1
|
Rabinovitz R, Eynan M. CNS-oxygen toxicity and blood glucose levels in MnSOD enzyme knockdown mice. Respir Physiol Neurobiol 2023; 316:104122. [PMID: 37481014 DOI: 10.1016/j.resp.2023.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Many studies have been conducted in the search for the mechanism underlying CNS-oxygen toxicity (OT), which may be fatal when diving with a closed-circuit apparatus. We investigated the influence of hyperbaric oxygen (HBO) on blood glucose level (BGL) in Mn-superoxide dismutase (SOD2) knockdown mice regarding CNS-OT in particular under stress conditions such as hypoglycemia or hyperglycemia. Two groups of mice were used: SOD2 knockdown (Heterozygous, HET) mice and their WT family littermates. Animals were exposed to HBO from 2 up to 5 atmosphere absolute (ATA). Blood samples were drawn before and after each exposure for measurement of BGL. The mice were sacrificed following the final exposure, which was at 5 ATA. We used RT-PCR and Western blot to measure levels of glucose transporter 1 (GLUT1) and hypoxia inducible factor (HIF)1a in the cortex and hippocampus. In the hypoglycemic condition, the HET mice were more sensitive to oxidative stress than the WT. In addition, following exposure to sub-toxic HBO, which does not induce CNS-OT, BGL were higher in the HET mice compared with the WT. The expression of mRNA of GLUT1 and HIF-1a decreased in the hippocampus in the HET mice, while the protein level decreased in the HET and WT following HBO exposure. The results suggest that the higher BGL following HBO exposure especially at SOD2 HET mice is in part due to reduction in GLUT1 as a consequence of lower HIF-1a expression. This may add part to the puzzle of the understanding the mechanism leading to CNS-OT.
Collapse
Affiliation(s)
- Ricarina Rabinovitz
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Mirit Eynan
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel.
| |
Collapse
|
2
|
Balestra C, Mrakic-Sposta S, Virgili F. Oxygen Variations-Insights into Hypoxia, Hyperoxia and Hyperbaric Hyperoxia-Is the Dose the Clue? Int J Mol Sci 2023; 24:13472. [PMID: 37686277 PMCID: PMC10488080 DOI: 10.3390/ijms241713472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Molecular oxygen (O2) is one of the four most important elements on Earth (alongside carbon, nitrogen and hydrogen); aerobic organisms depend on it to release energy from carbon-based molecules [...].
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy;
| | - Fabio Virgili
- Interuniversitary Consortium “National Institute for Bio-Structures and Bio-Systems”—I.N.B.B., 00136 Rome, Italy;
| |
Collapse
|
3
|
Mahoney KJ, Bowie JS, Ford AE, Perera N, Sekiguchi Y, Fothergill DM, Lee EC. Plasma Proteomics-Based Discovery of Mechanistic Biomarkers of Hyperbaric Stress and Pulmonary Oxygen Toxicity. Metabolites 2023; 13:970. [PMID: 37755249 PMCID: PMC10534745 DOI: 10.3390/metabo13090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
Our aim was to identify proteins that reflect an acute systemic response to prolonged hyperbaric stress and discover potential biomarker pathways for pulmonary O2 toxicity. The study was a double-blind, randomized, crossover design in trained male Navy diver subjects. Each subject completed two dry resting hyperbaric chamber dives separated by a minimum of one week. One dive exposed the subject to 6.5 h of 100% oxygen (O2) at 2ATA. The alternate dive exposed the subjects to an enhanced air nitrox mixture (EAN) containing 30.6% O2 at the same depth for the same duration. Venous blood samples collected before (PRE) and after (POST) each dive were prepared and submitted to LC-MS/MS analysis (2 h runs). A total of 346 total proteins were detected and analyzed. A total of 12 proteins were significantly increased at EANPOST (vs. EANPRE), including proteins in hemostasis and immune signaling and activation. Significantly increased proteins at O2PRE (vs. O2POST) included neural cell adhesion molecule 1, glycoprotein Ib, catalase, hemoglobin subunit beta, fibulin-like proteins, and complement proteins. EANPOST and O2POST differed in biomarkers related to coagulation, immune signaling and activation, and metabolism. Of particular interest is (EANPOST vs. O2POST), which is protective against oxidative stress.
Collapse
Affiliation(s)
- Kyle J. Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| | - Jacob S. Bowie
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| | - Austin E. Ford
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| | - Neranjan Perera
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| | - Yasuki Sekiguchi
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| | | | - Elaine C. Lee
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; (K.J.M.); (J.S.B.); (N.P.)
| |
Collapse
|
4
|
Kjellberg A, Douglas J, Hassler A, Al-Ezerjawi S, Boström E, Abdel-Halim L, Liwenborg L, Hetting E, Jonasdottir Njåstad AD, Kowalski J, Catrina SB, Rodriguez-Wallberg KA, Lindholm P. COVID-19-Induced Acute Respiratory Distress Syndrome Treated with Hyperbaric Oxygen: Interim Safety Report from a Randomized Clinical Trial (COVID-19-HBO). J Clin Med 2023; 12:4850. [PMID: 37510965 PMCID: PMC10381696 DOI: 10.3390/jcm12144850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND A few prospective trials and case series have suggested that hyperbaric oxygen therapy (HBOT) may be efficacious for the treatment of severe COVID-19, but safety is a concern for critically ill patients. We present an interim analysis of the safety of HBOT via a randomized controlled trial (COVID-19-HBO). METHODS A randomized controlled, open-label, clinical trial was conducted in compliance with good clinical practice to explore the safety and efficacy of HBOT for severe COVID-19 in critically ill patients with moderate acute respiratory distress syndrome (ARDS). Between 3 June 2020, and 17 May 2021, 31 patients with severe COVID-19 and moderate-to-severe ARDS, a ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) < 26.7 kPa (200 mmHg), and at least two defined risk factors for intensive care unit (ICU) admission and/or mortality were enrolled in the trial and randomized 1:1 to best practice, or HBOT in addition to best practice. The subjects allocated to HBOT received a maximum of five treatments at 2.4 atmospheres absolute (ATA) for 80 min over seven days. The subjects were followed up for 30 days. The safety endpoints were analyzed. RESULTS Adverse events (AEs) were common. Hypoxia was the most common adverse event reported. There was no statistically significant difference between the groups. Numerically, serious adverse events (SAEs) and barotrauma were more frequent in the control group, and the differences between groups were in favor of the HBOT in PaO2/FiO2 (PFI) and the national early warning score (NEWS); statistically, however, the differences were not significant at day 7, and no difference was observed for the total oxygen burden and cumulative pulmonary oxygen toxicity dose (CPTD). CONCLUSION HBOT appears to be safe as an intervention for critically ill patients with moderate-to-severe ARDS induced by COVID-19. CLINICAL TRIAL REGISTRATION NCT04327505 (31 March 2020) and EudraCT 2020-001349-37 (24 April 2020).
