1
|
Dial MB, Malek EM, Neblina GA, Cooper AR, Vaslieva NI, Frommer R, Girgis M, Dawn B, McGinnis GR. Effects of time-restricted exercise on activity rhythms and exercise-induced adaptations in the heart. Sci Rep 2024; 14:146. [PMID: 38168503 PMCID: PMC10761674 DOI: 10.1038/s41598-023-50113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms play a crucial role in the regulation of various physiological processes, including cardiovascular function and metabolism. Exercise provokes numerous beneficial adaptations in heart, including physiological hypertrophy, and serves to shift circadian rhythms. This study investigated the impact of time-restricted exercise training on exercise-induced adaptations in the heart and locomotor activity rhythms. Male mice (n = 45) were allocated to perform voluntary, time-restricted exercise in the early active phase (EAP), late active phase (LAP), or remain sedentary (SED) for 6 weeks. Subsequently, mice were allowed 24-h ad libitum access to the running wheel to assess diurnal rhythms in locomotor activity. Heart weight and cross-sectional area were measured at sacrifice, and cardiac protein and gene expression levels were assessed for markers of mitochondrial abundance and circadian clock gene expression. Mice rapidly adapted to wheel running, with EAP mice exhibiting a significantly greater running distance compared to LAP mice. Time-restricted exercise induced a shift in voluntary wheel activity during the 24-h free access period, with the acrophase in activity being significantly earlier in EAP mice compared to LAP mice. Gene expression analysis revealed a higher expression of Per1 in LAP mice. EAP exercise elicited greater cardiac hypertrophy compared to LAP exercise. These findings suggest that the timing of exercise affects myocardial adaptations, with exercise in the early active phase inducing hypertrophy in the heart. Understanding the time-of-day dependent response to exercise in the heart may have implications for optimizing exercise interventions for cardiovascular health.
Collapse
Affiliation(s)
- Michael B Dial
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Elias M Malek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Greco A Neblina
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Austin R Cooper
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Nikoleta I Vaslieva
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Rebecca Frommer
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Graham R McGinnis
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA.
| |
Collapse
|
2
|
Mia S, Sonkar R, Williams L, Latimer MN, Rawnsley DR, Rana S, He J, Dierickx P, Kim T, Xie M, Habegger KM, Kubo M, Zhou L, Thomsen MB, Prabhu SD, Frank SJ, Brookes PS, Lazar MA, Diwan A, Young ME. Novel Roles for the Transcriptional Repressor E4BP4 in Both Cardiac Physiology and Pathophysiology. JACC Basic Transl Sci 2023; 8:1141-1156. [PMID: 37791313 PMCID: PMC10543917 DOI: 10.1016/j.jacbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi Sonkar
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lamario Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary N. Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David R. Rawnsley
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samir Rana
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jin He
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Teayoun Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Masato Kubo
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Kanagawa, Japan
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Morten B. Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Demark
| | - Sumanth D. Prabhu
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart J. Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, Alabama, USA
| | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abhinav Diwan
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Young MJ, Kanki M, Fuller PJ, Yang J. Identifying new cellular mechanisms of mineralocorticoid receptor activation in the heart. J Hum Hypertens 2021; 35:124-130. [PMID: 32733061 DOI: 10.1038/s41371-020-0386-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have expanded our understanding of the actions of the mineralocorticoid receptor (MR) to a diverse array of tissue types that differ substantially from the epithelial cells of the renal nephron. In these cell types the role of the MR has been largely, but not exclusively, defined in terms of pathogenic signalling pathways leading to tissue injury and remodelling. Macrophages and cardiomyocytes are two cell types in which the MR plays a central role in the cardiac tissue response to injury, renovascular hypertension and oxidative stress for example. Macrophages are critical for resolution of tissue injury and wound healing and their pleiotropic actions are central to the development of many forms of heart, renal and vascular disease. The MR in cardiomyocytes is not only essential for the chronotropic and ionotropic actions of mineralocorticoids in the short and longer term, but also for induction of hypertrophic and proinflammatory signalling programs. The present review discusses recent studies, presented at the Aldosterone and Hypertension Satellite of the 15th Asian-Pacific Congress of Hypertension, investigating new mechanisms for MR signalling in these cells and how their dysfunction contributes to the onset and progression of cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia. .,Baker Heart and Diabetes Institute, Melborne, VIC, Australia.
