1
|
Muñoz J, Cedeño JA, Castañeda GF, Visedo LC. Personalized ventilation adjustment in ARDS: A systematic review and meta-analysis of image, driving pressure, transpulmonary pressure, and mechanical power. Heart Lung 2024; 68:305-315. [PMID: 39214040 DOI: 10.1016/j.hrtlng.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.
Collapse
Affiliation(s)
- Javier Muñoz
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain.
| | - Jamil Antonio Cedeño
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain
| | | | - Lourdes Carmen Visedo
- C. S. San Juan de la Cruz, Pozuelo de Alarcón, C/ San Juan de la Cruz s/n, 28223 Madrid, Spain
| |
Collapse
|
2
|
Liggieri F, Chiodaroli E, Pellegrini M, Puuvuori E, Sigfridsson J, Velikyan I, Chiumello D, Ball L, Pelosi P, Stramaglia S, Antoni G, Eriksson O, Perchiazzi G. Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study. Intensive Care Med Exp 2024; 12:77. [PMID: 39225817 PMCID: PMC11371987 DOI: 10.1186/s40635-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.
Collapse
Affiliation(s)
- Francesco Liggieri
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Elena Chiodaroli
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy
| | - Lorenzo Ball
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Sebastiano Stramaglia
- Department of Physics, National Institute for Nuclear Physics, University of Bari Aldo Moro, Bari, Italy
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
3
|
Dhelft F, Lancelot S, Mouton W, Le Bars D, Costes N, Roux E, Orkisz M, Benzerdjeb N, Richard JC, Bitker L. Prone position decreases acute lung inflammation measured by [ 11C](R)-PK11195 positron emission tomography in experimental acute respiratory distress syndrome. J Appl Physiol (1985) 2023; 134:467-481. [PMID: 36633865 DOI: 10.1152/japplphysiol.00234.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Whether prone positioning (PP) modulates acute lung inflammation by the modulation of biomechanical forces of ventilator-induced lung injuries (VILIs) remains unclear. We aimed to demonstrate that PP decreases acute lung inflammation in animals with experimental acute respiratory distress syndrome (ARDS). Animals were under general anesthesia and protective ventilation (tidal volume 6 mL·kg-1, PEEP 5 cmH2O). ARDS was induced by intratracheal instillation of chlorohydric acid. Animals were then randomized to PP, or to supine position (SP). After 4 h, a positron emission tomography (PET) acquisition with [11C](R)-PK11195 was performed coupled with computerized tomography (CT) acquisitions, allowing the CT quantification of VILI-associated parameters. [11C](R)-PK11195 lung uptake was quantified using pharmacokinetic multicompartment models. Analyses were performed on eight lung sections distributed along the antero-posterior dimension. Six animals were randomized to PP, five to SP (median [Formula: see text]/[Formula: see text] [interquartile range]: 164 [102-269] mmHg). The normally aerated compartment was significantly redistributed to the posterior lung regions of animals in PP, compared with SP. Dynamic strain was significantly increased in posterior regions of SP animals, compared with PP. After 4 h, animals in PP had a significantly lower uptake of [11C](R)-PK11195, compared with SP. [11C](R)-PK11195 regional uptake was independently associated with the study group, dynamic strain, tidal hyperinflation, and regional respiratory system compliance in multivariate analysis. In an experimental model of ARDS, 4 h of PP significantly decreased acute lung inflammation assessed with PET. The beneficial impact of PP on acute lung inflammation was consecutive to the combination of decreased biomechanical forces and changes in the respiratory system mechanics.NEW & NOTEWORTHY Prone position decreases acute lung macrophage inflammation quantified in vivo with [11C](R)-PK11195 positron emission tomography in an experimental acute respiratory distress syndrome. Regional macrophage inflammation is maximal in the most anterior and posterior lung section of supine animals, in relation with increased regional tidal strain and hyperinflation, and reduced regional lung compliance.
Collapse
Affiliation(s)
- François Dhelft
- Service de Médecine Intensive - Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France.,Claude Bernard University Lyon 1, Lyon, France
| | - Sophie Lancelot
- Claude Bernard University Lyon 1, Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - William Mouton
- Laboratoire Commun de Recherche Hospices Civils de Lyon/bioMérieux, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Didier Le Bars
- Claude Bernard University Lyon 1, Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Nicolas Costes
- Claude Bernard University Lyon 1, Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | - Emmanuel Roux
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France
| | - Maciej Orkisz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France
| | - Nazim Benzerdjeb
- Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive - Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France.,Claude Bernard University Lyon 1, Lyon, France
| | - Laurent Bitker
- Service de Médecine Intensive - Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France.,Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
4
|
Wang Z, Xia F, Dai H, Chen H, Xie J, Qiu H, Yang Y, Guo F. Early decrease of ventilatory ratio after prone position ventilation may predict successful weaning in patients with acute respiratory distress syndrome: A retrospective cohort study. Front Med (Lausanne) 2022; 9:1057260. [PMID: 36561724 PMCID: PMC9763615 DOI: 10.3389/fmed.2022.1057260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies usually identified patients who benefit the most from prone positioning by oxygenation improvement. However, inconsistent results have been reported. Physiologically, pulmonary dead space fraction may be more appropriate in evaluating the prone response. As an easily calculated bedside index, ventilatory ratio (VR) correlates well with pulmonary dead space fraction. Hence, we investigated whether the change in VR after prone positioning is associated with weaning outcomes at day 28 and to identify patients who will benefit the most from prone positioning. Materials and methods This retrospective cohort study was performed in a group of mechanically ventilated, non-COVID ARDS patients who received prone positioning in the ICU at Zhongda hospital, Southeast University. The primary outcome was the rate of successful weaning patients at day 28. Arterial blood gas results and corresponding ventilatory parameters on five different time points around the first prone positioning were collected, retrospectively. VR responders were identified by Youden's index. Competing-risk regression models were used to identify the association between the VR change and liberation from mechanical ventilation at day 28. Results One hundred and three ARDS patients receiving prone positioning were included, of whom 53 (51%) successfully weaned from the ventilator at day 28. VR responders were defined as patients showing a decrease in VR of greater than or equal to 0.037 from the baseline to within 4 h after prone. VR responders have significant longer ventilator-free days, higher successful weaning rates and lower mortality compared with non-responders at day 28. And a significant between-group difference exists in the respiratory mechanics improvement after prone (P < 0.05). A linear relationship was also found between VR change and compliance of the respiratory system (Crs) change after prone (r = 0.32, P = 0.025). In the multivariable competing-risk analysis, VR change (sHR 0.57; 95% CI, 0.35-0.92) was independently associated with liberation from mechanical ventilation at day 28. Conclusion Ventilatory ratio decreased more significantly within 4 h after prone positioning in patients with successful weaning at day 28. VR change was independently associated with liberation from mechanical ventilation at day 28.
Collapse
Affiliation(s)
- Zhichang Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Huishui Dai
- Department of Critical Care Medicine, Mingguang People’s Hospital, Chuzhou, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,*Correspondence: Fengmei Guo,
| |
Collapse
|
5
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
6
|
Modesto I Alapont V, Medina Villanueva A, Del Villar Guerra P, Camilo C, Fernández-Ureña S, Gordo-Vidal F, Khemani R. OLA strategy for ARDS: Its effect on mortality depends on achieved recruitment (PaO 2/FiO 2) and mechanical power. Systematic review and meta-analysis with meta-regression. Med Intensiva 2021; 45:516-531. [PMID: 34839883 DOI: 10.1016/j.medine.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The "Open Lung Approach" (OLA), that includes high levels of positive end-expiratory pressure coupled with limited tidal volumes, is considered optimal for adult patients with ARDS. However, many previous meta-analyses have shown only marginal benefits of OLA on mortality but with statistical heterogeneity. It is crucial to identify the most likely moderators of this effect. To determine the effect of OLA strategy on mortality of ventilated ARDS patients. We hypothesized that the degree of recruitment achieved in the control group (PaO2/FiO2 ratio on day 3 of ventilation), and the difference in Mechanical Power (MP) or Driving Pressure (DP) between experimental and control groups will be the most likely sources of heterogeneity. DESIGN A Systematic Review and Meta-analysis was performed according to PRISMA statement and registered in PROSPERO database. We searched only for randomized controlled trials (RCTs). GRADE guidelines were used for rating the quality of evidence. Publication bias was assessed. For the Meta-analysis, we used a Random Effects Model. Sources of heterogeneity were explored with Meta-Regression, using a priori proposed set of possible moderators. For model comparison, Akaike's Information Criterion with the finite sample correction (AICc) was used. SETTING Not applicable. PATIENTS Fourteen RCTs were included in the study. INTERVENTIONS Not applicable. MAIN VARIABLES OF INTEREST Not applicable. RESULTS Evidence of publication bias was detected, and quality of evidence was downgraded. Pooled analysis did not show a significant difference in the 28-day mortality between OLA strategy and control groups. Overall risk of bias was low. The analysis detected statistical heterogeneity. The two "best" explicative meta-regression models were those that used control PaO2/FiO2 on day 3 and difference in MP between experimental and control groups. The DP and MP models were highly correlated. CONCLUSIONS There is no clear benefit of OLA strategy on mortality of ARDS patients, with significant heterogeneity among RCTs. Mortality effect of OLA is mediated by lung recruitment and mechanical power.