Collapse
Affiliation(s)
- Anders Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Johan Douglas
- Department of Anaesthesia and Intensive Care, Blekingesjukhuset, 371 85 Karlskrona, Sweden
| | - Adrian Hassler
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Acute and Reparative Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sarah Al-Ezerjawi
- Acute and Reparative Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Emil Boström
- Acute and Reparative Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Lina Abdel-Halim
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lovisa Liwenborg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eric Hetting
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Academic Specialist Center, Center for Diabetes, 113 65 Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Reproductive Medicine, Division of Gynaecology and Reproduction, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Peter Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Emergency Medicine, Division of Hyperbaric Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Arieli R. The pulmonary oxygen toxicity index. Respir Physiol Neurobiol 2023; 315:104114. [PMID: 37460079 DOI: 10.1016/j.resp.2023.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Pulmonary oxygen toxicity (POT) is a major risk in diving while breathing hyperoxic gas and is also considered in clinical hyperbaric oxygen treatment. The POTindex calculated by the power equation K = t2 × PO24.57 with the recovery form Ktr = Ke × e - [- 0.42 + 0.384 × (PO2)ex] × tr which are based on chemical and physiological principles, have a better prediction power than other suggested approaches. Reduction of vital capacity as well as incidence of POT are well predicted by the POTindex. Both the cumulative pulmonary toxic effect and concomitant recovery were suggested to operate at the lower toxic range of PO2 used in saturation diving K = t2 × PO24.57 × e-0.0135 × t, and further experimental support is supplied. The recovery time constant for the full range of PO2 is presented. POTindex is suggested to replace the old method of UPTD for safe diving. Many diving clubs and diving institutes already adopted the POTindex.
Collapse
Affiliation(s)
- R Arieli
- Israel Naval Medical Institute, Haifa, Israel; Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
6
|
Arieli R, Aviner B. Acclimatization and Deacclimatization to Oxygen: Determining Exposure Limits to Avoid CNS O 2 Toxicity in Active Diving. Front Physiol 2020; 11:1105. [PMID: 33013472 PMCID: PMC7498636 DOI: 10.3389/fphys.2020.01105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ran Arieli
- The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel.,Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel
| | - Ben Aviner
- The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| |
Collapse
|
7
|
Aviner B, Arieli R, Yalov A. Power Equation for Predicting the Risk of Central Nervous System Oxygen Toxicity at Rest. Front Physiol 2020; 11:1007. [PMID: 33013440 PMCID: PMC7461992 DOI: 10.3389/fphys.2020.01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Patients undergoing hyperbaric oxygen therapy and divers engaged in underwater activity are at risk of central nervous system oxygen toxicity. An algorithm for predicting CNS oxygen toxicity in active underwater diving has been published previously, but not for humans at rest. Using a procedure similar to that employed for the derivation of our active diving algorithm, we collected data for exposures at rest, in which subjects breathed hyperbaric oxygen while immersed in thermoneutral water at 33°C (n = 219) or in dry conditions (n = 507). The maximal likelihood method was employed to solve for the parameters of the power equation. For immersion, the CNS oxygen toxicity index is KI = t2 × PO210.93, where the calculated risk from the Standard Normal distribution is ZI = [ln(KI0.5) – 8.99)]/0.81. For dry exposures this is KD = t2 × PO212.99, with risk ZD = [ln(KD0.5) – 11.34)]/0.65. We propose a method for interpolating the parameters at metabolic rates between 1 and 4.4 MET. The risk of CNS oxygen toxicity at rest was found to be greater during immersion than in dry conditions. We discuss the prediction properties of the new algorithm in the clinical hyperbaric environment, and suggest it may be adopted for use in planning procedures for hyperbaric oxygen therapy and for rest periods during saturation diving.