| | - Monica Kanki
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.,Baker Heart and Diabetes Institute, Melborne, VIC, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Hu J, Xue Y, Tang K, Fan J, Du J, Li W, Chen S, Liu C, Ji W, Liang J, Zhuang J, Chen K. The protective effects of hydrogen sulfide on the myocardial ischemia via regulating Bmal1. Biomed Pharmacother 2019; 120:109540. [PMID: 31639648 DOI: 10.1016/j.biopha.2019.109540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To investigate the effect of hydrogen peroxide (H2S) on myocardial clock gene Bmal1 in ischemic cardiomyocytes. MATERIALS & METHODS Quantitative PCR (qPCR) was used to detect the expression of Bmal1 at the mRNA level in H9C2 rat cardiomyocytes. The protein expressions of Bax and Bcl-2, PI3K/Akt, caspase-3 were measured by western blotting. The levels of reactive oxygen species (ROS) were determined by ELISA. RESULTS The expression level of clock gene Bmal1 demonstrated a clock rhythm of periodic oscillation within 24 h. Compared with the control group, H2S treatment maintained the rhythm of the clock gene in ischemic cardiomyocytes and increased the transcription and expression levels of Bmal1. H2S increased cell survival by activating PI3K/Akt signaling pathway, inhibiting mitochondrial apoptosis signaling, and reducing intracellular oxidative stress. PI3K/Akt and Bmal1 were demonstrated to be involved in H2S protection of cardiomyocyte ischemia. Knockout of Bmal1 gene affects the degree of phosphorylation of Akt and Erk proteins, and the level of ROS production, resulting in a decrease in the protective effects of H2S. CONCLUSION The expression level of Bmal1 has effects on the function of cardiomyocytes such as ROS production. The potential mechanism by which H2S regulates clock genes may be related to the effect of clock genes on protein phosphorylation levels in ischemic cardiomyocytes.
Collapse
Affiliation(s)
- Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China; Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Kai Tang
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenfu Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Siyu Chen
- China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu, 211198, China
| | - Chang Liu
- China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu, 211198, China
| | - Wenjin Ji
- Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Jiexian Liang
- Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China.
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Zhang J, Chatham JC, Young ME. Circadian Regulation of Cardiac Physiology: Rhythms That Keep the Heart Beating. Annu Rev Physiol 2019; 82:79-101. [PMID: 31589825 DOI: 10.1146/annurev-physiol-020518-114349] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.
Collapse
Affiliation(s)
- Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA;
| |
Collapse
|
6
|
Fletcher ELK, Kanki M, Morgan J, Ray DW, Delbridge L, Fuller PJ, Clyne CD, Young MJ. Cardiomyocyte transcription is controlled by combined MR and circadian clock signalling. J Endocrinol 2019; 241:JOE-18-0584.R3. [PMID: 30689544 DOI: 10.1530/joe-18-0584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
We previously identified a critical pathogenic role for MR activation in cardiomyocytes that included a potential interaction between the MR and the molecular circadian clock. While glucocorticoid regulation of the circadian clock is undisputed, MR interactions with circadian clock signalling are limited. We hypothesised that the MR influences cardiac circadian clock signalling, and vice versa. 10nM aldosterone or corticosterone regulated CRY 1, PER1, PER2 and ReverbA (NR1D1) gene expression patterns in H9c2 cells over 24hr. MR-dependent regulation of circadian gene promoters containing GREs and E-box sequences was established for CLOCK, Bmal, CRY 1 and CRY2, PER1 and PER2 and transcriptional activators CLOCK and Bmal modulated MR-dependent transcription of a subset of these promoters. We also demonstrated differential regulation of MR target gene expression in hearts of mice 4hr after administration of aldosterone at 8AM versus 8PM. Our data support combined MR regulation of a subset of circadian genes and that endogenous circadian transcription factors CLOCK and Bmal modulate this response. This unsuspected relationship links MR in the heart to circadian rhythmicity at the molecular level and has important implications for the biology of MR signalling in response to aldosterone as well as cortisol. These data are consistent with MR signalling in the brain where, like the heart, it preferentially responds to cortisol. Given the undisputed requirement for diurnal cortisol release in the entrainment of peripheral clocks, the present study highlights the MR as an important mechanism for transducing the circadian actions of cortisol in addition to the GR in the heart.
