1
|
Zha S, Liu X, Yao Y, He Y, Wang Y, Zhang Q, Zhang J, Yi Y, Xiao R, Hu K. Short-term intermittent hypoxia exposure for dyspnea and fatigue in post-acute sequelae of COVID-19: A randomized controlled study. Respir Med 2024; 232:107763. [PMID: 39127085 DOI: 10.1016/j.rmed.2024.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Post-acute sequelae of COVID-19 (PASC) is incurring a huge health and economic burden worldwide. There is currently no effective treatment or recommended drug for PASC. METHODS This prospective randomized controlled study was conducted in a hospital in China. The effect of intermittent hypoxia exposure (IHE; 5-min hypoxia alternating with 5-min normal air, repeated five times) on dyspnea and fatigue was investigated in patients meeting the NICE definition of PASC. Patients were computationally randomized to receive normoxia exposure (NE) and routine therapy or IHE and routine therapy. Six-minute walk distance (6MWD) and spirometry were tested before and after the interventions; the Borg Dyspnea Scale (Borg) and the modified Medical Research Council Dyspnea Scale (mMRC) were used to assess dyspnea; and the Fatigue Assessment Scale (FAS) and the Chalder Fatigue Scale-11 (CFQ-11) were used to assess fatigue. The study was registered in the Chinese Clinical Trial Registry (ChiCTR2300070565). FINDINGS Ninety-five participants (33 males and 62 females) were recruited between March 1, 2023 and December 30, 2023. Forty-seven patients in the IHE group received 10.0 (9.0, 15.0) days of IHE, and 48 patients in NE group received 10.0 (8.0, 12.0) days of NE. 6MWD, forced vital capacity (FVC), FVC %pred, forced expiratory volume in 1 s (FEV1), FEV1 %pred, tidal volume (VT), and dyspnea and fatigue scales markedly improved after IHE (p < 0.05), and improvements were greater than in the NE group (all p < 0.05). Furthermore, participants in IHE group had better subjective improvements in dyspnea and fatigue than those in the NE group (p < 0.05). Compared with <10 days of IHE, ≥10 days of IHE had a greater impact on 6MWD, FVC, FEV1, FEV1 %pred, VT, FAS, and CFQ-11. No severe adverse events were reported. INTERPRETATION IHE improved spirometry and 6MWD and relieved dyspnea and fatigue in PASC patients. Larger prospective studies are now needed to verify these findings.
Collapse
Affiliation(s)
- Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaohua Yi
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China; Research Center of Digital Imaging and Intelligent Perception, Wuhan University, Wuhan, 430079, China
| | - Rui Xiao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China; Research Center of Digital Imaging and Intelligent Perception, Wuhan University, Wuhan, 430079, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Mateika JH, Barok R, Kissane DM. Is sustained hypercapnia required to initiate plasticity in humans exposed to mild intermittent hypoxia? J Physiol 2024; 602:5125-5128. [PMID: 39153224 DOI: 10.1113/jp287341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rebecca Barok
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dylan M Kissane
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Smith CM, Salmon OF. Safety and effectiveness of acute intermittent hypoxia during a single treatment at different hypoxic severities. Respir Physiol Neurobiol 2024; 331:104358. [PMID: 39349270 DOI: 10.1016/j.resp.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Examine the cardiovascular, muscular function, cognitive, and neural plastic responses to determine the safety and effectiveness of acute Intermittent hypoxia (AIH) at a low, high, and control fractional inspired oxygen (FiO2) dosage METHODS: Thirteen human participants performed 30-min of AIH in 60-s intervals at FiO2's of 0.21 (AIH21), 0.15 (AIH15), and 0.09 (AIH9). Heart rate variability (root mean squared of successive differences; RMSSD), heart rate, oxygen saturation (SpO2), blood pressure, muscular strength, neuromuscular activation, cerebral hemodynamic responses, cognition, symptomology, and brain-derived neurotrophic factor (BDNF) responses were measured before (Pre-AIH), after (post-AIH), and at 20-min of recovery (Recovery-AIH) RESULTS: There were no differences between AIH protocols for heart rate, RMSSD, blood pressure, or SpO2. Muscular strength improved Post-AIH for AIH15 (10 %) and AIH9 (14 %) and remained elevated (6 %) at Recovery-AIH. Neuromuscular activation increased Pre-AIH to Post-AIH for AIH15 (10 %) and AIH9 (11 %). Cerebral hemodynamic responses were not impacted between conditions. Both AIH15 and AIH9 increased BDNF Post-AIH (62 %) and Recovery-AIH (63 %) CONCLUSION: Acute intermittent hypoxia is generally safe and effective at producing neural plastic responses, but further examination of co-occurring cardiovascular diseases is needed. This study provides safety focused findings which will widen the adoption and refinement of AIH protocols.
Collapse
Affiliation(s)
- Cory M Smith
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA.
| | - Owen F Salmon
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
5
|
Stray-Gundersen S, Wojan F, Tanaka H, Lalande S. Similar endothelium-dependent vascular responses to intermittent hypoxia in young and older adults. J Appl Physiol (1985) 2024; 137:254-261. [PMID: 38932685 DOI: 10.1152/japplphysiol.00823.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is associated with vascular endothelial dysfunction observed through a progressive loss of flow-mediated dilation caused partly by a decreased nitric oxide bioavailability. Intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, was reported to either maintain or improve vascular function in young adults. The aim of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Twelve young adults and 11 older adults visited the laboratory on two occasions. Plasma nitrate concentrations and brachial artery flow-mediated dilation were assessed before and after exposure to either intermittent hypoxia or a sham protocol. Intermittent hypoxia consisted of eight 4-min hypoxic cycles at a targeted oxygen saturation of 80% interspersed with breathing room air to resaturation, and the sham protocol consisted of eight 4-min normoxic cycles interspersed with breathing room air. Vascular responses were assessed during intermittent hypoxia and the sham protocol. Intermittent hypoxia elicited a brachial artery vasodilation but did not change brachial artery shear rate in both young and older adults. Plasma nitrate concentrations were not significantly affected by intermittent hypoxia compared with the sham protocol in both groups. Brachial artery flow-mediated dilation was not acutely affected by intermittent hypoxia or the sham protocol in either young or older adults. In conclusion, the brachial artery vasodilatory response to intermittent hypoxia was not influenced by age. Intermittent hypoxia increased brachial artery diameter but did not acutely affect endothelium-dependent vasodilation in young or older adults.NEW & NOTEWORTHY The objective of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Eight 4-min bouts of hypoxia at a targeted oxygen saturation of 80% induced a brachial artery vasodilation in both young and older adults, indicating that age does not influence the vasodilatory response to intermittent hypoxia. Intermittent hypoxia did not acutely affect brachial artery flow-mediated dilation in young or older adults.