Collapse
Affiliation(s)
- Ben Aviner
- The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Ran Arieli
- The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel.,Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel
| | | |
Collapse
|
8
|
Wingelaar TT, Brinkman P, Hoencamp R, van Ooij PJA, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Assessment of pulmonary oxygen toxicity in special operations forces divers under operational circumstances using exhaled breath analysis. Diving Hyperb Med 2020; 50:2-7. [PMID: 32187611 DOI: 10.28920/dhm50.1.2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The Netherlands Maritime Special Operations Forces use closed circuit oxygen rebreathers (O₂-CCR), which can cause pulmonary oxygen toxicity (POT). Recent studies demonstrated that volatile organic compounds (VOCs) can be used to detect POT in laboratory conditions. It is unclear if similar VOCs can be identified outside the laboratory. This study hypothesised that similar VOCs can be identified after O₂-CCR diving in operational settings. METHODS Scenario one: 4 h O₂-CCR dive to 3 metres' seawater (msw) with rested divers. Scenario two: 3 h O₂-CCR dive to 3 msw following a 5 day physically straining operational scenario. Exhaled breath samples were collected 30 min before and 30 min and 2 h after diving under field conditions and analysed using gas chromatography-mass spectrometry (GC-MS) to reconstruct VOCs, whose levels were tested longitudinally using a Kruskal-Wallis test. RESULTS Eleven divers were included: four in scenario one and seven in scenario two. The 2 h post-dive sample could not be obtained in scenario two; therefore, 26 samples were collected. GC-MS analysis identified three relevant VOCs: cyclohexane, 2,4-dimethylhexane and 3-methylnonane. The intensities of 2,4-dimethylhexane and 3-methylnonane were significantly (P = 0.048 and P = 0.016, respectively) increased post-dive relative to baseline (range: 212-461%) in both scenarios. Cyclohexane was increased not significantly (P = 0.178) post-dive (range: 87-433%). CONCLUSIONS VOCs similar to those associated with POT in laboratory conditions were identified after operational O₂-CCR dives using GC-MS. Post-dive intensities were higher than in previous studies, and it remains to be determined if this is attributable to different dive profiles, diving equipment or other environmental factors.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, the Netherlands.,Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands.,Corresponding author: Dr Thijs T Wingelaar, Royal Netherlands Navy Diving Medical Centre, Rijkszee en marinehaven, 1780 CA, Den Helder, the Netherlands,
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Hospital, Leiderdorp, the Netherlands.,Defence Healthcare Organisation, Ministry of Defence, Utrecht, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands
| | - Pieter-Jan Am van Ooij
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, the Netherlands.,Department of Pulmonology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | | | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - Rob A van Hulst
- Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Arieli R. Effect of an air break on the occurrence of seizures in hyperbaric oxygen therapy may be predicted by the power equation for hyperoxia at rest. Diving Hyperb Med 2020; 50:75-76. [PMID: 32187622 DOI: 10.28920/dhm50.1.75-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Ran Arieli
- The Israel Naval Medical Institute, Israel Defence Forces Medical Corps, Haifa, Israel; Eliachar Research Laboratory, Western Galilee Medical Centre, Nahariya, Israel.,Corresponding author: Dr Ran Arieli, 12 Klil-Hakhoresh, Rakefet, D.N. Misgav 2017500, Israel.
| |
Collapse
|
10
|
Cronin WA, Forbes AS, Wagner KL, Kaplan P, Cataneo R, Phillips M, Mahon R, Hall A. Exhaled Volatile Organic Compounds Precedes Pulmonary Injury in a Swine Pulmonary Oxygen Toxicity Model. Front Physiol 2019; 10:1297. [PMID: 31849689 PMCID: PMC6901787 DOI: 10.3389/fphys.2019.01297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose Inspiring high partial pressure of oxygen (FiO2 > 0.6) for a prolonged duration can lead to lung damage termed pulmonary oxygen toxicity (PO2T). While current practice is to limit oxygen exposure, there are clinical and military scenarios where higher FiO2 levels and partial pressures of oxygen are required. The purpose of this study is to develop a non-invasive breath-based biomarker to detect PO2T prior to the onset of clinical symptoms. Methods Male Yorkshire swine (20–30 kg) were placed into custom airtight runs and randomized to air (0.209 FiO2, n = 12) or oxygen (>0.95 FiO2, n = 10) for 72 h. Breath samples, arterial blood gases, and vital signs were assessed every 12 h. After 72 h of exposure, animals were euthanized and the lungs processed for histology and wet-dry ratios. Results Swine exposed to hyperoxia developed pulmonary injury consistent with PO2T. Histology of oxygen-exposed swine showed pulmonary lymphatic congestion, epithelial sloughing, and neutrophil transmigration. Pulmonary injury was also evidenced by increased interstitial edema and a decreased PaO2/FiO2 ratio in the oxygen group when compared to the air control group. Breath volatile organic compound (VOC) sample analysis identified six VOCs that were combined into an algorithm which generated a breath score predicting PO2T with a ROC/AUC curve of 0.72 defined as a of PaO2/FiO2 ratio less than 350 mmHg. Conclusion Exposing swine to 72 h of hyperoxia induced a pulmonary injury consistent with human clinical endpoints of PO2T. VOC analysis identified six VOCs in exhaled breath that preceded PO2T. Results show promise that a simple, non-invasive breath test could potentially predict the risk of pulmonary injury in humans exposed to high partial pressures of oxygen.
Collapse
Affiliation(s)
- William A Cronin
- Walter Reed National Military Medical Center, Bethesda, MD, United States.,Undersea Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Angela S Forbes
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Kari L Wagner
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Peter Kaplan
- Breath Research Laboratory, Menssana Research, Inc., Newark, NJ, United States
| | - Renee Cataneo
- Breath Research Laboratory, Menssana Research, Inc., Newark, NJ, United States
| | - Michael Phillips
- Breath Research Laboratory, Menssana Research, Inc., Newark, NJ, United States
| | - Richard Mahon
- Undersea Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Aaron Hall
- Undersea Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
11
|
Zenske A, Kähler W, Koch A, Oellrich K, Pepper C, Muth T, Schipke JD. Does oxygen-enriched air better than normal air improve sympathovagal balance in recreational divers?An open-water study. Res Sports Med 2019; 28:397-412. [PMID: 31762338 DOI: 10.1080/15438627.2019.1694930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Effects of the hyperbaric environment on the autonomic nervous system (ANS) in recreational divers are not firmly settled. Aim of this exploratory study was to (1) assess ANS changes during scuba diving via recordings of electrocardiograms (ECG) and to (2) study whether nitrox40 better improves sympathovagal balance over air. 13 experienced divers (~40yrs) performed two open-water dives each breathing either air or nitrox40 (25m/39min). 3-channel ECGs were recorded using a custom-made underwater Holter-monitor. The underwater Holter system proved to be safe. Air consumption exceeded nitrox40 consumption by 12% (n = 13; p < 0.05). Both air and nitrox40 dives reduced HR (10 vs 13%; p < 0.05). The overall HRV (pNN50: 82 vs 126%; p < 0.05) and its vagal proportion (RMSSD: 33 vs 50%; p < 0.05) increased during the dive. Moreover, low (LF: 61 vs 47%) and high (HF: 71 vs 140%) frequency power were increased (all p < 0.05), decreasing the ratio of LF to HF (22 vs 34%). : Conventional open-water dives distinctly affect the ANS in experienced recreational divers, with sympathetic activation less pronounced than vagal activation thereby improving the sympathovagal balance. Nitrox40 delivered two positive results: nitrox40 consumption was lower than air consumption, and nitrox40 better improved the sympathovagal balance over air.
