 m. We observed no significant differences in regional CBF at any time point. In conclusion, the variability in CBF during ascent and acclimatization is related to ventilatory acclimatization, as reflected in changes in SpO2.
Collapse
Affiliation(s)
- C K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2012. [DOI: 10.1089/ham.2012.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Rupp T, Jubeau M, Millet GY, Perrey S, Esteve F, Wuyam B, Levy P, Verges S. The effect of hypoxemia and exercise on acute mountain sickness symptoms. J Appl Physiol (1985) 2012; 114:180-5. [PMID: 23154995 DOI: 10.1152/japplphysiol.00769.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Performing exercise during the first hours of hypoxic exposure is thought to exacerbate acute mountain sickness (AMS), but whether this is due to increased hypoxemia or other mechanisms associated with exercise remains unclear. In 12 healthy men, AMS symptoms were assessed during three 11-h experimental sessions: 1) in Hypoxia-exercise, inspiratory O(2) fraction (Fi(O(2))) was 0.12, and subjects performed 4-h cycling at 45% Fi(O(2))-specific maximal power output from the 4th to the 8th hour; 2) in Hypoxia-rest, Fi(O(2)) was continuously adjusted to match the same arterial oxygen saturation as in Hypoxia-exercise, and subjects remained at rest; and 3) in Normoxia-exercise, Fi(O(2)) was 0.21, and subjects cycled as in Hypoxia-exercise at 45% Fi(O(2))-specific maximal power output. AMS scores did not differ significantly between Hypoxia-exercise and Hypoxia-rest, while they were significantly lower in Normoxia-exercise (Lake Louise score: 5.5 ± 2.1, 4.4 ± 2.4, and 2.3 ± 1.5, and cerebral Environmental Symptom Questionnaire: 1.2 ± 0.7, 1.0 ± 1.0, and 0.3 ± 0.4, in Hypoxia-exercise, Hypoxia-rest, and Normoxia-exercise, respectively; P < 0.01). Headache scored by visual analog scale was higher in Hypoxia-exercise and Hypoxia-rest compared with Normoxia-exercise (36 ± 22, 35 ± 25, and 5 ± 6, P < 0.001), while the perception of fatigue was higher in Hypoxia-exercise compared with Hypoxia-rest (60 ± 24, 32 ± 22, and 46 ± 23, in Hypoxia-exercise, Hypoxia-rest, and Normoxia-exercise, respectively; P < 0.01). Despite significant physiological stress during hypoxic exercise and some AMS symptoms induced by normoxic cycling at similar relative workload, exercise does not significantly worsen AMS severity during the first hours of hypoxic exposure at a given arterial oxygen desaturation. Hypoxemia per se appears, therefore, to be the main mechanism underlying AMS, whether or not exercise is performed.
Collapse
|