Collapse
Affiliation(s)
- Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Frank Wojan
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Sophie Lalande
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
6
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Zha S, Liu X, Chen H, Hao Y, Zhang J, Zhang Q, Hu K. A randomized controlled crossover trial of acute intermittent and continuous hypoxia exposure in mild-moderate obstructive sleep apnea: A feasibility study. J Sleep Res 2024; 33:e14014. [PMID: 37592825 DOI: 10.1111/jsr.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
In a prospective, randomized, controlled crossover study, we explored the effects of acute intermittent hypoxia and acute continuous hypoxia on patients with mild-moderate obstructive sleep apnea. Over three single-night sessions, subjects were alternately exposed to normoxia, acute continuous hypoxia and acute intermittent hypoxia before sleep. The apnea-hypopnea index and oxygen desaturation index were used to diagnose obstructive sleep apnea and evaluate efficacy. A responder was defined as a participant with a ≥ 50% reduction in apnea-hypopnea index between normoxia and hypoxia exposure. Sixteen participants with mild-moderate obstructive sleep apnea completed the study. Compared with normoxia, the mean apnea-hypopnea index decreased by 8.9 events per hr (95% confidence interval, 4.2-13.6, p = 0.001) with acute intermittent hypoxia and by 4.1 events per hr (95% confidence interval, 0.5-8.8, p = 0.082) with acute continuous hypoxia, equating to a mean decrease in apnea-hypopnea index of 4.8 events per hr (95% confidence interval, 0.1-9.5, p = 0.046) with acute intermittent hypoxia compared with acute continuous hypoxia. Compared with normoxia, the mean oxygen desaturation index decreased by 9.8 events per hr (95% confidence interval, 4.4-15.1, p = 0.001) with acute intermittent hypoxia but did not significantly decrease with acute continuous hypoxia; the mean oxygen desaturation index decreased by 7.2 events per hr (95% confidence interval, 1.8-12.6, p = 0.010) with acute intermittent hypoxia compared with acute continuous hypoxia. Of the 16 participants, 11 responded to acute intermittent hypoxia and four responded to acute continuous hypoxia (p = 0.032), of whom eight of 11 cases and all four cases had oxygen desaturation indexes <5 events per hr, respectively (p = 0.273). All participants tolerated acute intermittent hypoxia and there were no obvious adverse events during acute intermittent hypoxia exposure. In conclusion, acute intermittent hypoxia exposure improved apnea-hypopnea index and oxygen desaturation index in patients with mild-moderate obstructive sleep apnea, suggesting that further prospective validation of intermittent hypoxia exposure in patients with obstructive sleep apnea is needed to establish its clinical feasibility as a therapeutic modality.
Collapse
Affiliation(s)
- Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueying Hao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Wang Y, Zhang Q, Ma Q, Wang Q, Huang D, Ji X. Intermittent hypoxia preconditioning can attenuate acute hypoxic injury after a sustained normobaric hypoxic exposure: A randomized clinical trial. CNS Neurosci Ther 2024; 30:e14662. [PMID: 38477221 PMCID: PMC10934266 DOI: 10.1111/cns.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qingfeng Ma
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Zhang G, Yang G, Zhou Y, Cao Z, Yin M, Ma L, Fan M, Zhao YQ, Zhu L. Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure. Pflugers Arch 2024; 476:197-210. [PMID: 37994929 DOI: 10.1007/s00424-023-02885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Yanzhao Zhou
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | | | - Ming Yin
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Lin Ma
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Fan
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Qi Zhao
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Lingling Zhu
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Bonsignore MR. Adaptive responses to chronic intermittent hypoxia: contributions from the European Sleep Apnoea Database (ESADA) Cohort. J Physiol 2023; 601:5467-5480. [PMID: 37218069 DOI: 10.1113/jp284108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a common disease in the general population, and is associated with increased cardiovascular risk and several comorbidities. Obesity favours upper airway collapsibility, but other pathophysiological traits have been identified, i.e. upper airway muscle activity, modulation of the respiratory drive, and the arousal threshold. OSA causes chronic intermittent hypoxia, inflammatory activation and autonomic imbalance with diurnal and nocturnal sympathetic hyperactivity. Disentangling so many components to investigate the pathogenesis of OSA's consequences is very hard clinically. However, albeit imperfect, clinical medicine constitutes a major source of inspiration for basic research, and a mutual exchange of information is essential between clinicians and physiologists to improve our understanding of disease states. OSA is no exception, and this narrative review will summarize the results of clinical studies performed over the years by the European Sleep Apnoea Database (ESADA) Study Group, to explore the variables linked to markers of intermittent hypoxia as opposed to the traditional assessment of OSA severity based on the frequency of respiratory events during sleep (the Apnoea Hypopnoea Index). The results of the clinical studies indicate that intermittent hypoxia variables are associated with several comorbidities, although evidence of a cause-effect relationship is still missing in many cases. It is also possible that adaptive rather than maladaptive responses could be evoked by intermittent hypoxia. The intensity, duration and frequency of intermittent hypoxia episodes causing adaptive rather than maladaptive responses, and their clinical implications, deserve further investigation.