Collapse
Affiliation(s)
| | | | - P Del Villar Guerra
- Department of Pediatrics, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - C Camilo
- PICU, Hospital de Santa Maria-Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - S Fernández-Ureña
- Urgencias Pediátricas, Complejo Hospitalario Universitario Materno Insular Las Palmas, Universidad de Las Palmas, Las Palmas de Gran Canaria, Spain
| | - F Gordo-Vidal
- ICU, Hospital del Henares, Grupo de Investigación en Patología Crítica de la Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - R Khemani
- PICU, Children's Hospital Los Angeles, California, USA
| |
Collapse
|
7
|
Katira BH, Osada K, Engelberts D, Bastia L, Damiani LF, Li X, Chan H, Yoshida T, Amato MBP, Ferguson ND, Post M, Kavanagh BP, Brochard LJ. Positive End-Expiratory Pressure, Pleural Pressure, and Regional Compliance during Pronation: An Experimental Study. Am J Respir Crit Care Med 2021; 203:1266-1274. [PMID: 33406012 DOI: 10.1164/rccm.202007-2957oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale: The physiological basis of lung protection and the impact of positive end-expiratory pressure (PEEP) during pronation in acute respiratory distress syndrome are not fully elucidated. Objectives: To compare pleural pressure (Ppl) gradient, ventilation distribution, and regional compliance between dependent and nondependent lungs, and investigate the effect of PEEP during supination and pronation. Methods: We used a two-hit model of lung injury (saline lavage and high-volume ventilation) in 14 mechanically ventilated pigs and studied supine and prone positions. Global and regional lung mechanics including Ppl and distribution of ventilation (electrical impedance tomography) were analyzed across PEEP steps from 20 to 3 cm H2O. Two pigs underwent computed tomography scans: tidal recruitment and hyperinflation were calculated. Measurements and Main Results: Pronation improved oxygenation, increased Ppl, thus decreasing transpulmonary pressure for any PEEP, and reduced the dorsal-ventral pleural pressure gradient at PEEP < 10 cm H2O. The distribution of ventilation was homogenized between dependent and nondependent while prone and was less dependent on the PEEP level than while supine. The highest regional compliance was achieved at different PEEP levels in dependent and nondependent regions in supine position (15 and 8 cm H2O), but for similar values in prone position (13 and 12 cm H2O). Tidal recruitment was more evenly distributed (dependent and nondependent), hyperinflation lower, and lungs cephalocaudally longer in the prone position. Conclusions: In this lung injury model, pronation reduces the vertical pleural pressure gradient and homogenizes regional ventilation and compliance between the dependent and nondependent regions. Homogenization is much less dependent on the PEEP level in prone than in supine positon.
Collapse
Affiliation(s)
- Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science.,Department of Physiology.,The Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - L Felipe Damiani
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xuehan Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,Department of Anesthesiology and.,Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Han Chan
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,Surgical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, China
| | - Takeshi Yoshida
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Department of Physiology.,Department of Medicine.,Department of Physiology.,Institute for Health Policy, Management, and Evaluation.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Institute of Medical Science.,Department of Physiology
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science.,Department of Physiology.,Department of Critical Care Medicine, Hospital for Sick Children, and.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada; and
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine.,Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Modesto I Alapont V, Medina Villanueva A, Del Villar Guerra P, Camilo C, Fernández-Ureña S, Gordo-Vidal F, Khemani R. OLA strategy for ARDS: Its effect on mortality depends on achieved recruitment (PaO 2/FiO 2) and mechanical power. Systematic review and meta-analysis with meta-regression. Med Intensiva 2021; 45:S0210-5691(21)00075-9. [PMID: 34103170 DOI: 10.1016/j.medin.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The "Open Lung Approach" (OLA), that includes high levels of positive end-expiratory pressure coupled with limited tidal volumes, is considered optimal for adult patients with ARDS. However, many previous meta-analyses have shown only marginal benefits of OLA on mortality but with statistical heterogeneity. It is crucial to identify the most likely moderators of this effect. To determine the effect of OLA strategy on mortality of ventilated ARDS patients. We hypothesized that the degree of recruitment achieved in the control group (PaO2/FiO2 ratio on day 3 of ventilation), and the difference in Mechanical Power (MP) or Driving Pressure (DP) between experimental and control groups will be the most likely sources of heterogeneity. DESIGN A Systematic Review and Meta-analysis was performed according to PRISMA statement and registered in PROSPERO database. We searched only for randomized controlled trials (RCTs). GRADE guidelines were used for rating the quality of evidence. Publication bias was assessed. For the Meta-analysis, we used a Random Effects Model. Sources of heterogeneity were explored with Meta-Regression, using a priori proposed set of possible moderators. For model comparison, Akaike's Information Criterion with the finite sample correction (AICc) was used. SETTING Not applicable. PATIENTS Fourteen RCTs were included in the study. INTERVENTIONS Not applicable. MAIN VARIABLES OF INTEREST Not applicable. RESULTS Evidence of publication bias was detected, and quality of evidence was downgraded. Pooled analysis did not show a significant difference in the 28-day mortality between OLA strategy and control groups. Overall risk of bias was low. The analysis detected statistical heterogeneity. The two "best" explicative meta-regression models were those that used control PaO2/FiO2 on day 3 and difference in MP between experimental and control groups. The DP and MP models were highly correlated. CONCLUSIONS There is no clear benefit of OLA strategy on mortality of ARDS patients, with significant heterogeneity among RCTs. Mortality effect of OLA is mediated by lung recruitment and mechanical power.
Collapse
Affiliation(s)
| | | | - P Del Villar Guerra
- Department of Pediatrics, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - C Camilo
- PICU, Hospital de Santa Maria-Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - S Fernández-Ureña
- Urgencias Pediátricas, Complejo Hospitalario Universitario Materno Insular Las Palmas, Universidad de Las Palmas, Las Palmas de Gran Canaria, Spain
| | - F Gordo-Vidal
- ICU, Hospital del Henares, Grupo de Investigación en Patología Crítica de la Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - R Khemani
- PICU, Children's Hospital Los Angeles, California, USA
| |
Collapse
|
9
|
Safety and Outcomes of Prolonged Usual Care Prone Position Mechanical Ventilation to Treat Acute Coronavirus Disease 2019 Hypoxemic Respiratory Failure. Crit Care Med 2021; 49:490-502. [PMID: 33405409 DOI: 10.1097/ccm.0000000000004818] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Prone position ventilation is a potentially life-saving ancillary intervention but is not widely adopted for coronavirus disease 2019 or acute respiratory distress syndrome from other causes. Implementation of lung-protective ventilation including prone positioning for coronavirus disease 2019 acute respiratory distress syndrome is limited by isolation precautions and personal protective equipment scarcity. We sought to determine the safety and associated clinical outcomes for coronavirus disease 2019 acute respiratory distress syndrome treated with prolonged prone position ventilation without daily repositioning. DESIGN Retrospective single-center study. SETTING Community academic medical ICU. PATIENTS Sequential mechanically ventilated patients with coronavirus disease 2019 acute respiratory distress syndrome. INTERVENTIONS Lung-protective ventilation and prolonged protocolized prone position ventilation without daily supine repositioning. Supine repositioning was performed only when Fio2 less than 60% with positive end-expiratory pressure less than 10 cm H2O for greater than or equal to 4 hours. MEASUREMENTS AND MAIN RESULTS Primary safety outcome: proportion with pressure wounds by Grades (0-4). Secondary outcomes: hospital survival, length of stay, rates of facial and limb edema, hospital-acquired infections, device displacement, and measures of lung mechanics and oxygenation. Eighty-seven coronavirus disease 2019 patients were mechanically ventilated. Sixty-one were treated with prone position ventilation, whereas 26 did not meet criteria. Forty-two survived (68.9%). Median (interquartile range) time from intubation to prone position ventilation was 0.28 d (0.11-0.80 d). Total prone position ventilation duration was 4.87 d (2.08-9.97 d). Prone position ventilation was applied for 30.3% (18.2-42.2%) of the first 28 days. Pao2:Fio2 diverged significantly by day 3 between survivors 147 (108-164) and nonsurvivors 107 (85-146), mean difference -9.632 (95% CI, -48.3 to 0.0; p = 0·05). Age, driving pressure, day 1, and day 3 Pao2:Fio2 were predictive of time to death. Thirty-eight (71.7%) developed ventral pressure wounds that were associated with prone position ventilation duration and day 3 Sequential Organ Failure Assessment. Limb weakness occurred in 58 (95.1%) with brachial plexus palsies in five (8.2%). Hospital-acquired infections other than central line-associated blood stream infections were infrequent. CONCLUSIONS Prolonged prone position ventilation was feasible and relatively safe with implications for wider adoption in treating critically ill coronavirus disease 2019 patients and acute respiratory distress syndrome of other etiologies.