Collapse
Affiliation(s)
- André Zenske
- Department of Anaesthesiology, Operative Intensive Medicine, and Pain Medicine, Klinikum St. Elisabeth Straubing , Straubing, Germany
| | - Wataru Kähler
- Maritime Medicine, German Naval Medical Institute , Kronshagen, Germany
| | - Andreas Koch
- Maritime Medicine, German Naval Medical Institute , Kronshagen, Germany
| | - Kerstin Oellrich
- Maritime Medicine, German Naval Medical Institute , Kronshagen, Germany
| | | | - Thomas Muth
- Institute of Occupational, Social and Environmental Medicine , Düsseldorf, Heinrich Heine University, Germany
| | - Jochen D Schipke
- Forschungsgruppe Experimentelle Chirurgie, Universitäts-Klinikum Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
12
|
Castagna O, Bergmann C, Blatteau JE. Is a 12-h Nitrox dive hazardous for pulmonary function? Eur J Appl Physiol 2019; 119:2723-2731. [PMID: 31676994 DOI: 10.1007/s00421-019-04248-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Prolonged exposure to a high partial pressure of oxygen leads to inflammation of pulmonary tissue [pulmonary oxygen toxicity (POT)], which is associated with tracheobronchial irritation, retrosternal pain and coughing, and decreases in vital capacity (VC). The nitric oxide (NO) concentration in exhaled gas (FeNO) has been used as an indicator of POT, but the effect of SCUBA diving on FeNO has rarely been studied. The study presented here aimed to assess alterations to pulmonary function and FeNO following a 12-h dive using breathing apparatus with a relatively high partial pressure of oxygen. METHODS Six healthy, male, non-smoking military SCUBA divers were recruited (age 31.8 ± 2.7 years, height 179 ± 0.09 cm, and body weight 84.6 ± 14 kg). Each diver completed a 12-h dive using a demand-controlled semi-closed-circuit rebreather. During the 12 h of immersion, divers were subjected to 672 oxygen toxicity units (OTU). A complete pulmonary function test (PFT) was completed the day before and immediately after immersion. FeNO was measured using a Nobreath™ Quark (COSMED™, Rome, Italy), three times for each diver. The first datapoint was collected before the dive to establish the "basal state", a second was collected immediately after divers emerged from the water, and the final measurement was taken 24 h after the dive. RESULT Despite prolonged inhalation of a hyperoxic hyperbaric gas mixture, no clinical pulmonary symptoms were observed, and no major changes in pulmonary function were detected. However, a major decrease in FeNO values was observed immediately after emersion [0-12 ppb (median, 3.8 ppb)], with a return to baseline [2-60 ppb (median, 26 ppb) 24 h later (3-73 ppb (median, 24.7 ppb)]. CONCLUSION These results suggest that if the OTU remain below the recommended limit values, but does alter FeNO, this type of dive does not persistently impair lung function.
Collapse
Affiliation(s)
- Olivier Castagna
- Underwater Research Team, ERRSO, Military Biomedical Research Institute (IRBA), BP 600, 83800, Toulon Cedex 9, France. .,Laboratoire Motricité Humaine Expertise Sport Santé -LAMHESS (EA 6312), Université Nice Sophia Antipolis/Université Côte d'Azur, Nice, France.
| | | | - Jean Eric Blatteau
- Hôpital d'Instruction des Armées, Service de Médecine Hyperbare et Expertise Plongée (Military Teaching Hospital, Hyperbaric Medicine and Diving Expertise Department), Toulon, France
| |
Collapse
|
13
|
Arieli R. Calculated risk of pulmonary and central nervous system oxygen toxicity: a toxicity index derived from the power equation. Diving Hyperb Med 2019; 49:154-160. [PMID: 31523789 DOI: 10.28920/dhm49.3.154-160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/09/2019] [Indexed: 11/05/2022]
Abstract
BACKGROUND The risk of oxygen toxicity has become a prominent issue due to the increasingly widespread administration of hyperbaric oxygen (HBO) therapy, as well as the expansion of diving techniques to include oxygen-enriched gas mixtures and technical diving. However, current methods used to calculate the cumulative risk of oxygen toxicity during an HBO exposure i.e., the unit pulmonary toxic dose concept, and the safe boundaries for central nervous system oxygen toxicity (CNS-OT), are based on a simple linear relationship with an inspired partial pressure of oxygen (PO2) and are not supported by recent data. METHODS The power equation: Toxicity Index = t2 × PO2c, where t represents time and c represents the power term, was derived from the chemical reactions producing reactive oxygen species or reactive nitrogen species. RESULTS The toxicity index was shown to have a good predictive capability using PO2 with a power c of 6.8 for CNS-OT and 4.57 for pulmonary oxygen toxicity. The pulmonary oxygen toxicity index (PO2 in atmospheres absolute, time in h) should not exceed 250. The CNS-OT index (PO2 in atmospheres absolute, time in min) should not exceed 26,108 for a 1% risk. CONCLUSION The limited use of this toxicity index in the diving community, after more than a decade since its publication in the literature, establishes the need for a handy, user-friendly implementation of the power equation.