Collapse
Affiliation(s)
- Maria R Bonsignore
- PROMISE Department, University of Palermo, Palermo, Italy
- Sleep Disordered Breathing Clinic, Division of Pneumology, V. Cervello Hospital, Palermo, Italy
| |
Collapse
|
12
|
Liu P, Zhou L, Chen H, He Y, Li G, Hu K. Identification of a novel intermittent hypoxia-related prognostic lncRNA signature and the ceRNA of lncRNA GSEC/miR-873-3p/EGLN3 regulatory axis in lung adenocarcinoma. PeerJ 2023; 11:e16242. [PMID: 37842058 PMCID: PMC10573295 DOI: 10.7717/peerj.16242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is still the most prevalent type of respiratory cancer. Intermittent hypoxia can increase the mortality and morbidity associated with lung cancer. Long non-coding RNAs (lncRNAs) are crucial in lung adenocarcinoma. However, the effects of intermittent hypoxia-related long non-coding RNAs (IHRLs) on lung adenocarcinoma are still unknown. Method In the current research, eight IHRLs were selected to create a prognostic model. The risk score of the prognostic model was evaluated using multivariate and univariate analyses, and its accuracy and reliability were validated using a nomogram and ROC. Additionally, we investigated the relationships between IHRLs and the immune microenvironment. Result Our analysis identified GSEC, AC099850.3, and AL391001.1 as risk lncRNAs, while AC010615.2, AC010654.1, AL513550.1, LINC00996, and LINC01150 were categorized as protective lncRNAs. We observed variances in the expression of seven immune cells and 15 immune-correlated pathways between the two risk groups. Furthermore, our results confirmed the ceRNA network associated with the intermittent hypoxia-related lncRNA GSEC/miR-873-3p/EGLN3 regulatory pathway. GSEC showed pronounced expression in lung adenocarcinoma tissues and specific cell lines, and its inhibition resulted in reduced proliferation and migration in A549 and PC9 cells. Intriguingly, GSEC manifested oncogenic properties by sponging miR-873-3p and demonstrated a tendency to modulate EGLN3 expression favorably. Conclusion GSEC acts as an oncogenic lncRNA by interacting with miR-873-3p, modulating EGLN3 expression. This observation underscores the potential of GSEC as a diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Long Zhou
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Moris JM, Cardona A, Hinckley B, Mendez A, Blades A, Paidisetty VK, Chang CJ, Curtis R, Allen K, Koh Y. A framework of transient hypercapnia to achieve an increased cerebral blood flow induced by nasal breathing during aerobic exercise. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100183. [PMID: 37745894 PMCID: PMC10514094 DOI: 10.1016/j.cccb.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During exercise, cerebral blood flow (CBF) is expected to only increase to a maximal volume up to a moderate intensity aerobic effort, suggesting that CBF is expected to decline past 70 % of a maximal aerobic effort. Increasing CBF during exercise permits an increased cerebral metabolic activity that stimulates neuroplasticity and other key processes of cerebral adaptations that ultimately improve cognitive health. Recent work has focused on utilizing gas-induced exposure to intermittent hypoxia during aerobic exercise to maximize the improvements in cognitive function compared to those seen under normoxic conditions. However, it is postulated that exercising by isolating breathing only to the nasal route may provide a similar effect by stimulating a transient hypercapnic condition that is non-gas dependent. Because nasal breathing prevents hyperventilation during exercise, it promotes an increase in the partial arterial pressure of CO2. The rise in systemic CO2 stimulates hypercapnia and permits the upregulation of hypoxia-related genes. In addition, the rise in systemic CO2 stimulates cerebral vasodilation, promoting a greater increase in CBF than seen during normoxic conditions. While more research is warranted, nasal breathing might also promote benefits related to improved sleep, greater immunity, and body fat loss. Altogether, this narrative review presents a theoretical framework by which exercise-induced hypercapnia by utilizing nasal breathing during moderate-intensity aerobic exercise may promote greater health adaptations and cognitive improvements than utilizing oronasal breathing.
Collapse
Affiliation(s)
- Jose M. Moris
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Arturo Cardona
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Brendan Hinckley
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Armando Mendez
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Alexandra Blades
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Vineet K. Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Christian J. Chang
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Ryan Curtis
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Kylie Allen
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| |
Collapse
|
14
|
Sheel AW. Intermittent Hypoxia and Respiratory Plasticity: The Good, the Bad, and the Unknown. FUNCTION 2023; 4:zqad045. [PMID: 37753181 PMCID: PMC10519271 DOI: 10.1093/function/zqad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Andrew William Sheel
- School of Kinesiology, The University of British Columbia, British Columbia V6T 1Z3, Vancouver, Canada
| |
Collapse
|
15
|
Timon R, Martinez-Guardado I, Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:19. [PMID: 36843041 PMCID: PMC9968673 DOI: 10.1186/s40798-023-00560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Aging is a degenerative process that is associated with an increased risk of diseases. Intermittent hypoxia has been investigated in reference to performance and health-related functions enhancement. This systematic review aimed to summarize the effect of either passive or active intermittent normobaric hypoxic interventions compared with normoxia on health-related outcomes in healthy older adults. METHODS Relevant studies were searched from PubMed and Web of Science databases in accordance with PRISMA guidelines (since their inceptions up until August 9, 2022) using the following inclusion criteria: (1) randomized controlled trials, clinical trials and pilot studies; (2) Studies involving humans aged > 50 years old and without any chronic diseases diagnosed; (3) interventions based on in vivo intermittent systemic normobaric hypoxia exposure; (4) articles focusing on the analysis of health-related outcomes (body composition, metabolic, bone, cardiovascular, functional fitness or quality of life). Cochrane Collaboration recommendations were used to assess the risk of bias. RESULTS From 509 articles initially found, 17 studies were included. All interventions were performed in moderate normobaric hypoxia, with three studies using passive exposure, and the others combining intermittent hypoxia with training protocols (i.e., using resistance-, whole body vibration- or aerobic-based exercise). CONCLUSIONS Computed results indicate a limited effect of passive/active intermittent hypoxia (ranging 4-24 weeks, 2-4 days/week, 16-120 min/session, 13-16% of fraction of inspired oxygen or 75-85% of peripheral oxygen saturation) compared to similar intervention in normoxia on body composition, functional fitness, cardiovascular and bone health in healthy older (50-75 years old) adults. Only in specific settings (i.e., intermediate- or long-term interventions with high intensity/volume training sessions repeated at least 3 days per week), may intermittent hypoxia elicit beneficial effects. Further research is needed to determine the dose-response of passive/active intermittent hypoxia in the elderly. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION PROSPERO 2022 CRD42022338648.