Collapse
|
10
|
Xin Y, Cereda M, Hamedani H, Martin KT, Tustison NJ, Pourfathi M, Kadlecek S, Siddiqui S, Amzajerdian F, Connell M, Abate N, Kajanaku A, Duncan I, Gee JC, Rizi RR. Positional Therapy and Regional Pulmonary Ventilation. Anesthesiology 2020; 133:1093-1105. [PMID: 32773690 PMCID: PMC7572577 DOI: 10.1097/aln.0000000000003509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prone ventilation redistributes lung inflation along the gravitational axis; however, localized, nongravitational effects of body position are less well characterized. The authors hypothesize that positional inflation improvements follow both gravitational and nongravitational distributions. This study is a nonoverlapping reanalysis of previously published large animal data. METHODS Five intubated, mechanically ventilated pigs were imaged before and after lung injury by tracheal injection of hydrochloric acid (2 ml/kg). Computed tomography scans were performed at 5 and 10 cm H2O positive end-expiratory pressure (PEEP) in both prone and supine positions. All paired prone-supine images were digitally aligned to each other. Each unit of lung tissue was assigned to three clusters (K-means) according to positional changes of its density and dimensions. The regional cluster distribution was analyzed. Units of tissue displaying lung recruitment were mapped. RESULTS We characterized three tissue clusters on computed tomography: deflation (increased tissue density and contraction), limited response (stable density and volume), and reinflation (decreased density and expansion). The respective clusters occupied (mean ± SD including all studied conditions) 29.3 ± 12.9%, 47.6 ± 11.4%, and 23.1 ± 8.3% of total lung mass, with similar distributions before and after lung injury. Reinflation was slightly greater at higher PEEP after injury. Larger proportions of the reinflation cluster were contained in the dorsal versus ventral (86.4 ± 8.5% vs. 13.6 ± 8.5%, P < 0.001) and in the caudal versus cranial (63.4 ± 11.2% vs. 36.6 ± 11.2%, P < 0.001) regions of the lung. After injury, prone positioning recruited 64.5 ± 36.7 g of tissue (11.4 ± 6.7% of total lung mass) at lower PEEP, and 49.9 ± 12.9 g (8.9 ± 2.8% of total mass) at higher PEEP; more than 59.0% of this recruitment was caudal. CONCLUSIONS During mechanical ventilation, lung reinflation and recruitment by the prone positioning were primarily localized in the dorso-caudal lung. The local effects of positioning in this lung region may determine its clinical efficacy. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Abate
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Agi Kajanaku
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Dalla Corte F, Mauri T, Spinelli E, Lazzeri M, Turrini C, Albanese M, Abbruzzese C, Lissoni A, Galazzi A, Eronia N, Bronco A, Maffezzini E, Pesenti A, Foti G, Bellani G, Grasselli G. Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography. Minerva Anestesiol 2020; 86:1057-1064. [DOI: 10.23736/s0375-9393.20.14130-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Perchiazzi G, Pellegrini M, Chiodaroli E, Urits I, Kaye AD, Viswanath O, Varrassi G, Puntillo F. The use of positive end expiratory pressure in patients affected by COVID-19: Time to reconsider the relation between morphology and physiology. Best Pract Res Clin Anaesthesiol 2020; 34:561-567. [PMID: 33004167 PMCID: PMC7367781 DOI: 10.1016/j.bpa.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new disease with different phases that can be catastrophic for subpopulations of patients with cardiovascular and pulmonary disease states at baseline. Appreciation for these different phases and treatment modalities, including manipulation of ventilatory settings and therapeutics, has made it a less lethal disease than when it emerged earlier this year. Different aspects of the disease are still largely unknown. However, laboratory investigation and clinical course of the COVID-19 show that this new disease is not a typical acute respiratory distress syndrome process, especially during the first phase. For this reason, the best strategy to be applied is to treat differently the single phases and to support the single functions of the failing organs as they appear.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Central Intensive Care Unit, Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden.
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden,Central Intensive Care Unit, Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA,Valley Pain Consultants – Envision Physician Services, Phoenix, AZ, USA,University of Arizona College of Medicine-Phoenix, Department of Anesthesiology Phoenix, AZ, USA,Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine (DIM), University of Bari, Italy
| |
Collapse
|
13
|
Yilmaz C, Dane DM, Tustison NJ, Song G, Gee JC, Hsia CCW. In vivo imaging of canine lung deformation: effects of posture, pneumonectomy, and inhaled erythropoietin. J Appl Physiol (1985) 2020; 128:1093-1105. [PMID: 31944885 PMCID: PMC7272757 DOI: 10.1152/japplphysiol.00647.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stresses on the lung impose the major stimuli for developmental and compensatory lung growth and remodeling. We used computed tomography (CT) to noninvasively characterize the factors influencing lobar mechanical deformation in relation to posture, pneumonectomy (PNX), and exogenous proangiogenic factor supplementation. Post-PNX adult canines received weekly inhalations of nebulized nanoparticles loaded with recombinant human erythropoietin (EPO) or control (empty nanoparticles) for 16 wk. Supine and prone CT were performed at two transpulmonary pressures pre- and post-PNX following treatment. Lobar air and tissue volumes, fractional tissue volume (FTV), specific compliance (Cs), mechanical strains, and shear distortion were quantified. From supine to prone, lobar volume and Cs increased while strain and shear magnitudes generally decreased. From pre- to post-PNX, air volume increased less and FTV and Cs increased more in the left caudal (LCa) than in other lobes. FTV increased most in the dependent subpleural regions, and the portion of LCa lobe that expanded laterally wrapping around the mediastinum. Supine deformation was nonuniform pre- and post-PNX; strains and shear were most pronounced in LCa lobe and declined when prone. Despite nonuniform regional expansion and deformation, post-PNX lobar mechanics were well preserved compared with pre-PNX because of robust lung growth and remodeling establishing a new mechanical equilibrium. EPO treatment eliminated posture-dependent changes in FTV, accentuated the post-PNX increase in FTV, and reduced FTV heterogeneity without altering absolute air or tissue volumes, consistent with improved microvascular blood volume distribution and modestly enhanced post-PNX alveolar microvascular reserves.NEW & NOTEWORTHY Mechanical stresses on the lung impose the major stimuli for lung growth. We used computed tomography to image deformation of the lung in relation to posture, loss of lung units, and inhalational delivery of the growth promoter erythropoietin. Following loss of one lung in adult large animals, the remaining lung expanded and grew while retaining near-normal mechanical properties. Inhalation of erythropoietin promoted more uniform distribution of blood volume within the remaining lung.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Gang Song
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Scaramuzzo G, Ball L, Pino F, Ricci L, Larsson A, Guérin C, Pelosi P, Perchiazzi G. Influence of Positive End-Expiratory Pressure Titration on the Effects of Pronation in Acute Respiratory Distress Syndrome: A Comprehensive Experimental Study. Front Physiol 2020; 11:179. [PMID: 32226390 PMCID: PMC7080860 DOI: 10.3389/fphys.2020.00179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Prone position can reduce mortality in acute respiratory distress syndrome (ARDS), but several studies found variable effects on oxygenation and lung mechanics. It is unclear whether different positive end-expiratory pressure (PEEP) titration techniques modify the effect of prone position. We tested, in an animal model of ARDS, if the PEEP titration method may influence the effect of prone position on oxygenation and lung protection. In a crossover study in 10 piglets with a two-hit injury ARDS model, we set the "best PEEP" according to the ARDS Network low-PEEP table (BPARDS) or targeting the lowest transpulmonary driving pressure (BPDPL). We measured gas exchange, lung mechanics, aeration, ventilation, and perfusion with computed tomography (CT) and electrical impedance tomography in each position with both PEEP titration techniques. The primary endpoint was the PaO2/FiO2 ratio. Secondary outcomes were lung mechanics, regional distribution of ventilation, regional distribution of perfusion, and homogeneity of strain derived by CT scan. The PaO2/FiO2 ratio increased in prone position when PEEP was set with BPARDS [difference 54 (19-106) mmHg, p = 0.04] but not with BPDPL [difference 17 (-24 to 68) mmHg, p = 0.99]. The transpulmonary driving pressure significantly decreased during prone position with both BPARDS [difference -0.9 (-1.5 to -0.9) cmH2O, p = 0.009] and BPDPL [difference -0.55 (-1.6 to -0.4) cmH2O, p = 0.04]. Pronation homogenized lung regional strain and ventilation and redistributed the ventilation/perfusion ratio along the sternal-to-vertebral gradient. The PEEP titration technique influences the oxygenation response to prone position. However, the lung-protective effects of prone position could be independent of the PEEP titration strategy.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Fabio Pino