Collapse
Affiliation(s)
- Ran Arieli
- Corresponding author: Dr Ran Arieli, 12 Klil-Hakhoresh, Rakefet, D N Misgav 0020175, Israel, .,Divers Alert Network, Durham NC, USA.,Eliachar Research Laboratory, Western Galilee Medical Centre, Nahariya, Israel
| |
Collapse
|
14
|
Hadanny A, Zubari T, Tamir-Adler L, Bechor Y, Fishlev G, Lang E, Polak N, Bergan J, Friedman M, Efrati S. Hyperbaric oxygen therapy effects on pulmonary functions: a prospective cohort study. BMC Pulm Med 2019; 19:148. [PMID: 31409407 PMCID: PMC6693142 DOI: 10.1186/s12890-019-0893-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oxygen toxicity is one potential side effect of hyperbaric oxygen therapy (HBOT). Previous small studies showed mild reductions in pulmonary functions reflecting reductions in small airway conductance after repetitive hyperbaric oxygen sessions. However, there are no updated data with well performed pulmonary tests that address the pulmonary effect of the currently used HBOT protocols. The aim of this study was to evaluate the effect of HBOT on pulmonary functions of patients receiving the currently used HBOT protocol. METHODS Prospective analysis included patients, 18 years or older, scheduled for 60 daily HBOT sessions between 2016 and 2018. Each session was 90 min of 100% oxygen at 2 ATA with 5 min air breaks every 20 min, 5 days per week. Pulmonary functions, measured at baseline and after HBOT, included forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1) and peak expiratory flow rate (PEF). RESULTS The mean age was 60.36 ± 15.43 and 62.5% (55/88) were males. Most of the patients (83/88, 94.3%) did not have any pulmonary disease prior to inclusion and 30.7% (27/88) had a history of smoking. Compared to baseline values, at the completion of 60 HBOT sessions, there were no significant changes in FEV1 (0.163), FEV1/FVC ratio (0.953) and FEF25-75% (0.423). There was a statistically significant increase though not clinically relevant increase in FVC (0.1 ± 0.38 l) and PEF (0.5 ± 1.4 l) with a 0.014 and 0.001 respectively. CONCLUSION Regarding pulmonary functions, repeated hyperbaric oxygen exposure based on the currently used HBOT protocol is safe. Surprisingly, there was a modest non clinically significant though statistically significant improvement in PEF and FVC in the current cohort of patients who were without chronic lung diseases. TRIAL REGISTRATION Clinicaltrials.gov, trial ID: NCT03754985 , (Nov 2018) Retrospectively registered.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Bar Ilan University, Ramat-Gan, Israel
| | - Tal Zubari
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | | | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Gregory Fishlev
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Nir Polak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Jacob Bergan
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Mony Friedman
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Arieli R. Pulmonary oxygen toxicity in saturation dives with PO 2 close to the lower end of the toxic range - A quantitative approach. Respir Physiol Neurobiol 2019; 268:103243. [PMID: 31158523 DOI: 10.1016/j.resp.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary oxygen toxicity (POT) has been extensively described at partial pressures of oxygen (PO2) ≥ 1 bar, but much less so at lower PO2. We proposed the POT index [K = t2 × (PO2)4.57] as a means of evaluating the severity of POT, expressed either as reduced lung function or the incidence of POT in a group of divers. In the exponential recovery process (e - [- 0.42 + 0.384 × (PO2)ex] × tr), the time constant increases linearly from 0.0024 to 0.54 h-1 for a PO2 of 1.1 to 2.5 bar. A linear relationship was demonstrated between the incidence of POT and the POT index, given by the equation: POT incidence % = 1.85 + 0.171 × K. In saturation diving, PO2 is kept close to the lower end of the toxic limits for POT, which is approximately 0.5 bar. We suggested that at this low range of PO2, the two processes of cumulative toxicity and recovery operate simultaneously. For one example of saturation diving, we show that a recovery time constant of 0.0135 h-1 yields the measured incidence of POT. We therefore propose the formula K = t2 × PO24.57 × e-0.0135 × t for calculation of the POT index in further analyses of POT in saturation diving.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, Israel Defence Forces Medical Corps, Haifa, Israel; Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
16
|
Wingelaar TT, Brinkman P, van Ooij PJAM, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Markers of Pulmonary Oxygen Toxicity in Hyperbaric Oxygen Therapy Using Exhaled Breath Analysis. Front Physiol 2019; 10:475. [PMID: 31068838 PMCID: PMC6491850 DOI: 10.3389/fphys.2019.00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction Although hyperbaric oxygen therapy (HBOT) has beneficial effects, some patients experience fatigue and pulmonary complaints after several sessions. The current limits of hyperbaric oxygen exposure to prevent pulmonary oxygen toxicity (POT) are based on pulmonary function tests (PFT), but the limitations of PFT are recognized worldwide. However, no newer modalities to detect POT have been established. Exhaled breath analysis in divers have shown volatile organic compounds (VOCs) of inflammation and methyl alkanes. This study hypothesized that similar VOCs might be detected after HBOT. Methods Ten healthy volunteers of the Royal Netherlands Navy underwent six HBOT sessions (95 min at 253 kPa, including three 5-min “air breaks”), i.e., on five consecutive days followed by another session after 2 days of rest. At 30 min before the dive, and at 30 min, 2 and 4 h post-dive, exhaled breath was collected and followed by PFT. Exhaled breath samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After univariate tests and correlation of retention times, ion fragments could be identified using a reference database. Using these fragments VOCs could be reconstructed, which were clustered using principal component analysis. These clusters were tested longitudinally with ANOVA. Results After GC-MS analysis, eleven relevant VOCs were identified which could be clustered into two principal components (PC). PC1 consisted of VOCs associated with inflammation and showed no significant change over time. The intensities of PC2, consisting of methyl alkanes, showed a significant decrease (p = 0.001) after the first HBOT session to 50.8%, remained decreased during the subsequent days (mean 82%), and decreased even further after 2 days of rest to 58% (compared to baseline). PFT remained virtually unchanged. Discussion Although similar VOCs were found when compared to diving, the decrease of methyl alkanes (PC2) is in contrast to the increase seen in divers. It is unknown why emission of methyl alkanes (which could originate from the phosphatidylcholine membrane in the alveoli) are reduced after HBOT. This suggests that HBOT might not be as damaging to the pulmonary tract as previously assumed. Future research on POT should focus on the identified VOCs (inflammation and methyl alkanes).