Collapse
Affiliation(s)
- ELizabeth K Fletcher
- E Fletcher, Sackler School of Graduate Biomedical Sciences, Tuft Medical Centre, Boston, United States
| | - Monica Kanki
- M Kanki, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - James Morgan
- J Morgan, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - David W Ray
- D Ray, Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Lea Delbridge
- L Delbridge, Dept Of Physiology, University of Melbourne, Melbourne, xxx, Australia
| | - Peter James Fuller
- P Fuller, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - Colin D Clyne
- C Clyne , Cancer Drug Discovery, Hudson Institute of Medical Research, Clayton, Australia
| | - Morag J Young
- M Young, Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, 3166, Australia
| |
Collapse
|
7
|
Durgan DJ, Crossland RF, Bryan RM. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. J Cereb Blood Flow Metab 2017; 37:2806-2819. [PMID: 27798273 PMCID: PMC5536790 DOI: 10.1177/0271678x16675879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Circadian clock components oscillate in cells of the cardiovascular system. Disruption of these oscillations has been observed in cardiovascular diseases. We hypothesized that obstructive sleep apnea, which is associated with cerebrovascular diseases, disrupts the cerebrovascular circadian clock and rhythms in vascular function. Apneas were produced in rats during sleep. Following two weeks of sham or obstructive sleep apnea, cerebral arteries were isolated over 24 h for mRNA and functional analysis. mRNA expression of clock genes exhibited 24-h rhythms in cerebral arteries of sham rats (p < 0.05). Interestingly, peak expression of clock genes was significantly lower following obstructive sleep apnea (p < 0.05). Obstructive sleep apnea did not alter clock genes in the heart, or rhythms in locomotor activity. Isolated posterior cerebral arteries from sham rats exhibited a diurnal rhythm in sensitivity to luminally applied ATP, being most responsive at the beginning of the active phase (p < 0.05). This rhythm was absent in arteries from obstructive sleep apnea rats (p < 0.05). Rhythms in ATP sensitivity in sham vessels were absent, and not different from obstructive sleep apnea, following treatment with L-NAME and indomethacin. We conclude that cerebral arteries possess a functional circadian clock and exhibit a diurnal rhythm in vasoreactivity to ATP. Obstructive sleep apnea attenuates these rhythms in cerebral arteries, potentially contributing to obstructive sleep apnea-associated cerebrovascular disease.
Collapse
Affiliation(s)
- David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Randy F Crossland
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| |
Collapse
|
8
|
Chen Y, Zhu D, Yuan J, Han Z, Wang Y, Qian Z, Hou X, Wu T, Zou J. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway. Can J Physiol Pharmacol 2016; 94:1023-32. [PMID: 27376484 DOI: 10.1139/cjpp-2015-0398] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Wuhan Asia Heart Hospital, Hubei, China
| | - Didi Zhu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhonglin Han
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiyong Qian
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Hou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangang Zou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Sengupta S, Yang G, O'Donnell JC, Hinson MD, McCormack SE, Falk MJ, La P, Robinson MB, Williams ML, Yohannes MT, Polyak E, Nakamaru-Ogiso E, Dennery PA. The circadian gene Rev-erbα improves cellular bioenergetics and provides preconditioning for protection against oxidative stress. Free Radic Biol Med 2016; 93:177-189. [PMID: 26855417 DOI: 10.1016/j.freeradbiomed.2016.02.004.the] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 05/28/2023]
Abstract
Diurnal oscillations in the expression of antioxidant genes imply that protection against oxidative stress is circadian-gated. We hypothesized that stabilization of the core circadian gene Rev-erbα (Nr1d1) improves cellular bioenergetics and protects against nutrient deprivation and oxidative stress. Compared to WT, mouse lung fibroblasts (MLG) stably transfected with a degradation resistant Rev-erbα (Ser(55/59) to Asp; hence referred to as SD) had 40% higher protein content, 1.5-fold higher mitochondrial area (confocal microscopy), doubled oxidative phosphorylation by high-resolution respirometry (Oroboros) and were resistant to glucose deprivation for 24h. This resulted from a 4-fold reduction in mitophagy (L3CB co-localized with MitoTracker Red) versus WT. Although PGC1α protein expression was comparable between SD and WT MLG cells, the role of mitochondrial biogenesis in explaining increased mitochondrial mass in SD cells was less clear. Embryonic fibroblasts (MEF) from C57Bl/6-SD transgenic mice, had a 9-fold induction of FoxO1 mRNA and increased mRNA of downstream antioxidant targets heme oxygenase-1 (HO-1), Mn superoxide dismutase and catalase (1.5, 2 fold and 2 fold respectively) versus WT. This allowed the SD cells to survive 1h incubation with 500 µM H2O2 as well as 24h of exposure to 95% O2 and remain attached whereas most WT cells did not. These observations establish a mechanistic link between the metabolic functions of Rev-erbα with mitochondrial homeostasis and protection against oxidative stress.