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lucia Ricci
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Claude Guérin
- Groupement Hospitalier Centre, Médecine Intensive Réanimation, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM 955 - Eq13, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Anesthesia, Operation and Intensive Care Medicine, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
15
|
Gerard SE, Herrmann J, Kaczka DW, Musch G, Fernandez-Bustamante A, Reinhardt JM. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med Image Anal 2020; 60:101592. [PMID: 31760194 PMCID: PMC6980773 DOI: 10.1016/j.media.2019.101592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022]
Abstract
Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a challenging task due to diffuse opacification in dependent regions which results in little to no contrast at the lung boundary. For segmentation of severely injured lungs, local intensity and texture information, as well as global contextual information, are important factors for consistent inclusion of intrapulmonary structures. In this study, we propose a deep learning framework which uses a novel multi-resolution convolutional neural network (ConvNet) for automated segmentation of lungs in multiple mammalian species with injury models similar to ARDS. The multi-resolution model eliminates the need to tradeoff between high-resolution and global context by using a cascade of low-resolution to high-resolution networks. Transfer learning is used to accommodate the limited number of training datasets. The model was initially pre-trained on human CT images, and subsequently fine-tuned on canine, porcine, and ovine CT images with lung injuries similar to ARDS. The multi-resolution model was compared to both high-resolution and low-resolution networks alone. The multi-resolution model outperformed both the low- and high-resolution models, achieving an overall mean Jacaard index of 0.963 ± 0.025 compared to 0.919 ± 0.027 and 0.950 ± 0.036, respectively, for the animal dataset (N=287). The multi-resolution model achieves an overall average symmetric surface distance of 0.438 ± 0.315 mm, compared to 0.971 ± 0.368 mm and 0.657 ± 0.519 mm for the low-resolution and high-resolution models, respectively. We conclude that the multi-resolution model produces accurate segmentations in severely injured lungs, which is attributed to the inclusion of both local and global features.
Collapse
Affiliation(s)
- Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Guido Musch
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | | | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Barrueta Tenhunen A, Massaro F, Hansson HA, Feinstein R, Larsson A, Larsson A, Perchiazzi G. Does the antisecretory peptide AF-16 reduce lung oedema in experimental ARDS? Ups J Med Sci 2019; 124:246-253. [PMID: 31701794 PMCID: PMC6968528 DOI: 10.1080/03009734.2019.1685029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is an acute inflammatory condition with pulmonary capillary leakage and lung oedema formation. There is currently no pharmacologic treatment for the condition. The antisecretory peptide AF-16 reduces oedema in experimental traumatic brain injury. In this study, we tested AF-16 in an experimental porcine model of ARDS.Methods: Under surgical anaesthesia 12 piglets were subjected to lung lavage followed by 2 hours of injurious ventilation. Every hour for 4 hours, measurements of extravascular lung water (EVLW), mechanics of the respiratory system, and hemodynamics were obtained.Results: There was a statistically significant (p = 0.006, two-way ANOVA) reduction of EVLW in the AF-16 group compared with controls. However, this was not mirrored in any improvement in the wet-to-dry ratio of lung tissue samples, histology, inflammatory markers, lung mechanics, or gas exchange.Conclusions: This pilot study suggests that AF-16 might improve oedema resolution as indicated by a reduction in EVLW in experimental ARDS.
Collapse
Affiliation(s)
| | - Fabrizia Massaro
- Hedenstierna Laboratory, Department of
Surgical Sciences, Uppsala University, Uppsala, Sweden
- Cardiac Anesthesia and Intensive Care, Anthea
Hospital, GVM Care & Research, Bari, Italy
| | - Hans Arne Hansson
- Institute of Biomedicine, University of
Gothenburg, Göteborg, Sweden
| | - Ricardo Feinstein
- Department of Pathology and Wildlife Diseases,
National Veterinary Institute, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala
University, Uppsala, Sweden
| | - Anders Larsson
- Hedenstierna Laboratory, Department of
Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of
Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Watanabe Y, Galasso M, Watanabe T, Ali A, Qaqish R, Nakajima D, Taniguchi Y, Pipkin M, Caldarone L, Chen M, Kanou T, Summers C, Ramadan K, Zhang Y, Chan H, Waddell TK, Liu M, Keshavjee S, Del Sorbo L, Cypel M. Donor prone positioning protects lungs from injury during warm ischemia. Am J Transplant 2019; 19:2746-2755. [PMID: 30887696 DOI: 10.1111/ajt.15363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/25/2023]
Abstract
A large proportion of controlled donation after circulatory death (cDCD) donor lungs are declined because cardiac arrest does not occur within a suitable time after the withdrawal of life-sustaining therapy. Improved strategies to preserve lungs after asystole may allow the recovery team to arrive after death actually occurs and enable the recovery of lungs from more cDCD donors. The aim of this study was to determine the effect of donor positioning on the quality of lung preservation after cardiac arrest in a cDCD model. Cardiac arrest was induced by withdrawal of ventilation under anesthesia in pigs. After asystole, animals were divided into 2 groups based on body positioning (supine or prone). All animals were subjected to 3 hours of warm ischemia. After the observation period, donor lungs were explanted and preserved at 4°C for 6 hours, followed by 6 hours of physiologic and biological lung assessment under normothermic ex vivo lung perfusion. Donor lungs from the prone group displayed significantly greater quality as reflected by better function during ex vivo lung perfusion, less edema formation, less cell death, and decreased inflammation compared with the supine group. A simple maneuver of donor prone positioning after cardiac arrest significantly improves lung graft preservation and function.
Collapse
Affiliation(s)
- Yui Watanabe
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcos Galasso
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Tatsuaki Watanabe
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert Qaqish
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Daisuke Nakajima
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yohei Taniguchi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mauricio Pipkin
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lindsay Caldarone
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Takashi Kanou
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cara Summers
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Khaled Ramadan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Harley Chan
- Guided Therapeutics, TECHNA Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Scaramuzzo G, Broche L, Pellegrini M, Porra L, Derosa S, Tannoia AP, Marzullo A, Borges JB, Bayat S, Bravin A, Larsson A, Perchiazzi G. The Effect of Positive End-Expiratory Pressure on Lung Micromechanics Assessed by Synchrotron Radiation Computed Tomography in an Animal Model of ARDS. J Clin Med 2019; 8:E1117. [PMID: 31357677 PMCID: PMC6723999 DOI: 10.3390/jcm8081117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH2O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 ± 2.0 at PEEP 12 to 7.6 ± 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 ± 52 at PEEP 12 to 146.4 ± 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Ferrara University, 44121 Ferrara, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Ludovic Broche
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Liisa Porra
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Savino Derosa
- Department of Emergency and Organ Transplant, Bari University, 70124 Bari, Italy
| | | | - Andrea Marzullo
- Department of Emergency and Organ Transplant, Bari University, 70124 Bari, Italy
| | - João Batista Borges
- Centre for Human and Applied Physiological Sciences, Faculty of Sciences and Medicine, King's College, London WC2R 2LS, UK
| | - Sam Bayat
- The European Synchrotron Radiation Facility, 38043 Grenoble, France
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, University of Grenoble Alpes, 38043 Grenoble, France
| | - Alberto Bravin
- The European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden.