Collapse
Affiliation(s)
- Rafael Timon
- Sport Sciences Faculty, Universidad de Extremadura, Av/ Universidad s/n, 10004, Cáceres, Spain.
| | - Ismael Martinez-Guardado
- grid.464701.00000 0001 0674 2310BRABE Group. Faculty of Life and Nature Sciences, Universidad de Nebrija, Madrid, Spain
| | - Franck Brocherie
- grid.418501.90000 0001 2163 2398Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
16
|
Nor Nazli NA, Muthuraju S, Ahmad F, Mohamed Yusoff AA, Jaafar H, Shamsuddin S, Abdullah JM. Characterisation of Primary Human Hippocampal Astrocyte Cell Culture Following Exposure to Hypoxia. Malays J Med Sci 2023; 30:92-106. [PMID: 36875187 PMCID: PMC9984107 DOI: 10.21315/mjms2023.30.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 03/05/2023] Open
Abstract
Background The present study aimed to understand the characterisation of human hippocampal astrocyte following hypoxia exposure. Based on the preliminary screening, 15 min was chosen as the time point and the cells were exposed to different oxygen percentages. Methods The Trypan blue viability assay used to examine cell death. Immunofluorescence assay, glial fibrillary acidic protein (GFAP) was used to portray the morphology of astrocytes. The hypoxia-inducible factor 1 (HIF-1) staining was performed to confirm hypoxia induced cell death and there was a dramatic expression of HIF-1α displayed in exposed astrocyte cells compared to the control. In molecular level, genes were chosen, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), GFAP, HIF-1α and B-cell lymphoma 2 (Bcl-2) and ran the reverse transcription-polymerase chain reaction (RT-PCR). Results Microscope revealed a filamentous and clear nucleus appearance in a control whereas the rupture nuclei with no rigid structure of the cell were found in the 3% oxygen. The control and hypoxia cells were also stained with the annexin V-fluorescein isothiocyanate (annexin V-FITC). Fluorescence microscope reveals astrocyte cells after hypoxia showed higher expression of nuclei but not in control. Merging PI and FITC showed the differences of nuclei expression between the control and hypoxia. In the molecular analysis, there were significant changes of GFAP, HIF-1α and Bcl-2 in hypoxia exposed cells when compared to the control group. Conclusion Cells that were exposed to hypoxia (3% oxygen for 15 min) clearly showed damage. General view of human hippocampal astrocyte genomic response to hypoxia was obtained.
Collapse
Affiliation(s)
- Nurul Atikah Nor Nazli
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sangu Muthuraju
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
17
|
Sales de Campos P, Olsen WL, Wymer JP, Smith BK. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state of the art review. Chron Respir Dis 2023; 20:14799731231175915. [PMID: 37219417 PMCID: PMC10214054 DOI: 10.1177/14799731231175915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition noteworthy for upper and lower motor neuron death. Involvement of respiratory motor neuron pools leads to progressive pathology. These impairments include decreases in neural activation and muscle coordination, progressive airway obstruction, weakened airway defenses, restrictive lung disease, increased risk of pulmonary infections, and weakness and atrophy of respiratory muscles. These neural, airway, pulmonary, and neuromuscular changes deteriorate integrated respiratory-related functions including sleep, cough, swallowing, and breathing. Ultimately, respiratory complications account for a large portion of morbidity and mortality in ALS. This state-of-the-art review highlights applications of respiratory therapies for ALS, including lung volume recruitment, mechanical insufflation-exsufflation, non-invasive ventilation, and respiratory strength training. Therapeutic acute intermittent hypoxia, an emerging therapeutic tool for inducing respiratory plasticity will also be introduced. A focus on emerging evidence and future work underscores the common goal to continue to improve survival for patients living with ALS.
Collapse
Affiliation(s)
- Priscila Sales de Campos
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Wendy L Olsen
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL, USA
| | - James P Wymer
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Seven YB, Allen LL, Ciesla MC, Smith KN, Zwick A, Simon AK, Holland AE, Santiago JV, Stefan K, Ross A, Gonzalez-Rothi EJ, Mitchell GS. Intermittent Hypoxia Differentially Regulates Adenosine Receptors in Phrenic Motor Neurons with Spinal Cord Injury. Neuroscience 2022; 506:38-50. [PMID: 36273657 DOI: 10.1016/j.neuroscience.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Cervical spinal cord injury (cSCI) impairs neural drive to the respiratory muscles, causing life- threatening complications such as respiratory insufficiency and diminished airway protection. Repetitive "low dose" acute intermittent hypoxia (AIH) is a promising strategy to restore motor function in people with chronic SCI. Conversely, "high dose" chronic intermittent hypoxia (CIH; ∼8 h/night), such as experienced during sleep apnea, causes pathology. Sleep apnea, spinal ischemia, hypoxia and neuroinflammation associated with cSCI increase extracellular adenosine concentrations and activate spinal adenosine receptors which in turn constrains the functional benefits of therapeutic AIH. Adenosine 1 and 2A receptors (A1, A2A) compete to determine net cAMP signaling and likely the tAIH efficacy with chronic cSCI. Since cSCI and intermittent hypoxia may regulate adenosine receptor expression in phrenic motor neurons, we tested the hypotheses that: 1) daily AIH (28 days) downregulates A2A and upregulates A1 receptor expression; 2) CIH (28 days) upregulates A2A and downregulates A1 receptor expression; and 3) cSCI alters the impact of CIH on adenosine receptor expression. Daily AIH had no effect on either adenosine receptor in intact or injured rats. However, CIH exerted complex effects depending on injury status. Whereas CIH increased A1 receptor expression in intact (not injured) rats, it increased A2A receptor expression in spinally injured (not intact) rats. The differential impact of CIH reinforces the concept that the injured spinal cord behaves in distinct ways from intact spinal cords, and that these differences should be considered in the design of experiments and/or new treatments for chronic cSCI.