Collapse
Affiliation(s)
- Shaon Sengupta
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Maurice D Hinson
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J Falk
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ping La
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Monica L Williams
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mekdes T Yohannes
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erzsebet Polyak
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Phyllis A Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Sengupta S, Yang G, O'Donnell JC, Hinson MD, McCormack SE, Falk MJ, La P, Robinson MB, Williams ML, Yohannes MT, Polyak E, Nakamaru-Ogiso E, Dennery PA. The circadian gene Rev-erbα improves cellular bioenergetics and provides preconditioning for protection against oxidative stress. Free Radic Biol Med 2016; 93:177-89. [PMID: 26855417 PMCID: PMC4905744 DOI: 10.1016/j.freeradbiomed.2016.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
Diurnal oscillations in the expression of antioxidant genes imply that protection against oxidative stress is circadian-gated. We hypothesized that stabilization of the core circadian gene Rev-erbα (Nr1d1) improves cellular bioenergetics and protects against nutrient deprivation and oxidative stress. Compared to WT, mouse lung fibroblasts (MLG) stably transfected with a degradation resistant Rev-erbα (Ser(55/59) to Asp; hence referred to as SD) had 40% higher protein content, 1.5-fold higher mitochondrial area (confocal microscopy), doubled oxidative phosphorylation by high-resolution respirometry (Oroboros) and were resistant to glucose deprivation for 24h. This resulted from a 4-fold reduction in mitophagy (L3CB co-localized with MitoTracker Red) versus WT. Although PGC1α protein expression was comparable between SD and WT MLG cells, the role of mitochondrial biogenesis in explaining increased mitochondrial mass in SD cells was less clear. Embryonic fibroblasts (MEF) from C57Bl/6-SD transgenic mice, had a 9-fold induction of FoxO1 mRNA and increased mRNA of downstream antioxidant targets heme oxygenase-1 (HO-1), Mn superoxide dismutase and catalase (1.5, 2 fold and 2 fold respectively) versus WT. This allowed the SD cells to survive 1h incubation with 500 µM H2O2 as well as 24h of exposure to 95% O2 and remain attached whereas most WT cells did not. These observations establish a mechanistic link between the metabolic functions of Rev-erbα with mitochondrial homeostasis and protection against oxidative stress.
Collapse
Affiliation(s)
- Shaon Sengupta
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Maurice D Hinson
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J Falk
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ping La
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Monica L Williams
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mekdes T Yohannes
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erzsebet Polyak
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Phyllis A Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1579-95. [PMID: 26721420 DOI: 10.1016/j.bbalip.2015.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
12
|
Lecarpentier Y, Claes V, Duthoit G, Hébert JL. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 2014; 5:429. [PMID: 25414671 PMCID: PMC4220097 DOI: 10.3389/fphys.2014.00429] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022] Open
Abstract
Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes, neurodegenerative diseases, cancer which are often closely inter-related.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Centre Hospitalier Régional de Meaux Meaux, France
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp Wilrijk, Belgium
| | - Guillaume Duthoit
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| |
Collapse
|
13
|
Du Pré BC, Van Veen TAB, Young ME, Vos MA, Doevendans PA, Van Laake LW. Circadian rhythms in cell maturation. Physiology (Bethesda) 2014; 29:72-83. [PMID: 24382873 DOI: 10.1152/physiol.00036.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythms are of major importance in mammalian physiology and disease. In this review, we give an overview of the present knowledge on origination of circadian rhythms. We discuss the development of both master and peripheral clocks and compare the origination of circadian rhythms in utero and in vitro.