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, 75185 Uppsala, Sweden.
| |
Collapse
|
19
|
Scaramuzzo G, Broche L, Pellegrini M, Porra L, Derosa S, Tannoia AP, Marzullo A, Borges JB, Bayat S, Bravin A, Larsson A, Perchiazzi G. Regional Behavior of Airspaces During Positive Pressure Reduction Assessed by Synchrotron Radiation Computed Tomography. Front Physiol 2019; 10:719. [PMID: 31231245 PMCID: PMC6567926 DOI: 10.3389/fphys.2019.00719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The mechanisms of lung inflation and deflation are only partially known. Ventilatory strategies to support lung function rely upon the idea that lung alveoli are isotropic balloons that progressively inflate or deflate and that lung pressure/volume curves derive only by the interplay of critical opening pressures, critical closing pressures, lung history, and position of alveoli inside the lung. This notion has been recently challenged by subpleural microscopy, magnetic resonance, and computed tomography (CT). Phase-contrast synchrotron radiation CT (PC-SRCT) can yield in vivo images at resolutions higher than conventional CT. OBJECTIVES We aimed to assess the numerosity (ASden) and the extension of the surface of airspaces (ASext) in healthy conditions at different volumes, during stepwise lung deflation, in concentric regions of the lung. METHODS The study was conducted in seven anesthetized New Zealand rabbits. They underwent PC-SRCT scans (resolution of 47.7 μm) of the lung at five decreasing positive end expiratory pressure (PEEP) levels of 12, 9, 6, 3, and 0 cmH2O during end-expiratory holds. Three concentric regions of interest (ROIs) of the lung were studied: subpleural, mantellar, and core. The images were enhanced by phase contrast algorithms. ASden and ASext were computed by using the Image Processing Toolbox for MatLab. Statistical tests were used to assess any significant difference determined by PEEP or ROI on ASden and ASext. RESULTS When reducing PEEP, in each ROI the ASden significantly decreased. Conversely, ASext variation was not significant except for the core ROI. In the latter, the angular coefficient of the regression line was significantly low. CONCLUSION The main mechanism behind the decrease in lung volume at PEEP reduction is derecruitment. In our study involving lung regions laying on isogravitational planes and thus equally influenced by gravitational forces, airspace numerosity and extension of surface depend on the local mechanical properties of the lung.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ludovic Broche
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- The European Synchrotron Radiation Facility, Grenoble, France
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, Grenoble Alpes University, Amiens, France
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Liisa Porra
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Helsinki, Finland
| | - Savino Derosa
- Department of Emergency and Organ Transplant, University of Bari Aldo Moro, Bari, Italy
| | | | - Andrea Marzullo
- Department of Emergency and Organ Transplant, University of Bari Aldo Moro, Bari, Italy
| | - Joao Batista Borges
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Human and Applied Physiological Sciences, Faculty of Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sam Bayat
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, Grenoble Alpes University, Amiens, France
| | - Alberto Bravin
- The European Synchrotron Radiation Facility, Grenoble, France
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
20
|
Chagnon-Lessard S, Godin M, Pelling AE. Time dependence of cellular responses to dynamic and complex strain fields. Integr Biol (Camb) 2019; 11:4-15. [PMID: 30778578 DOI: 10.1093/intbio/zyy002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/08/2018] [Indexed: 11/13/2022]
Abstract
Exposing cells to an unconventional sequence of physical cues can reveal subtleties of cellular sensing and response mechanisms. We investigated the mechanoresponse of cyclically stretched fibroblasts under a spatially non-uniform strain field which was subjected to repeated changes in stretching directions over 55 h. A polydimethylsiloxane microfluidic stretcher array optimized for complex staining procedures and imaging was developed to generate biologically relevant strain and strain gradient amplitudes. We demonstrated that cells can successfully reorient themselves repeatedly, as the main cyclical stretching direction is consecutively switched between two perpendicular directions every 11 h. Importantly, from one reorientation to the next, the extent to which cells reorient themselves perpendicularly to the local strain direction progressively decreases, while their tendency to align perpendicularly to the strain gradient direction increases. We demonstrate that these results are consistent with our finding that cellular responses to strains and strain gradients occur on two distinct time scales, the latter being slower. Overall, our results reveal the absence of major irreversible cellular changes that compromise the ability to sense and reorient to changing strain directions under the conditions of this experiment. On the other hand, we show how the history of strain field dynamics can influence the cellular realignment behavior, due to the interplay of complex time-dependent responses.
Collapse
Affiliation(s)
| | - Michel Godin
- Department of Physics, STEM Building 150 Louis Pasteur, Ottawa, Canada.,Department of Mechanical Engineering, Site Building, 800 King Edward Avenue, University of Ottawa, ON, Canada.,Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, ON, Canada
| | - Andrew E Pelling
- Department of Physics, STEM Building 150 Louis Pasteur, Ottawa, Canada.,Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, Canada.,SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Xin Y, Cereda M, Hamedani H, Pourfathi M, Siddiqui S, Meeder N, Kadlecek S, Duncan I, Profka H, Rajaei J, Tustison NJ, Gee JC, Kavanagh BP, Rizi RR. Unstable Inflation Causing Injury. Insight from Prone Position and Paired Computed Tomography Scans. Am J Respir Crit Care Med 2018; 198:197-207. [PMID: 29420904 PMCID: PMC6058981 DOI: 10.1164/rccm.201708-1728oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/08/2018] [Indexed: 01/16/2023] Open
Abstract
RATIONALE It remains unclear how prone positioning improves survival in acute respiratory distress syndrome. Using serial computed tomography (CT), we previously reported that "unstable" inflation (i.e., partial aeration with large tidal density swings, indicating increased local strain) is associated with injury progression. OBJECTIVES We prospectively tested whether prone position contains the early propagation of experimental lung injury by stabilizing inflation. METHODS Injury was induced by tracheal hydrochloric acid in rats; after randomization to supine or prone position, injurious ventilation was commenced using high tidal volume and low positive end-expiratory pressure. Paired end-inspiratory (EI) and end-expiratory (EE) CT scans were acquired at baseline and hourly up to 3 hours. Each sequential pair (EI, EE) of CT images was superimposed in parametric response maps to analyze inflation. Unstable inflation was then measured in each voxel in both dependent and nondependent lung. In addition, five pigs were imaged (EI and EE) prone versus supine, before and (1 hour) after hydrochloric acid aspiration. MEASUREMENTS AND MAIN RESULTS In rats, prone position limited lung injury propagation and increased survival (11/12 vs. 7/12 supine; P = 0.01). EI-EE densities, respiratory mechanics, and blood gases deteriorated more in supine versus prone rats. At baseline, more voxels with unstable inflation occurred in dependent versus nondependent regions when supine (41 ± 6% vs. 18 ± 7%; P < 0.01) but not when prone. In supine pigs, unstable inflation predominated in dorsal regions and was attenuated by prone positioning. CONCLUSIONS Prone position limits the radiologic progression of early lung injury. Minimizing unstable inflation in this setting may alleviate the burden of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology and
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Natalie Meeder
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia; and
| | | | - Brian P. Kavanagh
- Department of Critical Care Medicine and
- Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Ann Am Thorac Soc 2018; 14:S261-S270. [PMID: 28985479 DOI: 10.1513/annalsats.201704-345ot] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE The American Thoracic Society/European Society for Intensive Care Medicine/Society of Critical Care Medicine guidelines on mechanical ventilation in adult patients with acute respiratory distress syndrome (ARDS) provide treatment recommendations derived from a thorough analysis of the clinical evidence on six clinical interventions. However, each of the recommendations contains areas of uncertainty and controversy, which may affect their appropriate clinical application. OBJECTIVES To provide a critical review of the experimental evidence surrounding the pathophysiology of ventilator-induced lung injury and to help clinicians apply the clinical recommendations to individual patients. METHODS We conducted a literature search and narrative review. RESULTS A large number of experimental studies have been performed with the aim of improving understanding of the pathophysiological effects of mechanical ventilation. These studies have formed the basis for the design of many clinical trials. Translational research has fundamentally advanced understanding of the mechanisms of ventilator-induced lung injury, thus informing the design of interventions that improve survival in patients with ARDS. CONCLUSIONS Because daily management of patients with ARDS presents the challenge of competing considerations, clinicians should consider the mechanism of ventilator-induced lung injury, as well as the rationale for interventions designed to mitigate it, when applying evidence-based recommendations at the bedside.