Collapse
Affiliation(s)
- Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kristin N Smith
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Amanda Zwick
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alec K Simon
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kelsey Stefan
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley Ross
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
20
|
Locke KC, Randelman ML, Hoh DJ, Zholudeva LV, Lane MA. Respiratory plasticity following spinal cord injury: perspectives from mouse to man. Neural Regen Res 2022; 17:2141-2148. [PMID: 35259820 PMCID: PMC9083159 DOI: 10.4103/1673-5374.335839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. This field of research is highly clinically relevant. People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched this injury is in animal models, relatively few treatments have broken through the preclinical barrier. The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity research, we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Katherine C. Locke
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Margo L. Randelman
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Daniel J. Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lyandysha V. Zholudeva
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
- Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Michael A. Lane
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| |
Collapse
|
21
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients—A Randomized Controlled Trial. Front Physiol 2022; 13:899096. [PMID: 35694402 PMCID: PMC9178199 DOI: 10.3389/fphys.2022.899096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background: It was recently shown that intermittent hypoxic-hyperoxic exposure (IHHE) applied prior to a multimodal training program promoted additional improvements in cognitive and physical performance in geriatric patients compared to physical training only. However, there is a gap in the literature to which extent the addition of IHHE can enhance the effects of an aerobic training. Therefore, the aim of this study was to investigate the efficacy of IHHE applied prior to aerobic cycling exercise on cognitive and physical performance in geriatric patients. Methods: In a randomized, two-armed, controlled, and single-blinded trial, 25 geriatric patients (77–94 years) were assigned to two groups: intervention group (IG) and sham control group (CG). Both groups completed 6 weeks of aerobic training using a motorized cycle ergometer, three times a week for 20 min per day. The IG was additionally exposed to intermittent hypoxic and hyperoxic periods for 30 min prior to exercise. The CG followed the similar procedure breathing sham hypoxia and hyperoxia (i.e., normoxia). Within 1 week before and after the interventions, cognitive performance was assessed with the Dementia-Detection Test (DemTect) and the Clock Drawing Test (CDT), while physical performance was measured using the Timed “Up and Go” Test (TUG) and the Short-Physical-Performance-Battery (SPPB). Results: No interaction effect was found with respect to the DemTect (ηp2 = 0.02). An interaction effect with medium effect size (ηp2 = 0.08) was found for CDT performance with a higher change over time for IG (d = 0.57) compared to CG (d = 0.05). The ANCOVA with baseline-adjustment indicated between-group differences with a large and medium effect size at post-test for the TUG (ηp2 = 0.29) and SPPB (ηp2 = 0.06) performance, respectively, in favour of the IG. Within-group post-hoc analysis showed that the TUG performance was worsened in the CG (d = 0.65) and remained unchanged in the IG (d = 0.19). Furthermore, SPPB performance was increased (d = 0.58) in IG, but no relevant change over time was found for CG (d = 0.00). Conclusion: The current study suggests that an additional IHHE prior to aerobic cycling exercise seems to be more effective to increase global cognitive functions as well as physical performance and to preserve functional mobility in geriatric patients in comparison to aerobic exercise alone after a 6-week intervention period.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Tom Behrendt,
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Oleg S. Glazachev
- Department Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
23
|
Hypoxia and hemorheological properties in older individuals. Ageing Res Rev 2022; 79:101650. [PMID: 35597435 DOI: 10.1016/j.arr.2022.101650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia is caused by insufficient oxygen availability for the organism leading to reduced oxygen delivery to tissues and cells. It has been regarded as a severe threat to human health and it is indeed implicated in pathophysiological mechanisms involved in the development and progression of many diseases. Nevertheless, the potential of controlled hypoxia interventions (i.e. hypoxia conditioning) for improving cardio-vascular health is gaining increased attention. However, blood rheology is often a forgotten factor for vascular health while aging and hypoxia exposure are both suspected to alter hemorheological properties. These changes in blood rheology may influence the benefits-risks balance of hypoxia exposure in older individuals. The benefits of hypoxia exposure for vascular health are mainly reported for healthy populations and the combined impact of aging and hypoxia on blood rheology could therefore be deleterious in older individuals. This review discusses evidence of hypoxia-related and aging-related changes in blood viscosity and its determinants. It draws upon an extensive literature search on the effects of hypoxia/altitude and aging on blood rheology. Aging increases blood viscosity mainly through a rise in plasma viscosity, red blood cell (RBC) aggregation and a decrease in RBC deformability. Hypoxia also causes an increase in RBC aggregation and plasma viscosity. In addition, hypoxia exposure may increase hematocrit and modulate RBC deformability, depending on the hypoxic dose, i.e, beneficial effect of intermittent hypoxia with moderate dose vs deleterious effect of chronic continuous or intermittent hypoxia or if the hypoxic dose is too high. Special attention is directed toward the risks vs. benefits of hemorheological changes during hypoxia exposure in older individuals, and its clinical relevance for vascular disorders.