Collapse
Affiliation(s)
- Bastiaan C Du Pré
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 2014; 29:257-76. [PMID: 25238855 PMCID: PMC4260630 DOI: 10.1177/0748730414543141] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian clocks are cell autonomous, transcriptionally based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are 2 transcription factors, CLOCK and BMAL1. The purpose of the present study was to reveal novel physiologic functions of BMAL1 in the heart, as well as to determine the pathologic consequences of chronic disruption of this circadian clock component. To address this goal, we generated cardiomyocyte-specific Bmal1 knockout (CBK) mice. Following validation of the CBK model, combined microarray and in silico analyses were performed, identifying 19 putative direct BMAL1 target genes, which included a number of metabolic (e.g., β-hydroxybutyrate dehydrogenase 1 [Bdh1]) and signaling (e.g., the p85α regulatory subunit of phosphatidylinositol 3-kinase [Pik3r1]) genes. Results from subsequent validation studies were consistent with regulation of Bdh1 and Pik3r1 by BMAL1, with predicted impairments in ketone body metabolism and signaling observed in CBK hearts. Furthermore, CBK hearts exhibited depressed glucose utilization, as well as a differential response to a physiologic metabolic stress (i.e., fasting). Consistent with BMAL1 influencing critical functions in the heart, echocardiographic, gravimetric, histologic, and molecular analyses revealed age-onset development of dilated cardiomyopathy in CBK mice, which was associated with a severe reduction in life span. Collectively, our studies reveal that BMAL1 influences metabolism, signaling, and contractile function of the heart.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachel A Brewer
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rodrigo A Peliciari-Garcia
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA Institute of Biomedical Sciences-I, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | - Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tana L Birky
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley W Peden
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emily G Thompson
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Billy-Joe Ammons
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Molly S Bray
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tami A Martino
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
'Chronomics' in ICU: circadian aspects of immune response and therapeutic perspectives in the critically ill. Intensive Care Med Exp 2014; 2:18. [PMID: 26266918 PMCID: PMC4513032 DOI: 10.1186/2197-425x-2-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
Complex interrelations exist between the master central clock, located in the suprachiasmatic nuclei of the hypothalamus, and several peripheral clocks, such as those found in different immune cells of the body. Moreover, external factors that are called ‘timekeepers’, such as light/dark and sleep/wake cycles, interact with internal clocks by synchronizing their different oscillation phases. Chronobiology is the science that studies biologic rhythms exhibiting recurrent cyclic behavior. Circadian rhythms have a duration of approximately 24 h and can be assessed through chronobiologic analysis of time series of melatonin, cortisol, and temperature. Critically ill patients experience severe circadian deregulation due to not only the lack of effective timekeepers in the intensive care unit (ICU) environment but also systemic inflammation. The latter has been found in both animal and human studies to disrupt circadian rhythmicity of all measured biomarkers. The aims of this article are to describe circadian physiology during acute stress and to discuss the effects of ICU milieu upon circadian rhythms, in order to emphasize the value of considering circadian-immune disturbance as a potential tool for personalized treatment. Thus, besides neoplastic processes, critical illness could be linked to what has been referred as ‘chronomics’: timing and rhythm. In addition, different therapeutic perspectives will be presented in association with environmental approaches that could restore circadian connection and hasten physical recovery.
Collapse
|
16
|
Abstract
Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Nadia Rachdaoui, Ph.D., Rutgers Endocrine Research Program. Department of Animal Sciences Rutgers University, 67 Poultry Farm Lane, New Brunswick, NJ 08901,
| | - Dipak K. Sarkar
- Dipak K. Sarkar, Ph.D., D. Phil., Rutgers Endocrine Research Program. Department of Animal Sciences, Rutgers University, 67 Poultry Farm Lane, New Brunswick, NJ 08901,
| |
Collapse
|
17
|
Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol 2013; 48:317-31. [PMID: 23594144 DOI: 10.3109/10409238.2013.786672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.