Collapse
|
23
|
Chagnon-Lessard S, Jean-Ruel H, Godin M, Pelling AE. Cellular orientation is guided by strain gradients. Integr Biol (Camb) 2018; 9:607-618. [PMID: 28534911 DOI: 10.1039/c7ib00019g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strain-induced reorientation response of cyclically stretched cells has been well characterized in uniform strain fields. In the present study, we comprehensively analyse the behaviour of human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. Our results indicate that the strain gradient amplitude and direction regulate cell reorientation through a coordinated gradient avoidance response. We provide critical evidence that strain gradient is a key physical cue that can guide cell organization. Specifically, our work suggests that cells are able to pinpoint the location under the cell of multiple physical cues and integrate this information (strain and strain gradient amplitudes and directions), resulting in a coordinated response. To gain insight into the underlying mechanosensing processes, we studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density. These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance.
Collapse
Affiliation(s)
- Sophie Chagnon-Lessard
- Department of Physics, Center for Interdisciplinary Nanophysics, University of Ottawa, 598 King Edward, Ottawa, ON K1N 6N5, Canada.
| | | | | | | |
Collapse
|
24
|
Abstract
The management of the acute respiratory distress syndrome (ARDS) patient is fundamental to the field of intensive care medicine, and it presents unique challenges owing to the specialized mechanical ventilation techniques that such patients require. ARDS is a highly lethal disease, and there is compelling evidence that mechanical ventilation itself, if applied in an injurious fashion, can be a contributor to ARDS mortality. Therefore, it is imperative for any clinician central to the care of ARDS patients to understand the fundamental framework that underpins the approach to mechanical ventilation in this special scenario. The current review summarizes the major components of the mechanical ventilation strategy as it applies to ARDS.
Collapse
Affiliation(s)
- Oleg Epelbaum
- a Division of Pulmonary, Critical Care, and Sleep Medicine , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- b Division of Cardiology , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| |
Collapse
|
25
|
Henderson WR, Molgat-Seon Y, Vos W, Lipson R, Ferreira F, Kirby M, Holsbeke CV, Dominelli PB, Griesdale DEG, Sekhon M, Coxson HO, Mayo J, Sheel AW. Functional respiratory imaging, regional strain, and expiratory time constants at three levels of positive end expiratory pressure in an ex vivo pig model. Physiol Rep 2016; 4:e13059. [PMID: 27923979 PMCID: PMC5357821 DOI: 10.14814/phy2.13059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 12/24/2022] Open
Abstract
Heterogeneity in regional end expiratory lung volume (EELV) may lead to variations in regional strain (ε). High ε levels have been associated with ventilator-associated lung injury (VALI). While both whole lung and regional EELV may be affected by changes in positive end-expiratory pressure (PEEP), regional variations are not revealed by conventional respiratory system measurements. Differential rates of deflation of adjacent lung units due to regional variation in expiratory time constants (τE) may create localized regions of ε that are significantly greater than implied by whole lung measures. We used functional respiratory imaging (FRI) in an ex vivo porcine lung model to: (i) demonstrate that computed tomography (CT)-based imaging studies can be used to assess global and regional values of ε and τE and, (ii) demonstrate that the manipulation of PEEP will cause measurable changes in total and regional ε and τE values. Our study provides three insights into lung mechanics. First, image-based measurements reveal egional variation that cannot be detected by traditional methods such as spirometry. Second, the manipulation of PEEP causes global and regional changes in R, E, ε and τE values. Finally, regional ε and τE were correlated in several lobes, suggesting the possibility that regional τE could be used as a surrogate marker for regional ε.
Collapse
Affiliation(s)
- William R Henderson
- Division of Critical Care Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | - Miranda Kirby
- Radiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Paolo B Dominelli
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald E G Griesdale
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mypinder Sekhon
- Division of Critical Care Medicine Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Harvey O Coxson
- Centre for Heart Lung Innovation St Paul's Hospital University of British Columbia, Vancouver, British Columbia, Canada
| | - John Mayo
- Department of Radiology Vancouver General Hospital University of British Columbia, Vancouver, British Columbia, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Monitoring of total positive end-expiratory pressure during mechanical ventilation by artificial neural networks. J Clin Monit Comput 2016; 31:551-559. [PMID: 27067075 DOI: 10.1007/s10877-016-9874-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (V'AW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland-Altman method. Bland Altman analysis of estimation error by ANN showed -0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment.
Collapse
|
27
|
Effects of superimposed tissue weight on regional compliance of injured lungs. Respir Physiol Neurobiol 2016; 228:16-24. [PMID: 26976688 DOI: 10.1016/j.resp.2016.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (VREG) and local transpulmonary pressure (PTP,REG) maps of the lung. Purpose of this study is to assess the distribution of VREG vs PTP,REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPs) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level VREG vs PTP,REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that VREG vs PTP,REG curves derived from different anatomical planes (p-values<1.4E-3), exposed to different PEEPs (p-values<1.5E-5) or subtending different lung status (p-values<3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury.
Collapse
|
28
|
Hurtado DE, Villarroel N, Retamal J, Bugedo G, Bruhn A. Improving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:580-588. [PMID: 26441413 DOI: 10.1109/tmi.2015.2483744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tissue deformation plays an important role in lung physiology, as lung parenchyma largely deforms during spontaneous ventilation. However, excessive regional deformation may lead to lung injury, as observed in patients undergoing mechanical ventilation. Thus, the accurate estimation of regional strain has recently received great attention in the intensive care community. In this work, we assess the accuracy of regional strain maps computed from direct differentiation of B-Spline (BS) interpolations, a popular technique employed in non-rigid registration of lung computed tomography (CT) images. We show that, while BS-based registration methods give excellent results for the deformation transformation, the strain field directly computed from BS derivatives results in predictions that largely oscillate, thus introducing important errors that can even revert the sign of strain. To alleviate such spurious behavior, we present a novel finite-element (FE) method for the regional strain analysis of lung CT images. The method follows from a variational strain recovery formulation, and delivers a continuous approximation to the strain field in arbitrary domains. From analytical benchmarks, we show that the FE method results in errors that are a fraction of those found for the BS method, both in an average and pointwise sense. The application of the proposed FE method to human lung CT images results in 3D strain maps are heterogeneous and smooth, showing high consistency with specific ventilation maps reported in the literature. We envision that the proposed FE method will considerably improve the accuracy of image-based biomechanical analysis, making it reliable enough for routine medical applications.
Collapse
|
29
|
Wang HB, Yen CW, Liang JT, Wang Q, Liu GZ, Song R. A robust electrode configuration for bioimpedance measurement of respiration. JOURNAL OF HEALTHCARE ENGINEERING 2015; 5:313-27. [PMID: 25193370 DOI: 10.1260/2040-2295.5.3.313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Electrode configuration is an important issue in the continuous measurement of respiration using impedance pneumography (IP). The robust configuration is usually confirmed by comparing the amplitude of the IP signals acquired with different electrode configurations, while the relative change in waveform and the effects of body posture and respiratory pattern are ignored. In this study, the IP signals and respiratory volume are simultaneously acquired from 8 healthy subjects in supine, left lying, right lying and prone postures, and the subjects are asked to perform four respiratory patterns including free breathing, thoracic breathing, abdominal breathing and apnea. The IP signals are acquired with four different chest electrode configurations, and the volume are measured using pneumotachograph (PNT). Differences in correlation and absolute deviation between the IP-derived and PNT-derived respiratory volume are assessed. The influences of noise, respiratory pattern and body posture on the IP signals of different configurations have significant difference (p < 0.05). The robust electrode configuration is found on the axillary midline, which is suitable for long term respiration monitoring.
Collapse
Affiliation(s)
- Hong-Bin Wang
- School of Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen-Wen Yen
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Tao Liang
- School of Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qian Wang
- School of Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guan-Zheng Liu
- School of Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Rong Song
- School of Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static? Curr Opin Crit Care 2014; 20:33-8. [PMID: 24247615 DOI: 10.1097/mcc.0000000000000047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To discuss the relative role of dynamic and static tissue deformation (strain) generated by inflation of tidal volume and application of positive end-expiratory pressure in the pathogenesis of ventilator-induced lung injury. RECENT FINDINGS Cellular, animal and human studies strongly suggest that dynamic strain is more injurious than static strain, at least when total lung capacity is not exceeded. One possible explanation for these findings is pulmonary viscoelasticity. Large and rapid dynamic deformations generate high and unevenly distributed tensions, internal frictions and energy dissipation in the form of heat, posing microstructure at risk for rupture. The most important strategy to protect the lung may thus be limiting the tidal volume. Increasing static strain may add benefit by diminishing inhomogeneities (stress raisers), especially in the already severely injured lung. On the other side, however, it may adversely affect the haemodynamics. SUMMARY Large lung dynamic strain is more harmful than equivalent static strain.
