1
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
2
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
3
|
Maffiuletti NA, Dirks ML, Stevens-Lapsley J, McNeil CJ. Electrical stimulation for investigating and improving neuromuscular function in vivo: Historical perspective and major advances. J Biomech 2023; 152:111582. [PMID: 37088030 DOI: 10.1016/j.jbiomech.2023.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
This historical review summarizes the major advances - particularly from the last 50 years - in transcutaneous motor-level electrical stimulation, which can be used either as a tool to investigate neuromuscular function and its determinants (electrical stimulation for testing; EST) or as a therapeutic/training modality to improve neuromuscular and physical function (neuromuscular electrical stimulation; NMES). We focus on some of the most important applications of electrical stimulation in research and clinical settings, such as the investigation of acute changes, chronic adaptations and pathological alterations of neuromuscular function with EST, as well as the enhancement, preservation and restoration of muscle strength and mass with NMES treatment programs in various populations. For both EST and NMES, several major advances converge around understanding and optimizing motor unit recruitment during electrically-evoked contractions, also taking into account the influence of stimulation site (e.g., muscle belly vs nerve trunk) and type (e.g., pulse duration, frequency, and intensity). This information is equally important both in the context of mechanistic research of neuromuscular function as well as for clinicians who believe that improvements in neuromuscular function are required to provide health-related benefits to their patients.
Collapse
Affiliation(s)
| | - Marlou L Dirks
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jennifer Stevens-Lapsley
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
4
|
Blazevich AJ, Collins DF, Millet GY, Vaz MA, Maffiuletti NA. Enhancing Adaptations to Neuromuscular Electrical Stimulation Training Interventions. Exerc Sport Sci Rev 2021; 49:244-252. [PMID: 34107505 PMCID: PMC8460078 DOI: 10.1249/jes.0000000000000264] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neuromuscular electrical stimulation (NMES) applied to skeletal muscles is an effective rehabilitation and exercise training modality. However, the relatively low muscle force and rapid muscle fatigue induced by NMES limit the stimulus provided to the neuromuscular system and subsequent adaptations. We hypothesize that adaptations to NMES will be enhanced by the use of specific stimulation protocols and adjuvant interventions.
Collapse
Affiliation(s)
- Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Guillaume Y. Millet
- Université de Lyon, UJM, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne
- Institut Universitaire de France (IUF), Paris, France
| | - Marco A. Vaz
- Laboratório de Pesquisa do Exercício (LAPEX), Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
5
|
Di Girolamo FG, Fiotti N, Milanović Z, Situlin R, Mearelli F, Vinci P, Šimunič B, Pišot R, Narici M, Biolo G. The Aging Muscle in Experimental Bed Rest: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8:633987. [PMID: 34422875 PMCID: PMC8371327 DOI: 10.3389/fnut.2021.633987] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Maintaining skeletal muscle mass and function in aging is crucial for preserving the quality of life and health. An experimental bed rest (BR) protocol is a suitable model to explore muscle decline on aging during inactivity. Objective: The purpose of this systematic review and meta-analysis was, therefore, to carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude of effects on muscle mass, strength, power, and functional capacity changes as well as the mechanisms, molecules, and pathways involved in muscle decay. Design: This was a systematic review and meta-analysis study. Data sources: We used PubMed, Medline; Web of Science, Google Scholar, and the Cochrane library, all of which were searched prior to April 23, 2020. A manual search was performed to cover bed rest experimental protocols using the following key terms, either singly or in combination: "Elderly Bed rest," "Older Bed rest," "Old Bed rest," "Aging Bed rest," "Aging Bed rest," "Bed-rest," and "Bedrest". Eligibility criteria for selecting studies: The inclusion criteria were divided into four sections: type of study, participants, interventions, and outcome measures. The primary outcome measures were: body mass index, fat mass, fat-free mass, leg lean mass, cross-sectional area, knee extension power, cytokine pattern, IGF signaling biomarkers, FOXO signaling biomarkers, mitochondrial modulation biomarkers, and muscle protein kinetics biomarkers. Results: A total of 25 studies were included in the qualitative synthesis, while 17 of them were included in the meta-analysis. In total, 118 healthy elderly volunteers underwent 5-, 7-, 10-, or 14-days of BR and provided a brief sketch on the possible mechanisms involved. In the very early phase of BR, important changes occurred in the skeletal muscle, with significant loss of performance associated with a lesser grade reduction of the total body and muscle mass. Meta-analysis of the effect of bed rest on total body mass was determined to be small but statistically significant (ES = -0.45, 95% CI: -0.72 to -0.19, P < 0.001). Moderate, statistically significant effects were observed for total lean body mass (ES = -0.67, 95% CI: -0.95 to -0.40, P < 0.001) after bed rest intervention. Overall, total lean body mass was decreased by 1.5 kg, while there was no relationship between bed rest duration and outcomes (Z = 0.423, p = 672). The meta-analyzed effect showed that bed rest produced large, statistically significant, effects (ES = -1.06, 95% CI: -1.37 to -0.75, P < 0.001) in terms of the knee extension power. Knee extension power was decreased by 14.65 N/s. In contrast, to other measures, meta-regression showed a significant relationship between bed rest duration and knee extension power (Z = 4.219, p < 0.001). Moderate, statistically significant, effects were observed after bed rest intervention for leg muscle mass in both old (ES = -0.68, 95% CI: -0.96 to -0.40, P < 0.001) and young (ES = -0.51, 95% CI: -0.80 to -0.22, P < 0.001) adults. However, the magnitude of change was higher in older (MD = -0.86 kg) compared to younger (MD = -0.24 kg) adults. Conclusion: Experimental BR is a suitable model to explore the detrimental effects of inactivity in young adults, old adults, and hospitalized people. Changes in muscle mass and function are the two most investigated variables, and they allow for a consistent trend in the BR-induced changes. Mechanisms underlying the greater loss of muscle mass and function in aging, following inactivity, need to be thoroughly investigated.