Collapse
Affiliation(s)
- Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
18
|
Chatham JC, Young ME. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J Mol Cell Cardiol 2013; 55:139-46. [PMID: 22766272 PMCID: PMC4107417 DOI: 10.1016/j.yjmcc.2012.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022]
Abstract
On a daily basis, the heart is subjected to dramatic fluctuations in energetic demand and neurohumoral influences, many of which occur in a temporally predictable manner. In order to preserve cardiac performance, the heart must therefore maintain metabolic flexibility, even within the confines of a single day. Recent studies have established mechanistic links between time-of-day-dependent oscillations in myocardial metabolism and the cardiomyocyte circadian clock. More specifically, evidence suggests that this cell autonomous molecular mechanism regulates myocardial glucose uptake, flux through both glycolysis and the hexosamine biosynthetic pathway, and pyruvate oxidation, as well as glycogen, triglyceride, and protein turnover. These observations have led to the hypothesis that the cardiomyocyte circadian clock confers the selective advantage of anticipation of increased energetic demand during the awake period. Here, we review the accumulative evidence in support of this hypothesis thus far, and discuss the possibility that attenuation of these metabolic rhythms, through disruption of the cardiomyocyte circadian clock, contributes towards the etiology of cardiac dysfunction in various disease states. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol 2012; 59:190-4. [DOI: 10.1016/j.jjcc.2011.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/20/2022]
|
20
|
Sauermann R, Schmidt WM, Krebs M, Brunner M, Müller M. Ramipril modulates circadian gene expression in skeletal muscle. Pharmacogenet Genomics 2012; 21:751-9. [PMID: 21881539 DOI: 10.1097/fpc.0b013e32834a8621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Treatment with angiotensin converting enzyme (ACE)-inhibitors favorably affects glucose metabolism and the development of diabetes mellitus by largely elusive mechanisms. To identify these mechanisms, we studied the effect of ACE-inhibition on gene expression in skeletal muscle, a primary target tissue for insulin in glucose homeostasis. METHODS A subject-blinded and analyst-blinded, placebo-controlled study was conducted in nine healthy men. Two consecutive muscle biopsies were conducted before and 9 h after a single dose of either 10-mg ramipril (n=6) or placebo (n=3), (randomly allocated). Muscle ribonucleic acid was subjected to transcriptome profiling. RESULTS In both ramipril-treated or placebo-treated individuals, the majority of genes with differential expression between the two time points belonged to the family of diurnally regulated genes, such as the NR1D1 and NR1D2 genes (nuclear receptor subfamily 1, group D, members 1 and 2) or members of the period homolog family (PER1-3). Ramipril significantly modulated the expression of other diurnally regulated genes, such as aryl hydrocarbon receptor nuclear translocator-like (ARNTL), encoding aryl hydrocarbon receptor nuclear translocator-like, a core component of the circadian clock (P=0.02). Concomitant attenuation of NR1D1 downregulation (-2.4-fold compared with -4.1-fold in placebo; P=0.04), a transcriptional repressor of ARNTL, supported the view that ramipril might modulate glucose homeostasis pathways involving the NR1D1 ARNTL axis. CONCLUSION As circadian rhythms are deranged in patients who are diabetic, modulated expression of circadian clock genes by ramipril could explain the favorable metabolic effects of therapeutic ACE-inhibition.
Collapse
Affiliation(s)
- Robert Sauermann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Neckář J, Šilhavy J, Zídek V, Landa V, Mlejnek P, Šimáková M, Seidman JG, Seidman C, Kazdová L, Klevstig M, Novák F, Vecka M, Papoušek F, Houštěk J, Drahota Z, Kurtz TW, Kolář F, Pravenec M. CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiol Genomics 2012; 44:173-82. [PMID: 22128087 PMCID: PMC3289117 DOI: 10.1152/physiolgenomics.00083.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD36 fatty acid translocase plays a key role in supplying heart with its major energy substrate, long-chain fatty acids (FA). Previously, we found that the spontaneously hypertensive rat (SHR) harbors a deletion variant of Cd36 gene that results in reduced transport of long-chain FA into cardiomyocytes and predisposes the SHR to cardiac hypertrophy. In the current study, we analyzed the effects of mutant Cd36 on susceptibility to ischemic ventricular arrhythmias and myocardial infarction in adult SHR-Cd36 transgenic rats with wild-type Cd36 compared with age-matched SHR controls. Using an open-chest model of coronary artery occlusion, we found that SHR-Cd36 transgenic rats showed profound arrhythmogenesis resulting in significantly increased duration of tachyarrhythmias (207 ± 48 s vs. 55 ± 21 s, P < 0.05), total number of premature ventricular complexes (2,623 ± 517 vs. 849 ± 250, P < 0.05) and arrhythmia score (3.86 ± 0.18 vs. 3.13 ± 0.13, P < 0.001). On the other hand, transgenic SHR compared with SHR controls showed significantly reduced infarct size (52.6 ± 4.3% vs. 72.4 ± 2.9% of area at risk, P < 0.001). Similar differences were observed in isolated perfused hearts, and the increased susceptibility of transgenic SHR to arrhythmias was abolished by reserpine, suggesting the involvement of catecholamines. To further search for possible molecular mechanisms of altered ischemic tolerance, we compared gene expression profiles in left ventricles dissected from 6-wk-old transgenic SHR vs. age-matched controls using Illumina-based sequencing. Circadian rhythms and oxidative phosphorylation were identified as the top KEGG pathways, while circadian rhythms, VDR/RXR activation, IGF1 signaling, and HMGB1 signaling were the top IPA canonical pathways potentially important for Cd36-mediated effects on ischemic tolerance. It can be concluded that transgenic expression of Cd36 plays an important role in modulating the incidence and severity of ischemic and reperfusion ventricular arrhythmias and myocardial infarct size induced by coronary artery occlusion. The proarrhythmic effect of Cd36 transgene appears to be dependent on adrenergic stimulation.