Collapse
Affiliation(s)
- T T Wingelaar
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P J A M van Ooij
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R Hoencamp
- Department of Surgery, Alrijne Hospital Leiderdorp, Leiderdorp, Netherlands.,Defense Healthcare Organisation, Ministry of Defence, Utrecht, Netherlands.,Leiden University Medical Center, Leiden, Netherlands
| | | | - M W Hollmann
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Wingelaar TT, van Ooij PJAM, Brinkman P, van Hulst RA. Pulmonary Oxygen Toxicity in Navy Divers: A Crossover Study Using Exhaled Breath Analysis After a One-Hour Air or Oxygen Dive at Nine Meters of Sea Water. Front Physiol 2019; 10:10. [PMID: 30740057 PMCID: PMC6355711 DOI: 10.3389/fphys.2019.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction: Exposure to hyperbaric hyperoxic conditions can lead to pulmonary oxygen toxicity. Although a decrease in vital capacity has long been the gold standard, newer diagnostic modalities may be more accurate. In pulmonary medicine, much research has focussed on volatile organic compounds (VOCs) associated with inflammation in exhaled breath. In previous small studies after hyperbaric hyperoxic exposure several methyl alkanes were identified. This study aims to identify which VOCs mark the development of pulmonary oxygen toxicity. Methods: In this randomized crossover study, 12 divers of the Royal Netherlands Navy made two dives of one hour to 192.5 kPa (comparable to a depth of 9 msw) either with 100% oxygen or compressed air. At 30 min before the dive, and at 30 min and 1, 2, 3, and 4 h post-dive, exhaled breath was collected and followed by pulmonary function tests (PFT). Exhaled breath samples were analyzed using gas chromatography–mass spectrometry (GC–MS). After univariate tests and correlation of retention times, ion fragments could be identified using a standard reference database [National Institute of Standards and Technology (NIST)]. Using these fragments VOCs could be reconstructed, which were then tested longitudinally with analysis of variance. Results: After GC–MS analysis, seven relevant VOCs (generally methyl alkanes) were identified. Decane and decanal showed a significant increase after an oxygen dive (p = 0.020 and p = 0.013, respectively). The combined intensity of all VOCs showed a significant increase after oxygen diving (p = 0.040), which was at its peak (+35%) 3 h post-dive. Diffusion capacity of nitric oxide and alveolar membrane capacity showed a significant reduction after both dives, whereas no other differences in PFT were significant. Discussion: This study is the largest analysis of exhaled breath after in water oxygen dives to date and the first to longitudinally measure VOCs. The longitudinal setup showed an increase and subsequent decrease of exhaled components. The VOCs identified suggest that exposure to a one-hour dive with a partial pressure of oxygen of 192.5 kPa damages the phosphatidylcholine membrane in the alveoli, while the spirometry and diffusion capacity show little change. This suggests that exhaled breath analysis is a more accurate method to measure pulmonary oxygen toxicity.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rob A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Wingelaar TT, van Ooij PJAM, van Hulst RA. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous. Front Psychol 2017; 8:1263. [PMID: 28790955 PMCID: PMC5524741 DOI: 10.3389/fpsyg.2017.01263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/11/2017] [Indexed: 12/04/2022] Open
Abstract
In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Center, Royal Netherlands NavyDen Helder, Netherlands.,Department of Anaesthesiology, Academic Medical CenterAmsterdam, Netherlands
| | | | - Rob A van Hulst
- Department of Anaesthesiology, Academic Medical CenterAmsterdam, Netherlands
| |
Collapse
|
19
|
van Ooij PJAM, Sterk PJ, van Hulst RA. Oxygen, the lung and the diver: friends and foes? Eur Respir Rev 2017; 25:496-505. [PMID: 27903670 PMCID: PMC9487554 DOI: 10.1183/16000617.0049-2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Worldwide, the number of professional and sports divers is increasing. Most of them breathe diving gases with a raised partial pressure of oxygen (PO2). However, if the PO2 is between 50 and 300 kPa (375–2250 mmHg) (hyperoxia), pathological pulmonary changes can develop, known as pulmonary oxygen toxicity (POT). Although in its acute phase, POT is reversible, it can ultimately lead to non-reversible pathological changes. Therefore, it is important to monitor these divers to prevent them from sustaining irreversible lesions. This review summarises the pulmonary pathophysiological effects when breathing oxygen with a PO2 of 50–300 kPa (375–2250 mmHg). We describe the role and the limitations of lung function testing in monitoring the onset and development of POT, and discuss new techniques in respiratory medicine as potential markers in the early development of POT in divers. To prevent the early development of pulmonary oxygen toxicity divers must be properly monitoredhttp://ow.ly/RVJL301fySb
Collapse
Affiliation(s)
- Pieter-Jan A M van Ooij
- Diving Medical Center, Royal Netherlands Navy Den Helder, The Netherlands .,Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam
| | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam
| | - Robert A van Hulst
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Centre, University of Amsterdam
| |
Collapse
|
20
|
Eynan M, Mullokandov M, Krinsky N, Biram A, Arieli Y. Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen. J Appl Physiol (1985) 2015; 119:463-7. [PMID: 26183474 DOI: 10.1152/japplphysiol.00154.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/15/2015] [Indexed: 01/12/2023] Open
Abstract
Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P < 0.01). No change was observed in BGL after exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21. Hypoglycemia shortened latency to CNS oxygen toxicity, whereas hyperglycemia had no effect. Our results demonstrate an influence of HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT.