Collapse
|
31
|
Chen X, Zielinski R, Ghadiali SN. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension. J Biomech Eng 2014; 136:101007. [PMID: 25068642 PMCID: PMC4151161 DOI: 10.1115/1.4028097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 07/20/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Rachel Zielinski
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Samir N. Ghadiali
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
- Department of Internal Medicine,Division of Pulmonary, Allergy, Critical Care andSleep Medicine,Dorothy M. Davis Heart &Lung Research Institute,The Ohio State University,Columbus, OH 43210e-mail:
| |
Collapse
|
32
|
Perchiazzi G, Rylander C, Derosa S, Pellegrini M, Pitagora L, Polieri D, Vena A, Tannoia A, Fiore T, Hedenstierna G. Regional distribution of lung compliance by image analysis of computed tomograms. Respir Physiol Neurobiol 2014; 201:60-70. [PMID: 25026158 DOI: 10.1016/j.resp.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Computed tomography (CT) can yield quantitative information about volume distribution in the lung. By combining information provided by CT and respiratory mechanics, this study aims at quantifying regional lung compliance (CL) and its distribution and homogeneity in mechanically ventilated pigs. The animals underwent inspiratory hold maneuvers at 12 lung volumes with simultaneous CT exposure at two end-expiratory pressure levels and before and after acute lung injury (ALI) by oleic acid administration. CL and the sum of positive voxel compliances from CT were linearly correlated; negative compliance areas were found. A remarkably heterogeneous distribution of voxel compliance was found in the injured lungs. As the lung inflation increased, the homogeneity increased in healthy lungs but decreased in injured lungs. Image analysis brought novel findings regarding spatial homogeneity of compliance, which increases in ALI but not in healthy lungs by applying PEEP after a recruitment maneuver.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- Emergency and Organ Transplant, Bari University, Bari, Italy; Medical Sciences - Clinical Physiology, Uppsala University, Uppsala, Sweden.
| | - Christian Rylander
- Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Savino Derosa
- Emergency and Organ Transplant, Bari University, Bari, Italy
| | | | | | - Debora Polieri
- Emergency and Organ Transplant, Bari University, Bari, Italy
| | - Antonio Vena
- Intensive Care Unit, SS Annunziata Hospital, Taranto, Italy
| | - Angela Tannoia
- Emergency and Organ Transplant, Bari University, Bari, Italy
| | - Tommaso Fiore
- Emergency and Organ Transplant, Bari University, Bari, Italy
| | - Göran Hedenstierna
- Medical Sciences - Clinical Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Stress et strain : application au cours du syndrome de détresse respiratoire aiguë. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0906-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H, Venegas JG, Vidal Melo MF. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*. Crit Care Med 2014; 42:e491-500. [PMID: 24758890 PMCID: PMC4123638 DOI: 10.1097/ccm.0000000000000346] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to 1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans and 2) determine how this strain-inflammation relationship is affected by endotoxemia. DESIGN Interventional animal study. SETTING Experimental laboratory and PET facility. SUBJECTS Eighteen 2- to 4-month-old sheep. INTERVENTIONS Three groups of sheep (n = 6) were mechanically ventilated to the same plateau pressure (30-32 cm H2O) with high-strain (VT = 18.2 ± 6.5 mL/kg, positive end-expiratory pressure = 0), high-strain plus IV lipopolysaccharide (VT = 18.4 ± 4.2 mL/kg, positive end-expiratory pressure = 0), or low-strain plus lipopolysaccharide (VT = 8.1 ± 0.2 mL/kg, positive end-expiratory pressure = 17 ± 3 cm H2O). At baseline, we acquired respiratory-gated PET scans of inhaled NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest. After 3 hours of mechanical ventilation, dynamic [F]fluoro-2-deoxy-D-glucose scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same regions of interest. MEASUREMENTS AND MAIN RESULTS Baseline regional tidal strain had a significant effect on [F]fluoro-2-deoxy-D-glucose net uptake rate Ki in high-strain lipopolysaccharide (p = 0.036) and on phosphorylation rate k3 in high-strain (p = 0.027) and high-strain lipopolysaccharide (p = 0.004). Lipopolysaccharide exposure increased the k3-tidal strain slope three-fold (p = 0.009), without significant lung edema. The low-strain lipopolysaccharide group showed lower baseline regional tidal strain (0.33 ± 0.17) than high-strain (1.21 ± 0.62; p < 0.001) or high-strain lipopolysaccharide (1.26 ± 0.44; p < 0.001) and lower k3 (p < 0.001) and Ki (p < 0.05) than high-strain lipopolysaccharide. CONCLUSIONS Local inflammation develops proportionally to regional tidal strain during early lung injury. The regional inflammatory effect of strain is greatly amplified by IV lipopolysaccharide. Tidal strain enhances local [F]fluoro-2-deoxy-D-glucose uptake primarily by increasing the rate of intracellular [F]fluoro-2-deoxy-D-glucose phosphorylation.
Collapse
Affiliation(s)
- Tyler J. Wellman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eduardo L.V. Costa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Guido Musch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - R. Scott Harris
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Cornejo RA, Díaz JC, Tobar EA, Bruhn AR, Ramos CA, González RA, Repetto CA, Romero CM, Gálvez LR, Llanos O, Arellano DH, Neira WR, Díaz GA, Zamorano AJ, Pereira GL. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2014; 188:440-8. [PMID: 23348974 DOI: 10.1164/rccm.201207-1279oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Positive end-expiratory pressure (PEEP) and prone positioning may induce lung recruitment and affect alveolar dynamics in acute respiratory distress syndrome (ARDS). Whether there is interdependence between the effects of PEEP and prone positioning on these variables is unknown. OBJECTIVES To determine the effects of high PEEP and prone positioning on lung recruitment, cyclic recruitment/derecruitment, and tidal hyperinflation and how these effects are influenced by lung recruitability. METHODS Mechanically ventilated patients (Vt 6 ml/kg ideal body weight) underwent whole-lung computed tomography (CT) during breath-holding sessions at airway pressures of 5, 15, and 45 cm H2O and Cine-CTs on a fixed thoracic transverse slice at PEEP 5 and 15 cm H2O. CT images were repeated in supine and prone positioning. A recruitment maneuver at 45 cm H2O was performed before each PEEP change. Lung recruitability was defined as the difference in percentage of nonaerated tissue between 5 and 45 cm H2O. Cyclic recruitment/de-recruitment and tidal hyperinflation were determined as tidal changes in percentage of nonaerated and hyperinflated tissue, respectively. MEASUREMENTS AND MAIN RESULTS Twenty-four patients with ARDS were included. Increasing PEEP from 5 to 15 cm H2O decreased nonaerated tissue (501 ± 201 to 322 ± 132 grams; P < 0.001) and increased tidal-hyperinflation (0.41 ± 0.26 to 0.57 ± 0.30%; P = 0.004) in supine. Prone positioning further decreased nonaerated tissue (322 ± 132 to 290 ± 141 grams; P = 0.028) and reduced tidal hyperinflation observed at PEEP 15 in supine patients (0.57 ± 0.30 to 0.41 ± 0.22%). Cyclic recruitment/de-recruitment only decreased when high PEEP and prone positioning were applied together (4.1 ± 1.9 to 2.9 ± 0.9%; P = 0.003), particularly in patients with high lung recruitability. CONCLUSIONS Prone positioning enhances lung recruitment and decreases alveolar instability and hyperinflation observed at high PEEP in patients with ARDS.
Collapse
Affiliation(s)
- Rodrigo A Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med 2014; 188:1286-93. [PMID: 24134414 DOI: 10.1164/rccm.201308-1532ci] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the prone position, computed tomography scan densities redistribute from dorsal to ventral as the dorsal region tends to reexpand while the ventral zone tends to collapse. Although gravitational influence is similar in both positions, dorsal recruitment usually prevails over ventral derecruitment, because of the need for the lung and its confining chest wall to conform to the same volume. The final result of proning is that the overall lung inflation is more homogeneous from dorsal to ventral than in the supine position, with more homogeneously distributed stress and strain. As the distribution of perfusion remains nearly constant in both postures, proning usually improves oxygenation. Animal experiments clearly show that prone positioning delays or prevents ventilation-induced lung injury, likely due in large part to more homogeneously distributed stress and strain. Over the last 15 years, five major trials have been conducted to compare the prone and supine positions in acute respiratory distress syndrome, regarding survival advantage. The sequence of trials enrolled patients who were progressively more hypoxemic; exposure to the prone position was extended from 8 to 17 hours/day, and lung-protective ventilation was more rigorously applied. Single-patient and meta-analyses drawing from the four major trials showed significant survival benefit in patients with PaO2/FiO2 lower than 100. The latest PROSEVA (Proning Severe ARDS Patients) trial confirmed these benefits in a formal randomized study. The bulk of data indicates that in severe acute respiratory distress syndrome, carefully performed prone positioning offers an absolute survival advantage of 10-17%, making this intervention highly recommended in this specific population subset.