Collapse
Affiliation(s)
- Jan Neckář
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu X, Liu Z, Shi G, Xing L, Wang X, Gu X, Qu Z, Dong Z, Xiong J, Gao X, Zhang C, Xu Y. The circadian clock influences heart performance. J Biol Rhythms 2012; 26:402-11. [PMID: 21921294 DOI: 10.1177/0748730411414168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian clocks are believed to provide the selective advantage of anticipation, thus allowing organisms to respond efficiently to stimuli at the appropriate moment. Disrupted circadian rhythms have been found to affect a variety of basic physiological processes. However, the importance of the circadian clock in regulating heart performance remains undetermined. We hypothesized that the circadian clock plays a crucial role in heart performance through the anticipation of daily workload. Echocardiography was employed to monitor heart function and structure in mice in a noninvasive, real-time manner. In wild-type mice, both the ejection fraction (EF) and the shortening fraction (FS), two important markers of cardiac function, show diurnal variation. In addition, the amplitude of the EF and the FS enlarges in response to forced exercise in a time-dependent manner. The diurnal variations in EF and FS are altered in mice with disruptions in circadian clock genes and are significantly attenuated under an imposed light regimen. Furthermore, it shows that the overexpression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc1α) under control of the muscle creatine kinase (MCK) promoter inhibited clock gene expression in the heart and muscle and decreased the expression of peroxisome proliferator-activated receptor alpha (Pparα), metabolic genes glucose transporter (Glut4), and acetyl-coA synthetase (Acs1). Pgc1α overexpression abolished the diurnal variation of EF. We thus propose that PGC1α might play an important role in circadian-mediated, impaired cardiac function by regulating the circadian rhythm of metabolic genes.
Collapse
Affiliation(s)
- Xi Wu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
O'Mahony C, Lambiase PD, Rahman SM, Cardona M, Calcagnino M, Quarta G, Tsovolas K, Al-Shaikh S, McKenna W, Elliott P. The relation of ventricular arrhythmia electrophysiological characteristics to cardiac phenotype and circadian patterns in hypertrophic cardiomyopathy. ACTA ACUST UNITED AC 2011; 14:724-33. [DOI: 10.1093/europace/eur362] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JRB, Bray MS, Gamble KL, Gimble JM, Young ME. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int 2011; 28:187-203. [PMID: 21452915 DOI: 10.3109/07420528.2010.550406] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circadian dyssynchrony of an organism (at the whole-body level) with its environment, either through light-dark (LD) cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism to contractile function. The authors, therefore, reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shiftwork; SSW). To test this hypothesis, 2- and 20-month-old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) biweekly 12-h phase shifts in the LD cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole-body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibited increased biventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1), independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased biventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli.
Collapse
Affiliation(s)
- David J Durgan
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev 2011; 16:151-66. [PMID: 21641838 DOI: 10.1016/j.smrv.2011.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The functional organization of the cardiovascular system shows clear circadian rhythmicity. These and other circadian rhythms at all levels of organization are orchestrated by a central biological clock, the suprachiasmatic nuclei of the hypothalamus. Preservation of the normal circadian time structure from the level of the cardiomyocyte to the organ system appears to be essential for cardiovascular health and cardiovascular disease prevention. Myocardial ischemia, acute myocardial infarct, and sudden cardiac death are much greater in incidence than expected in the morning. Moreover, supraventricular and ventricular cardiac arrhythmias of various types show specific day-night patterns, with atrial arrhythmias--premature beats, tachycardias, atrial fibrillation, and flutter - generally being of higher frequency during the day than night--and ventricular fibrillation and ventricular premature beats more common, respectively, in the morning and during the daytime activity than sleep span. Furthermore, different circadian patterns of blood pressure are found in arterial hypertension, in relation to different cardiovascular morbidity and mortality risk. Such temporal patterns result from circadian periodicity in pathophysiological mechanisms that give rise to predictable-in-time differences in susceptibility-resistance to cyclic environmental stressors that trigger these clinical events. Circadian rhythms also may affect the pharmacokinetics and pharmacodynamics of cardiovascular and other medications. Knowledge of 24-h patterns in the risk of cardiac arrhythmias and cardiovascular disease morbidity and mortality plus circadian rhythm-dependencies of underlying pathophysiologic mechanisms suggests the requirement for preventive and therapeutic interventions is not the same throughout the day and night, and should be tailored accordingly to improve outcomes.