Collapse
|
24
|
Zhang G, Zhou Y, Cao Z, Cheng X, Yue X, Zhao T, Zhao M, Zhao Y, Fan M, Zhu L. Preliminary Intermittent Hypoxia Training Alleviates the Damage of Sustained Normobaric Hypoxia on Human Hematological Indexes and Cerebral White Matter. High Alt Med Biol 2022; 23:273-283. [PMID: 35486840 DOI: 10.1089/ham.2021.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zhang, Guangbo, Yanzhao Zhou, Zhengtao Cao, Xiang Cheng, Xiangpei Yue, Tong Zhao, Ming Zhao, Yongqi Zhao, Ming Fan, and Lingling Zhu. Preliminary intermittent hypoxia training alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral white matter. High Alt Med Biol. 00:000-000, 2022. Study Objectives: We aimed to examine the effects of preliminary intermittent hypoxia training (IHT) on human hematological indexes and cerebral white matter (WM) after exposure to a simulated altitude of 4,300 m. Methods: We recruited 20 young healthy volunteers. Participants were then randomized to either the IHT group (n = 10) or the control group (n = 10). We measured the physiological function of the control group at sea level and after exposure to a simulated altitude of 4,300 m, respectively. The IHT group performed the above tests at three time points: before and after hypoxia training, and after exposure to a simulated altitude of 4,300 m, respectively. Results: We found that mean SpO2 during day 10 of hypoxia training showed a significant increase compared with mean SpO2 on day 1 (88.3% ± 1.5% vs. 90.0% ± 1.6%, p < 0.05), and erythrocyte P50 of post-training was significantly increased compared with pretraining (37.8 ± 2.9 mmHg vs. 45.9 ± 6.4 mmHg, p < 0.05). Mean SpO2 measures after acute exposure to high altitude exhibited a significant difference, with the IHT group showing significantly greater SpO2 than the control group (73.8% ± 3.7% vs. 77.4% ± 3.2%, p < 0.05), and the Lake Louise Score was also lower than the control group (2.55 ± 2.1 vs. 6.67 ± 2.5, p < 0.05). After daily IHT, brain-derived neurotrophic factor plasma levels of participants in the IHT group did not change but significantly increased in response to high-altitude hypoxia (103.5% ± 70.4% vs. 29.7% ± 73.2%, p < 0.05). Interleukin-10 (IL-10) plasma level did not change before and after IHT in the IHT group, whereas the IL-10 plasma level of the control group after high-altitude exposure was significantly higher. Furthermore, we found that fractional anisotropy values in the left corticospinal tract and splenium of the corpus callosum in the IHT group were significantly higher than those in the control group after high-altitude hypoxia. Conclusions: These results demonstrate that IHT alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral WM.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Neurology, Kangjixintu Hospital, Renqiu, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhengtao Cao
- Department of Biomedical Engineering, Air Force Medical Center, PLA, Beijing, China
| | - Xiang Cheng
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiangpei Yue
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med 2022; 205:949-958. [PMID: 35015980 PMCID: PMC9838631 DOI: 10.1164/rccm.202108-1808oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Daily exposure to mild intermittent hypoxia (MIH) may elicit beneficial cardiovascular outcomes. Objectives: To determine the effect of 15 days of MIH and in-home continuous positive airway pressure treatment on blood pressure in participants with obstructive sleep apnea and hypertension. Methods: We administered MIH during wakefulness 5 days/week for 3 weeks. The protocol consisted of twelve 2-minute bouts of hypoxia interspersed with 2 minutes of normoxia. End-tidal carbon dioxide was maintained 2 mm Hg above baseline values throughout the protocol. Control participants were exposed to a sham protocol (i.e., compressed air). All participants were treated with continuous positive airway pressure over the 3-week period. Results are mean ± SD. Measurements and Main Results: Sixteen male participants completed the study (experimental n = 10; control n = 6). Systolic blood pressure at rest during wakefulness over 24 hours was reduced after 15 days of MIH (142.9 ± 8.6 vs. 132.0 ± 10.7 mm Hg; P < 0.001), but not following the sham protocol (149.9 ± 8.6 vs. 149.7 ± 10.8 mm Hg; P = 0.915). Thus, the reduction in blood pressure from baseline was greater in the experimental group compared with control (-10.91 ± 4.1 vs. -0.17 ± 3.6 mm Hg; P = 0.003). Modifications in blood pressure were accompanied by increased parasympathetic and reduced sympathetic activity in the experimental group, as estimated by blood pressure and heart rate variability analysis. No detrimental neurocognitive and metabolic outcomes were evident following MIH. Conclusions: MIH elicits beneficial cardiovascular and autonomic outcomes in males with OSA and concurrent hypertension. Clinical trial registered with www.clinicaltrials.gov (NCT03736382).