Collapse
Affiliation(s)
- Filippo Giorgio Di Girolamo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,SC Assistenza Farmaceutica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nicola Fiotti
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Zoran Milanović
- Faculty of Sport and Physical Education, University of Niš, Niš, Serbia.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia.,Faculty of Sports Studies, Incubator of Kinanthropological Research, Masaryk University, Brno, Czechia
| | - Roberta Situlin
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padova, Italy
| | - Gianni Biolo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle. Mech Ageing Dev 2020; 193:111402. [PMID: 33189759 PMCID: PMC7816160 DOI: 10.1016/j.mad.2020.111402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and functional declines observed with advancing age can be minimized via various NMES protocols. Animal models have shown that NMES induces motor axon regeneration and promotes axonal outgrowth and fibre reinnervation. The activation of BDNF-trkB contributes to promotion of nerve growth and survival and mediates neuroplasticity. NMES is able to regulate muscle protein homeostasis and elevate oxidative enzyme activity.
One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increase the activity levels of oxidative enzymes, increase fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies.
Collapse
|
7
|
Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis. Proc Nutr Soc 2020; 80:106-117. [PMID: 33023679 DOI: 10.1017/s0029665120007879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2-3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this 'muscle full' phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.
Collapse
|
8
|
Howard EE, Pasiakos SM, Fussell MA, Rodriguez NR. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Adv Nutr 2020; 11:989-1001. [PMID: 32167129 PMCID: PMC7360452 DOI: 10.1093/advances/nmaa015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/29/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Muscle atrophy and weakness occur as a consequence of disuse after musculoskeletal injury (MSI). The slow recovery and persistence of these deficits even after physical rehabilitation efforts indicate that interventions designed to attenuate muscle atrophy and protect muscle function are necessary to accelerate and optimize recovery from MSI. Evidence suggests that manipulating protein intake via dietary protein or free amino acid-based supplementation diminishes muscle atrophy and/or preserves muscle function in experimental models of disuse (i.e., immobilization and bed rest in healthy populations). However, this concept has rarely been considered in the context of disuse following MSI, which often occurs with some muscle activation during postinjury physical rehabilitation. Given that exercise sensitizes skeletal muscle to the anabolic effect of protein ingestion, early rehabilitation may act synergistically with dietary protein to protect muscle mass and function during postinjury disuse conditions. This narrative review explores mechanisms of skeletal muscle disuse atrophy and recent advances delineating the role of protein intake as a potential countermeasure. The possible synergistic effect of protein-based interventions and postinjury rehabilitation in attenuating muscle atrophy and weakness following MSI is also considered.
Collapse
Affiliation(s)
- Emily E Howard
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Maya A Fussell
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
9
|
Boutry-Regard C, Vinyes-Parés G, Breuillé D, Moritani T. Supplementation with Whey Protein, Omega-3 Fatty Acids and Polyphenols Combined with Electrical Muscle Stimulation Increases Muscle Strength in Elderly Adults with Limited Mobility: A Randomized Controlled Trial. Nutrients 2020; 12:E1866. [PMID: 32585837 PMCID: PMC7353259 DOI: 10.3390/nu12061866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Age-related sarcopenia is a progressive and generalized skeletal muscle disorder associated with adverse outcomes. Herein, we evaluate the effects of a combination of electrical muscle stimulation (EMS) and a whey-based nutritional supplement (with or without polyphenols and fish oil-derived omega-3 fatty acids) on muscle function and size. Free-living elderly participants with mobility limitations were included in this study. They received 2 sessions of EMS per week and were randomly assigned to ingest an isocaloric beverage and capsules for 12 weeks: (1) carbohydrate + placebo capsules (CHO, n = 12), (2) whey protein isolate + placebo capsules (WPI, n = 15) and (3) whey protein isolate + bioactives (BIO) capsules containing omega-3 fatty acids, rutin, and curcumin (WPI + BIO, n = 10). The change in knee extension strength was significantly improved by 13% in the WPI + BIO group versus CHO on top of EMS, while WPI alone did not provide a significant benefit over CHO. On top of this, there was the largest improvement in gait speed (8%). The combination of EMS and this specific nutritional intervention could be considered as a new approach for the prevention of sarcopenia but more work is needed before this approach should be recommended. This trial was registered at the Japanese University Hospital Medical Information Network (UMIN) clinical trial registry (UMIN000008382).