Collapse
Affiliation(s)
- Mirit Eynan
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Michael Mullokandov
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Nitzan Krinsky
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Adi Biram
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Yehuda Arieli
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| |
Collapse
|
21
|
Hyperbaric oxygen diving affects exhaled molecular profiles in men. Respir Physiol Neurobiol 2014; 198:20-4. [DOI: 10.1016/j.resp.2014.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
22
|
Eynan M, Krinsky N, Biram A, Arieli Y, Arieli R. A comparison of factors involved in the development of central nervous system and pulmonary oxygen toxicity in the rat. Brain Res 2014; 1574:77-83. [PMID: 24928619 DOI: 10.1016/j.brainres.2014.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Central nervous system oxygen toxicity (CNS-OT) can occur in humans at pressures above 2atmospheres absolute (ATA), and above 4.5ATA in the rat. Pulmonary oxygen toxicity appears at pressures above 0.5ATA. We hypothesized that exposure to mild HBO following extreme exposure might provide protection against CNS, but not pulmonary oxygen toxicity. We measured the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and nitrotyrosine and nNOS levels in the brain and lung in the following groups: (1) Sham rats, no pressure exposure (SHAM); (2) Exposure to 6ATA oxygen for 60% of latency to CNS-OT (60%LT); (3) Exposure to 6ATA for 60% of latency to CNS-OT, followed by 20min at 2.5ATA for recovery (REC); (4) Exposure to 6ATA for 60% of latency to CNS-OT, followed by 20min at 2.5ATA oxygen and a subsequent increase in pressure to 6ATA until the appearance of convulsions (CONV); (5) Control rats exposed to 6ATA until the appearance of convulsions (C). SOD and CAT activity were reduced in both brain and lung in the REC group. GPX activity was reduced in the hippocampus in the REC group, but not in the cortex or the lung. nNOS levels were reduced in the hippocampus in the REC group. Contrary to our hypothesis, no difference was observed between the brain and the lung for the factors investigated. We suggest that at 2.5ATA and above, CNS and pulmonary oxygen toxicity may share similar mechanisms.
Collapse
Affiliation(s)
- Mirit Eynan
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, P.O. Box 9602, 3109601 Haifa, Israel.
| | - Nitzan Krinsky
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, P.O. Box 9602, 3109601 Haifa, Israel.
| | - Adi Biram
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, P.O. Box 9602, 3109601 Haifa, Israel.
| | - Yehuda Arieli
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, P.O. Box 9602, 3109601 Haifa, Israel.
| | - Ran Arieli
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, P.O. Box 9602, 3109601 Haifa, Israel.
| |
Collapse
|
23
|
van Ooij PJAM, van Hulst RA, Houtkooper A, Sterk PJ. Nitric oxide and carbon monoxide diffusing capacity after a 1-h oxygen dive to 9 m of sea water. Clin Physiol Funct Imaging 2013; 34:199-208. [DOI: 10.1111/cpf.12082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Affiliation(s)
- P. J. A. M. van Ooij
- Diving Medical Center; Royal Netherlands Navy; Den Helder Netherlands
- Department of Respiratory Medicine; Academic Medical Centre; Amsterdam Netherlands
| | - R. A. van Hulst
- Diving Medical Center; Royal Netherlands Navy; Den Helder Netherlands
- Academic Medical Centre; Laboratory of Experimental Intensive Care and Anesthesiology; Amsterdam Netherlands
| | - A. Houtkooper
- Diving Medical Center; Royal Netherlands Navy; Den Helder Netherlands
| | - P. J. Sterk
- Department of Respiratory Medicine; Academic Medical Centre; Amsterdam Netherlands
| |
Collapse
|
24
|
van Ooij PJAM, Hollmann MW, van Hulst RA, Sterk PJ. Assessment of pulmonary oxygen toxicity: relevance to professional diving; a review. Respir Physiol Neurobiol 2013; 189:117-28. [PMID: 23886638 DOI: 10.1016/j.resp.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
When breathing oxygen with partial oxygen pressures PO₂ of between 50 and 300 kPa pathological pulmonary changes develop after 3-24h depending on the PO₂. This kind of injury (known as pulmonary oxygen toxicity) is not only observed in ventilated patients but is also considered an occupational hazard in oxygen divers or mixed gas divers. To prevent these latter groups from sustaining irreversible lesions adequate prevention is required. This review summarizes the pathophysiological effects on the respiratory tract when breathing oxygen with PO₂ of 50-300 kPa (hyperoxia). We discuss to what extent the most commonly used lung function parameters change after exposure to hyperoxia and its role in monitoring the onset and development of pulmonary oxygen toxicity in daily practice. Finally, new techniques in respiratory medicine are discussed with regard to their usefulness in monitoring pulmonary oxygen toxicity in divers.
Collapse
Affiliation(s)
- P J A M van Ooij
- Diving Medical Center, Royal Netherlands Navy, The Netherlands; Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
25
|
The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst 2010; 26:419-30. [PMID: 19937246 DOI: 10.1007/s00381-009-1037-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Secondary neuronal injury is implicated in poor outcome after acute neurological insults. Outcome can be improved with protocol-driven therapy. These therapies have largely been based on monitoring and control of intracranial pressure and the maintenance of an adequate cerebral perfusion pressure. DISCUSSION In recent years, brain tissue oxygen partial pressure (PbtO2) monitoring has emerged as a clinically useful modality and a complement to intracranial pressure monitors. This review examines the physiology of PbtO2 monitors and practical aspects of their use.
Collapse
|
26
|
Arieli R, Truman M, Abramovich A. Recovery from central nervous system oxygen toxicity in the rat at oxygen pressures between 100 and 300 kPa. Eur J Appl Physiol 2008; 104:867-71. [PMID: 18670785 DOI: 10.1007/s00421-008-0843-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
No symptoms related to central nervous system (CNS) oxygen toxicity have been reported when diving with oxygen rebreathers at depths shallower than 3 msw. We hypothesised that recovery from CNS oxygen toxicity will take place when the PO(2) is less than 130 kPa. We exposed rats to a high PO(2) (mainly 608 kPa) to produce CNS oxygen toxicity. The latency to the first electrical discharge (FED) preceding convulsions was determined as the animal's control latency. Thereafter, the rat was exposed to the same PO(2) for 60% of its latency, then to a lower PO(2) for 15 min (sufficient time for full recovery in normoxia), and finally to the high PO(2) again until appearance of the FED. If recovery from CNS oxygen toxicity takes place during the interim period, the latency for the final exposure to the high oxygen pressure should not be shorter than the control. The latencies to CNS oxygen toxicity for exposure to the high oxygen pressure after a 15-min interim period at 21, 101, 132, 203, 304, 405, and 456 kPa were 110, 110, 125, 94, 85, 54 and 38% of the control value, respectively. Only after the last two interim pressures were the latencies significantly shorter than control values. The remaining latencies were not significantly different from 100%. Recovery from CNS oxygen toxicity in the rat takes place at a PO(2) anywhere between 21 and 304 kPa. The present findings support our previous suggestion that recovery from CNS oxygen toxicity in humans will take place at a PO(2) below 130 kPa. If our findings are corroborated by further human studies, this will justify including recovery in the algorithm for CNS oxygen toxicity in closed-circuit oxygen divers.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, IDF Medical Corps, P.O. Box 8040, 31080 Haifa, Israel.