Collapse
|
26
|
Cavallari JM, Fang SC, Mittleman MA, Christiani DC. Circadian variation of heart rate variability among welders. Occup Environ Med 2010; 67:717-9. [PMID: 20798005 DOI: 10.1136/oem.2010.055210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To compare the circadian variation of hourly heart rate variability (HRV) on work and non-workdays among boilermaker construction workers. METHOD A panel study of 18 males monitored by 24-h ambulatory ECG over 44 observation-days on paired work and non-workdays was conducted. ECGs were analysed and the SD of normal-to-normal beats index (SDNN(i)) was calculated from 5-min data and summarised hourly. SDNN(i)s over work and non-workdays were compared using linear mixed-effects models to account for repeated measures and harmonic regression to account for circadian variation. RESULTS Both work and non-work hourly HRV exhibited circadian variation with an increase in the evening and a decrease in the afternoon. SDNN(i) was lower on workdays as compared with non-workdays with the largest, statistically significant differences observed between 10:00 and 16:00, during active working. Lower SDNN(i), albeit smaller yet statistically significant differences, was also observed in the evening hours following work (17:00-21:00) and early morning (4:00). In regression models using all time periods, an average workday SDNN(i) was 8.1 ms (95% CI -9.8 to -6.3) lower than non-workday SDNN(i). The circadian pattern of HRV exhibited two peaks which differed on work and non-workdays. CONCLUSION While workday and non-workday HRV followed a circadian pattern, decreased HRV and variation of the circadian pattern were observed on workdays. Declines and changes in the circadian pattern of HRV is a concern among this exposed population.
Collapse
Affiliation(s)
- Jennifer M Cavallari
- Harvard School of Public Health, Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology Program, 665 Huntington Ave, FXB-103, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
27
|
Takeda N, Maemura K. Cardiovascular disease, chronopharmacotherapy, and the molecular clock. Adv Drug Deliv Rev 2010; 62:956-66. [PMID: 20451570 DOI: 10.1016/j.addr.2010.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
Cardiovascular functions such as heart rate and blood pressure show 24h variation. The incidence of cardiovascular diseases including acute myocardial infarction and arrhythmia also exhibits diurnal variation. The center of this circadian clock is located in the suprachiasmatic nucleus in the hypothalamus. However, recent findings revealed that each organ, including cardiovascular tissues, has its own internal clock, which has been termed a peripheral clock. The functional roles played by peripheral clocks have been reported recently. Since the peripheral clock is considered to play considerable roles in the processes of cardiac tissues, the identification of genes specifically regulated by this clock will provide insights into its role in the pathogenesis of cardiovascular disorders. In addition, the discovery of small compounds that modulate the peripheral clock will help to establish chronotherapeutic approaches. Understanding the biological relevance of the peripheral clock will provide novel approaches to the prevention and treatment of cardiovascular diseases.
Collapse
|
28
|
|
29
|
Abstract
Circadian misalignment has been implicated in the development of obesity, diabetes mellitus, and cardiovascular disease. Time-of-day-dependent synchronization of organisms with their environment is mediated by circadian clocks. This cell autonomous mechanism has been identified within all cardiovascular-relevant cell types, including cardiomyocytes. Recent molecular- and genetic-based studies suggest that the cardiomyocyte circadian clock influences multiple myocardial processes, including transcription, signaling, growth, metabolism, and contractile function. Following an appreciation of its physiological roles, the cardiomyocyte circadian clock has recently been linked to the pathogenesis of heart disease in response to adverse stresses, such as ischemia/reperfusion, in animal models. The purpose of this review is therefore to highlight recent advances regarding the roles of the cardiomyocyte circadian clock in both myocardial physiology and pathophysiology (ie, health and disease).
Collapse
Affiliation(s)
- David J Durgan
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, 703 19th Street S., Birmingham, AL 35294, USA
| | | |
Collapse
|
30
|
|