Collapse
Affiliation(s)
| | | | | | - Toshio Moritani
- Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
10
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
11
|
Maffiuletti NA, Green DA, Vaz MA, Dirks ML. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front Physiol 2019; 10:1031. [PMID: 31456697 PMCID: PMC6700209 DOI: 10.3389/fphys.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Human spaceflight is associated with a substantial loss of skeletal muscle mass and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary muscle contractions, which have the potential to preserve or restore skeletal muscle mass and neuromuscular function during and/or post spaceflight. This assumption is largely based on evidence from terrestrial disuse/immobilization studies without the use of large exercise equipment that may not be available in spaceflight beyond the International Space Station. In this mini-review we provide an overview of the rationale and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare this to that used in orbit, and in ground-based analogs in order to provide practical recommendations for implementation of NMES in future space missions. Emphasis will be placed on knee extensor and plantar flexor muscles known to be particularly susceptible to deconditioning in space missions.
Collapse
Affiliation(s)
| | - David A Green
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBRwyle, Wyle Laboratories GmbH, Cologne, Germany.,King's College London, Centre for Human & Applied Physiological Sciences (CHAPS), London, United Kingdom
| | - Marco Aurelio Vaz
- Exercise Research Laboratory (LAPEX), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marlou L Dirks
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Snijders T, Trommelen J, Kouw IWK, Holwerda AM, Verdijk LB, van Loon LJC. The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Front Nutr 2019; 6:17. [PMID: 30895177 PMCID: PMC6415027 DOI: 10.3389/fnut.2019.00017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review provides an update on recent research assessing the effect of pre-sleep protein ingestion on muscle protein synthesis rates during overnight sleep and the skeletal muscle adaptive response to exercise training. Protein ingested prior to sleep is effectively digested and absorbed during overnight sleep, thereby increasing overnight muscle protein synthesis rates. Protein consumption prior to sleep does not appear to reduce appetite during breakfast the following day and does not change resting energy expenditure. When applied over a prolonged period of resistance-type exercise training, pre-sleep protein supplementation has a beneficial effect on the increase in muscle mass and strength. Protein ingestion before sleep is hypothesized to represent an effective nutritional strategy to preserve muscle mass in the elderly, especially when combined with physical activity or muscle contraction by means of neuromuscular electrical stimulation. In conclusion, protein ingestion prior to sleep is an effective interventional strategy to increase muscle protein synthesis rates during overnight sleep and can be applied to support the skeletal muscle adaptive response to resistance-type exercise training.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| |
Collapse
|
13
|
Di Girolamo FG, Guadagni M, Fiotti N, Situlin R, Biolo G. Contraction and nutrition interaction promotes anabolism in cachectic muscle. Curr Opin Clin Nutr Metab Care 2019; 22:60-67. [PMID: 30461449 DOI: 10.1097/mco.0000000000000527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Cachexia is a disease-related multifactorial syndrome characterized by inflammation, massive muscle protein catabolism and carbohydrate and lipid metabolism disorder.Several studies tried to define the impact of either nutrition or physical exercise (single approach strategy) or their combination (multimodal approach strategy) on prevention and/or treatment of muscle wasting in cachectic patients. RECENT FINDINGS Single approach strategies (i.e. nutrition or physical exercise) have the potential of preventing and improving features of the cachexia syndrome possibly with a differential impact according to the underlying disease. Limited information is available on the beneficial effect of multimodal approach strategies. SUMMARY Multimodal approaches appear to be more effective than those based on single interventions in physiological condition and in cachectic patients with COPD or chronic kidney disease. Further studies, however, are required in cachexia induced by heart failure, cancer and critical illness.