| | | | | |
Collapse
|
27
|
Koch AE, Kähler W, Wegner-Bröse H, Weyer D, Kuhtz-Buschbeck J, Deuschl G, Eschenfelder CC. Monitoring of CBFV and time characteristics of oxygen-induced acute CNS toxicity in humans. Eur J Neurol 2008; 15:746-8. [PMID: 18484987 DOI: 10.1111/j.1468-1331.2008.02158.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hyperbaric oxygen can cause central nervous system (CNS) toxicity with seizures. We tested the hypothesis that CNS toxicity could be predictable by cerebral blood flow velocity (CBFV) monitoring. METHOD We monitored 369 mandatory oxygen tolerance tests (30 min, 280 kPa O(2)) by video-documentation and since May 2005 by additional CBFV registration (n = 61). RESULTS The onset of early manifestations of CNS toxicity was documented in 11 of 369 tests within 22 +/- 3 min. These included twitches and/or agitation, 6 of 11 and tonic-clonic seizures in 5 of 11 cases. In both cases with CBFV monitoring, an increase in CBFV preceded symptom onset, once followed by seizure, once without seizure after timely oxygen reduction. CONCLUSIONS During exposure to 280 kPa oxygen at rest a constant delay of approximately 20 min precedes the onset of central nervous oxygen toxicity. An increase in CBFV may indicate the impending seizure.
Collapse
Affiliation(s)
- A E Koch
- German Naval Medical Institute, Kiel-Kronshagen, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chavko M, Mahon RT, McCarron RM. Mechanisms of protection against pulmonary hyperbaric O(2) toxicity by intermittent air breaks. Eur J Appl Physiol 2007; 102:525-32. [PMID: 18034261 DOI: 10.1007/s00421-007-0611-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2007] [Indexed: 01/25/2023]
Abstract
Intermittent exposure to air is used as a protective strategy against hyperbaric O(2) (HBO(2)) toxicity. Little is known about optimal intermittent exposure schedules and the mechanism of protection. In this study, we examined the role of antioxidant enzymes, and inflammatory cytokines in the mechanism of HBO(2) tolerance by intermittent air breaks. One group of rats was exposed continuously to 282 kPa O(2) until death. Other groups were exposed to 30, 60, and 120 min intervals of HBO(2) with different numbers of intermittent 30 min air breaks (1-12 breaks). After the final break, animals were exposed to HBO(2) until death. In a separate experiment, animals were sacrificed before terminal exposure and lung tissues were collected for analysis of gene expression. Two intermittent schedules with 6 h cumulative O(2) time (30/30 and 60/30 min schedules) were compared with continuous exposure to HBO(2) for 6 h and with intermittent exposure of 8 h (120/30 min schedule) duration. Continuous exposure resulted in activation of inflammatory cytokine TNF-alpha and IL-1beta mRNA expression, an increase in lung protein nitration and activation of inducible NOS (iNOS) mRNA. Inflammatory response was not observed at intermittent exposures of the same cumulative O(2) time duration (30/30 and 60/30 min schedule). Expression of heme oxygenase-1 (HO-1) mRNA was significantly increased in all exposure groups while manganese superoxide dismutase (MnSOD) mRNA expression was increased only in continuous and 120/30 exposure groups. Results show that intermittent exposure to air protects against pulmonary HBO(2) toxicity by inhibiting inflammation. The mechanism of inhibition may involve the antiinflammatory and antioxidative effect of HO-1 but some other mechanisms may also be involved in protection by intermittent air breaks.
Collapse
Affiliation(s)
- Mikulas Chavko
- Trauma and Resuscitative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
29
|
Arieli R, Ertracht O, Oster I, Vitenstein A, Adir Y. Effects of nitrogen and helium on CNS oxygen toxicity in the rat. J Appl Physiol (1985) 2004; 98:144-50. [PMID: 15322063 DOI: 10.1152/japplphysiol.00506.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of inert gases to the risk of central nervous system (CNS) oxygen toxicity is a matter of controversy. Therefore, diving regulations apply strict rules regarding permissible oxygen pressures (Po(2)). We studied the effects of nitrogen and helium (0, 15, 25, 40, 50, and 60%) and different levels of Po(2) (507, 557, 608, and 658 kPa) on the latency to the first electrical discharge (FED) in the EEG in rats, with repeated measurements in each animal. Latency as a function of the nitrogen pressure was not homogeneous for each rat. The prolongation of latency observed in some rats at certain nitrogen pressures, mostly in the range 100 to 500 kPa, was superimposed on the general trend for a reduction in latency as nitrogen pressure increased. This pattern was an individual trait. In contrast with nitrogen, no prolongation of latency to CNS oxygen toxicity was observed with helium, where an increase in helium pressure caused a reduction in latency. This bimodal response and the variation in the response between rats, together with a possible effect of ambient temperature on metabolic rate, may explain the conflicting findings reported in the literature. The difference between the two inert gases may be related to the difference in the narcotic effect of nitrogen. Proof through further research of a correlation between individual sensitivity to nitrogen narcosis and protection by N(2) against CNS oxygen toxicity in rat may lead to a personal O(2) limit in mixed-gas diving based on the diver sensitivity to N(2) narcosis.
Collapse
Affiliation(s)
- R Arieli
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, POB 8040, Haifa 31080, Israel.
| | | | | | | | | |
Collapse
|