Collapse
Affiliation(s)
- Gino S. Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Otolaryngology, and
| | - M. Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
26
|
Welch JF, Nair J, Argento PJ, Mitchell GS, Fox EJ. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans. J Physiol 2022; 600:2515-2533. [PMID: 35348218 DOI: 10.1113/jp282822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The occurrence of respiratory long-term facilitation following acute exposure to intermittent hypoxia is believed to be dependent upon CO2 regulation - mechanisms governing the critical role of CO2 have seldom been explored. We tested the hypothesis that acute intermittent hypercapnic-hypoxia (AIHH) enhances cortico-phrenic neurotransmission in awake healthy humans. The amplitude of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation was increased after AIHH, but not the amplitude of compound muscle action potentials evoked by cervical magnetic stimulation. Mouth occlusion pressure (P0.1 , indicator of neural respiratory drive) was also increased after AIHH, but not tidal volume or minute ventilation. Thus, moderate AIHH elicits central neural mechanisms of respiratory motor plasticity, without measurable ventilatory long-term facilitation in awake humans. ABSTRACT Acute intermittent hypoxia (AIH) elicits long-term facilitation (LTF) of respiration. Although LTF is observed when CO2 is elevated during AIH in awake humans, the influence of CO2 on corticospinal respiratory motor plasticity is unknown. Thus, we tested the hypotheses that acute intermittent hypercapnic-hypoxia (AIHH): 1) enhances cortico-phrenic neurotransmission (reflecting volitional respiratory control); and 2) elicits ventilatory LTF (reflecting automatic respiratory control). Eighteen healthy adults completed four study visits. Day 1 consisted of anthropometry and pulmonary function testing. On Days 2, 3 and 4, in a balanced alternating sequence, participants received: AIHH, poikilocapnic AIH, and normocapnic-normoxia (Sham). Protocols consisted of 15, 60-s exposures with 90-s normoxic intervals. Transcranial (TMS) and cervical (CMS) magnetic stimulation were used to induce diaphragmatic motor-evoked potentials and compound muscle action potentials, respectively. Respiratory drive was assessed via mouth occlusion pressure (P0.1 ), and minute ventilation measured at rest. Dependent variables were assessed at baseline and 30-60 min post-exposures. Increases in TMS-evoked diaphragm potential amplitudes were observed following AIHH versus Sham (+28 ± 41%, p = 0.003), but not after AIH. No changes were observed in CMS-evoked diaphragm potential amplitudes. Mouth occlusion pressure also increased after AIHH (+21 ± 34%, p = 0.033), but not after AIH. Ventilatory LTF was not observed after any treatment. We demonstrate that AIHH elicits central neural mechanisms of respiratory motor plasticity and increases resting respiratory drive in awake humans. These findings may have important implications for neurorehabilitation after spinal cord injury and other neuromuscular disorders compromising respiratory motor function. Abstract Figure Legend In a single-blind, cross-over, sham-controlled trial, 18 healthy adults received in a balanced alternating sequence: normocapnic-normoxia (Sham), poikilocapnic acute intermittent hypoxia (AIH), and acute intermittent hypercapnic-hypoxia (AIHH). The study tested the hypothesis that AIHH enhances cortico-phrenic neurotransmission and elicits ventilatory long-term facilitation. Note the increase in the mean amplitude of diaphragmatic motor-evoked potentials (MEP) induced by transcranial magnetic stimulation 60 min after AIHH only, whereas the amplitude of diaphragmatic compound muscle action potentials evoked by cervical (phrenic nerve) stimulation were unchanged after AIHH, AIH and Sham. Traces are composite averages of all participants. Mouth occlusion pressure (P0.1 ), an indicator of resting respiratory drive, was increased after AIHH, but not after AIH or Sham (see yellow shaded area). Traces are mouth pressure at the onset of an occluded inspiration during resting breathing. Finally, tidal volume (VT ) was unchanged 30-60 min after AIHH, AIH and Sham. Our results indicate that moderate AIHH elicits a central neural mechanism of respiratory motor plasticity and increases resting respiratory drive in awake humans, without measurable ventilatory long-term facilitation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joseph F Welch
- Breathing Research and Therapeutics Centre.,Department of Physical Therapy
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Centre.,Department of Physical Therapy.,Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Patrick J Argento
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Centre.,Department of Physical Therapy
| | - Emily J Fox
- Breathing Research and Therapeutics Centre.,Department of Physical Therapy.,Brooks Rehabilitation, Jacksonville, FL, USA
| |
Collapse
|
27
|
Su J, Meng Y, Fang Y, Sun L, Wang M, Liu Y, Zhao C, Dai L, Ouyang S. Role of raphe magnus 5-HT 1A receptor in increased ventilatory responses induced by intermittent hypoxia in rats. Respir Res 2022; 23:42. [PMID: 35241072 PMCID: PMC8892800 DOI: 10.1186/s12931-022-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
Background Intermittent hypoxia induces increased ventilatory responses in a 5-HT-dependent manner. This study aimed to explore that effect of raphe magnus serotonin 1A receptor (5-HT1A) receptor on the increased ventilatory responses induced by intermittent hypoxia. Methods Stereotaxic surgery was performed in adult male rats, and acute and chronic intermittent hypoxia models were established after recovery from surgery. The experimental group received microinjections of 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into the raphe magnus nucleus (RMg). Meanwhile, the control group received microinjections of artificial cerebrospinal fluid instead of 8-OH-DPAT. Ventilatory responses were compared among the different groups of oxygen status. 5-HT expressions in the RMg region were assessed by immunohistochemistry after chronic intermittent hypoxia. Results Compared with the normoxia group, the acute intermittent hypoxia group exhibited higher ventilatory responses (e.g., shorter inspiratory time and higher tidal volume, frequency of breathing, minute ventilation, and mean inspiratory flow) (P < 0.05). 8-OH-DPAT microinjection partly weakened these changes in the acute intermittent hypoxia group. Further, compared with the acute intermittent hypoxia group, rats in chronic intermittent hypoxia group exhibited higher measures of ventilatory responses after 1 day of intermittent hypoxia (P < 0.05). These effects peaked after 3 days of intermittent hypoxia treatment and then decreased gradually. Moreover, these changes were diminished in the experimental group. 5-HT expression in the RMg region increased after chronic intermittent hypoxia, which was consistent with the changing trend of ventilatory responses. While activation of the 5-HT1A receptor in the RMg region alleviated this phenomenon. Conclusions The results indicate that RMg 5-HT1A receptor, via changing the expression level of 5-HT in the RMg region, is involved in the modulation of the increased ventilatory responses induced by intermittent hypoxia. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01970-6.