Collapse
Affiliation(s)
- Filippo Giorgio Di Girolamo
- Clinica Medica ASUITs, Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara University Hospital, Trieste, Italy
| | | | | | | | | |
Collapse
|
14
|
The use of neuromuscular electrical stimulation (NMES) for managing the complications of ageing related to reduced exercise participation. Maturitas 2018; 113:13-20. [DOI: 10.1016/j.maturitas.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
|
15
|
Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985) 2017; 125:850-861. [PMID: 28970205 DOI: 10.1152/japplphysiol.00985.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous situations, such as the recovery from illness or rehabilitation after injury, necessitate a period of muscle disuse in otherwise healthy individuals. Even a few days of immobilization or bed rest can lead to substantial loss of skeletal muscle tissue and compromise metabolic health. The decline in muscle mass is attributed largely to a decline in postabsorptive and postprandial muscle protein synthesis rates. Reintroduction of some level of muscle contraction by the application of neuromuscular electrical stimulation (NMES) can augment both postabsorptive and postprandial muscle protein synthesis rates and, as such, prevent or attenuate muscle loss during short-term disuse in various clinical populations. Whereas maintenance of habitual dietary protein consumption is a prerequisite for muscle mass maintenance, supplementing dietary protein above habitual intake levels does not prevent muscle loss during disuse in otherwise healthy humans. Combining the anabolic properties of physical activity (or surrogates) with appropriate nutritional support likely further increases the capacity to preserve skeletal muscle mass during a period of disuse. Therefore, effective interventional strategies to prevent or alleviate muscle disuse atrophy should include both exercise (mimetics) and appropriate nutritional support.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| |
Collapse
|
16
|
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr 2017; 14:20. [PMID: 28642676 PMCID: PMC5477153 DOI: 10.1186/s12970-017-0177-8] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30-40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.
Collapse
Affiliation(s)
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | - Paul J. Cribb
- Metabolic Precision Certifications, Queensland, Australia
| | | | | | | | | | - Arny A. Ferrando
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Shawn M. Arent
- IFNH Center for Health & Human Performance, Department of Kinesiology & Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | - Paul J. Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866 USA
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, USA
- Biokinetics, Exercise and Leisure Studies, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Lem W. Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Colin D. Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Doug S. Kalman
- Department of Nutrition & Endocrinology, QPS, Miami, FL USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Darryn S. Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
17
|
Reidy PT, McKenzie AI, Brunker P, Nelson DS, Barrows KM, Supiano M, LaStayo PC, Drummond MJ. Neuromuscular Electrical Stimulation Combined with Protein Ingestion Preserves Thigh Muscle Mass But Not Muscle Function in Healthy Older Adults During 5 Days of Bed Rest. Rejuvenation Res 2017; 20:449-461. [PMID: 28482746 DOI: 10.1089/rej.2017.1942] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Short-term bed rest in older adults is characterized by significant loss in leg lean mass and strength posing significant health consequences. The purpose of this study was to determine in healthy older adults if the daily combination of neuromuscular electrical stimulation and protein supplementation (NMES+PRO) would protect muscle mass and function after 5 days of bed rest. Twenty healthy older adults (∼70 years) were subjected to 5 days of continuous bed rest and were randomized into one of two groups: NMES+PRO (n = 10) or control (CON) (n = 10). The NMES+PRO group received bilateral NMES to quadriceps (40 minutes/session, 3 × /day; morning, afternoon, and evening) followed by an interventional protein supplement (17 g). The CON group received an isocaloric equivalent beverage. Before and after bed rest, vastus lateralis biopsies occurred before and after acute essential amino acid (EAA) ingestion for purposes of acutely stimulating mechanistic target of rapamycin (mTORC1) signaling, a major regulator of muscle protein synthesis, in response to bed rest and NMES+PRO. Baseline (pre and post bed rest) muscle samples were also used to assess myofiber characteristics and gene expression of muscle atrophy markers. Thigh lean mass and muscle function were measured before and after bed rest. Five days of bed rest reduced thigh lean mass, muscle function, myofiber cross-sectional area, satellite cell content, blunted EAA-induced mTORC1 signaling, and increased myostatin and MAFbx mRNA expression. Interestingly, NMES+PRO during bed rest maintained thigh lean mass, but not muscle function. Thigh muscle preservation during bed rest with NMES+PRO may partly be explained by attenuation of myostatin and MAFbx mRNA expression rather than restoration of nutrient-induced mTORC1 signaling. We conclude that the combination of NMES and protein supplementation thrice a day may be an effective therapeutic tool to use to preserve thigh muscle mass during periods of short-term hospitalization in older adults. However this combined intervention was not effective to prevent the loss in muscle function.
Collapse
Affiliation(s)
- Paul T Reidy
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Alec I McKenzie
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Preston Brunker
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Daniel S Nelson
- 2 Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Katherine M Barrows
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Mark Supiano
- 3 Division of Geriatrics, University of Utah , Salt Lake City, Utah.,4 VA Salt Lake City Geriatric Research , Education, and Clinical Center, University of Utah, Salt Lake City, Utah
| | - Paul C LaStayo
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Micah J Drummond
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah.,2 Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|