Collapse
Affiliation(s)
- Luciano Gattinoni
- 1 Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Derosa S, Borges JB, Segelsjö M, Tannoia A, Pellegrini M, Larsson A, Perchiazzi G, Hedenstierna G. Reabsorption atelectasis in a porcine model of ARDS: regional and temporal effects of airway closure, oxygen, and distending pressure. J Appl Physiol (1985) 2013; 115:1464-73. [DOI: 10.1152/japplphysiol.00763.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Little is known about the small airways dysfunction in acute respiratory distress syndrome (ARDS). By computed tomography (CT) imaging in a porcine experimental model of early ARDS, we aimed at studying the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction (FIO2). Six piglets were mechanically ventilated under anesthesia and muscle relaxation. Four animals underwent saline-washout lung injury, and two served as healthy controls. Beyond the site of assumed airway closure, gas was expected to be trapped in the injured lungs, promoting alveolar collapse. This was tested by ventilation with an FIO2 of 0.25 and 1 in sequence during low and high distending pressures. In the most dependent regions, the gas/tissue ratio of end-expiratory CT, after previous ventilation with FIO2 0.25 low-driving pressure, was significantly higher than after ventilation with FIO2 1; with high-driving pressure, this difference disappeared. Also, significant reduction in poorly aerated tissue and a correlated increase in nonaerated tissue in end-expiratory CT with FIO2 1 low-driving pressure were seen. When high-driving pressure was applied or after previous ventilation with FIO2 0.25 and low-driving pressure, this pattern disappeared. The findings suggest that low distending pressures produce widespread dependent airway closure and with high FIO2, subsequent absorption atelectasis. Low FIO2 prevented alveolar collapse during the study period because of slow absorption of gas behind closed airways.
Collapse
Affiliation(s)
- Savino Derosa
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
| | - João Batista Borges
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
- Pulmonary Divison, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monica Segelsjö
- Department of Radiology, Oncology and Radiation Science, Section of Radiology, Uppsala University, Uppsala, Sweden; and
| | - Angela Tannoia
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
| | | | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
| | - Göran Hedenstierna
- Hedenstierna Laboratory, Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Kuprat A, Kabilan S, Carson J, Corley R, Einstein D. A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling. JOURNAL OF COMPUTATIONAL PHYSICS 2013; 244:10.1016/j.jcp.2012.10.021. [PMID: 24347680 PMCID: PMC3856712 DOI: 10.1016/j.jcp.2012.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.
Collapse
|
39
|
Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 2013; 41:1046-55. [PMID: 23385096 DOI: 10.1097/ccm.0b013e31827417a6] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Tidal volume (VT) and volume of gas caused by positive end-expiratory pressure (VPEEP) generate dynamic and static lung strains, respectively. Our aim was to clarify whether different combinations of dynamic and static strains, resulting in the same large global strain, constantly produce lung edema. DESIGN Laboratory investigation. SETTING Animal unit. SUBJECTS Twenty-eight healthy pigs. INTERVENTIONS After lung computed tomography, 20 animals were ventilated for 54 hours at a global strain of 2.5, either entirely dynamic (VT 100% and VPEEP 0%), partly dynamic and partly static (VT 75-50% and VPEEP 25-50%), or mainly static (VT 25% and VPEEP 75%) and then killed. In eight other pigs (VT 25% and VPEEP 75%), VPEEP was abruptly zeroed after 36-54 hours and ventilation continued for 3 hours. MEASUREMENTS AND MAIN RESULTS Edema was diagnosed when final lung weight (balance) exceeded the initial weight (computed tomography). Mortality, lung mechanics, gas exchange, pulmonary histology, and inflammation were evaluated. All animals ventilated with entirely dynamic strain (VT 825±424 mL) developed pulmonary edema (lung weight from 334±38 to 658±99 g, p<0.01), whereas none of those ventilated with mainly static strain (VT 237±21 mL and VPEEP 906±114 mL, corresponding to 19±1 cm H2O of positive end-expiratory pressure) did (from 314±55 to 277±46 g, p=0.65). Animals ventilated with intermediate combinations finally had normal or largely increased lung weight. Smaller dynamic and larger static strains lowered mortality (p<0.01), derangement of lung mechanics (p<0.01), and arterial oxygenation (p<0.01), histological injury score (p=0.03), and bronchoalveolar interleukin-6 concentration (p<0.01). Removal of positive end-expiratory pressure did not result in abrupt increase in lung weight (from 336±36 to 351±77 g, p=0.51). CONCLUSIONS Lung edema forms (possibly as an all-or-none response) depending not only on global strain but also on its components. Large static are less harmful than large dynamic strains, but not because the former merely counteracts fluid extravasation.
Collapse
|
40
|
Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol (1985) 2013; 115:313-24. [PMID: 23620488 DOI: 10.1152/japplphysiol.01531.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.
Collapse
Affiliation(s)
- A Cortney Henderson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Zannin E, Dellaca RL, Kostic P, Pompilio PP, Larsson A, Pedotti A, Hedenstierna G, Frykholm P. Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury. Crit Care 2012; 16:R217. [PMID: 23134702 PMCID: PMC3672594 DOI: 10.1186/cc11858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/23/2012] [Indexed: 11/29/2022] Open
Abstract
Introduction It is well established that during mechanical ventilation of patients with acute respiratory distress syndrome cyclic recruitment/derecruitment and overdistension are potentially injurious for lung tissues. We evaluated whether the forced oscillation technique (FOT) could be used to guide the ventilator settings in order to minimize cyclic lung recruitment/derecruitment and cyclic mechanical stress in an experimental model of acute lung injury. Methods We studied six pigs in which lung injury was induced by bronchoalveolar lavage. The animals were ventilated with a tidal volume of 6 ml/kg. Forced oscillations at 5 Hz were superimposed on the ventilation waveform. Pressure and flow were measured at the tip and at the inlet of the endotracheal tube respectively. Respiratory system reactance (Xrs) was computed from the pressure and flow signals and expressed in terms of oscillatory elastance (EX5). Positive end-expiratory pressure (PEEP) was increased from 0 to 24 cm H2O in steps of 4 cm H2O and subsequently decreased from 24 to 0 in steps of 2 cm H2O. At each PEEP step CT scans and EX5 were assessed at end-expiration and end-inspiration. Results During deflation the relationship between both end-expiratory and end-inspiratory EX5 and PEEP was a U-shaped curve with minimum values at PEEP = 13.4 ± 1.0 cm H2O (mean ± SD) and 13.0 ± 1.0 cm H2O respectively. EX5 was always higher at end-inspiration than at end-expiration, the difference between the average curves being minimal at 12 cm H2O. At this PEEP level, CT did not show any substantial sign of intra-tidal recruitment/derecruitment or expiratory lung collapse. Conclusions Using FOT it was possible to measure EX5 both at end-expiration and at end-inspiration. The optimal PEEP strategy based on end-expiratory EX5 minimized intra-tidal recruitment/derecruitment as assessed by CT, and the concurrent attenuation of intra-tidal variations of EX5 suggests that it may also minimize tidal mechanical stress.
Collapse
|
42
|
|
43
|
Abstract
PURPOSE OF REVIEW To describe the physiological meaning and the clinical application of the lung stress and strain concepts. RECENT FINDINGS The end-inspiratory plateau pressure and ratio of tidal volume/ideal body weight are inadequate surrogates for the end-inspiratory stress (equal to the transpulmonary pressure) and the end-inspiratory strain (change in lung volume relative to the resting volume). For a given plateau pressure or tidal volume/ideal body weight, stress and strain may vary largely due to the variability of chest wall elastance and the resting lung volume. The injurious limits of stress and strain in healthy lungs are reached when stress and strain reach the total lung capacity. This occurs when the resting lung volume (the baby lung in case of acute respiratory distress syndrome) is increased by two-fold to three-fold. As these limits are rarely reached in clinical practice and damage has been reported with stress and strain well below this upper limit, this implies the presence in the lung parenchyma of regions which act as stress raisers or pressure multipliers. These are primarily linked to the inhomogeneous distribution of local stress and strain. SUMMARY End-inspiratory stress and strain, as well as the lung inhomogeneity and the stress raisers, must be taken in account when setting mechanical ventilation.
Collapse
|