Collapse
Affiliation(s)
- Jiao Su
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yang Meng
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yifei Fang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Linge Sun
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Mengge Wang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yanjun Liu
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
28
|
Vose AK, Welch JF, Nair J, Dale EA, Fox EJ, Muir GD, Trumbower RD, Mitchell GS. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp Neurol 2022; 347:113891. [PMID: 34637802 PMCID: PMC8820239 DOI: 10.1016/j.expneurol.2021.113891] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
We review progress towards greater mechanistic understanding and clinical translation of a strategy to improve respiratory and non-respiratory motor function in people with neuromuscular disorders, therapeutic acute intermittent hypoxia (tAIH). In 2016 and 2020, workshops to create and update a "road map to clinical translation" were held to help guide future research and development of tAIH to restore movement in people living with chronic, incomplete spinal cord injuries. After briefly discussing the pioneering, non-targeted basic research inspiring this novel therapeutic approach, we then summarize workshop recommendations, emphasizing critical knowledge gaps, priorities for future research effort, and steps needed to accelerate progress as we evaluate the potential of tAIH for routine clinical use. Highlighted areas include: 1) greater mechanistic understanding, particularly in non-respiratory motor systems; 2) optimization of tAIH protocols to maximize benefits; 3) identification of combinatorial treatments that amplify plasticity or remove plasticity constraints, including task-specific training; 4) identification of biomarkers for individuals most/least likely to benefit from tAIH; 5) assessment of long-term tAIH safety; and 6) development of a simple, safe and effective device to administer tAIH in clinical and home settings. Finally, we update ongoing clinical trials and recent investigations of tAIH in SCI and other clinical disorders that compromise motor function, including ALS, multiple sclerosis, and stroke.
Collapse
Affiliation(s)
- Alicia K Vose
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Erica A Dale
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Gillian D Muir
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Editorial: Intermittent hypoxia. Exp Neurol 2021; 348:113951. [PMID: 34955452 DOI: 10.1016/j.expneurol.2021.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Beaudin AE, Hanly PJ, Raneri JK, Younes M, Pun M, Anderson TJ, Poulin MJ. Impact of intermittent hypoxia on human vascular responses during sleep. Exp Neurol 2021; 347:113897. [PMID: 34655575 DOI: 10.1016/j.expneurol.2021.113897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/27/2022]
Abstract
Exposure to intermittent hypoxia (IH) ≥15 times per hour is believed to be the primary mechanism for the increased risk of cerebrovascular and cardiovascular disease in patients with moderate to severe sleep apnea. Human experimental models of IH used to investigate this link have been predominantly employed during wakefulness, which limits extrapolation of findings to sleep apnea where IH occurs during sleep. Moreover, how IH impacts vascular regulation during sleep has not been measured quantitatively. Therefore, the objective of this study was to assess the impact sleep accompanied by IH on vascular responses to hypoxia and hypercapnia during sleep. Ten males performed two randomly scheduled 6-h overnight sleep studies. One sleep study was performed in room air (normoxia) and the other sleep study was performed during isocapnic IH (60 s hypoxia-60 s normoxia). On each night, cerebrovascular (peak blood velocity through the middle cerebral artery (V¯P); transcranial Doppler ultrasound) and cardiovascular (blood pressure, heart rate) responses to hypoxia and hypercapnia were measured before sleep onset (PM-Awake), within the first 2 h of sleep (PM-Asleep), in the 5th (out of 6) hours of sleep (AM-Asleep) and after being awoken in the morning (AM-Awake). Sleep accompanied by IH had no impact on the V¯P and blood pressure responses to hypoxia and hypercapnic at any timepoint (p ≥ 0.103 for all responses). However, the AM-Awake heart rate response to hypoxia was greater following sleep in IH compared to sleep in normoxia. Independent of the sleep environment, the V¯P response to hypoxia and hypercapnia were reduced during sleep. In conclusion, cerebral blood flow responses are reduced during sleep compared to wakefulness, but 6 h of sleep accompanied by IH does not alter cerebrovascular and cardiovascular response to hypoxia and hypercapnia during wakefulness or sleep in healthy young humans. However, it is likely that longer exposure to IH during sleep (i.e., days-to-weeks) is required to better elucidate IH's impact on vascular regulation in humans.
Collapse
Affiliation(s)
- Andrew E Beaudin
- University of Calgary, Cumming School of Medicine, Department of Physiology and Pharmacology, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Patrick J Hanly
- Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; University of Calgary, Cumming School of Medicine, Department of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Sleep Centre, Foothills Medical Centre, 1403 29 St NW, Calgary, Alberta T2N 2T9, Canada
| | - Jill K Raneri
- Sleep Centre, Foothills Medical Centre, 1403 29 St NW, Calgary, Alberta T2N 2T9, Canada
| | - Magdy Younes
- University of Manitoba, Department of Medicine, 1105-255 Wellington Crescent, Winnipeg, Manitoba R3M 3V4, Canada
| | - Matiram Pun
- University of Calgary, Cumming School of Medicine, Department of Physiology and Pharmacology, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Todd J Anderson
- University of Calgary, Cumming School of Medicine, Department of Cardiac Science, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marc J Poulin
- University of Calgary, Cumming School of Medicine, Department of Physiology and Pharmacology, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Abstract
AbstractThe following review is designed to explore the pathophysiology of sleep apnea in aging women. The review initially introduces four endotypes (i.e., a more collapsible airway, upper airway muscle responsiveness, arousal threshold, and loop gain) that may have a role in the initiation of obstructive sleep apnea. Thereafter, sex differences in the prevalence of sleep apnea are considered along with differences in the prevalence that exist between younger and older women. Following this discussion, we consider how each endotype might contribute to the increase in prevalence of sleep apnea in aging women. Lastly, we address how modifications in one form of respiratory plasticity, long-term facilitation, that might serve to mitigate apneic events in younger women may be modified in aging women with obstructive sleep apnea. Overall, the published literature indicates that the prevalence of sleep apnea is increased in aging women. This increase is linked primarily to a more collapsible airway and possibly to reduced responsiveness of upper airway muscle activity. In contrast, modifications in loop gain or the arousal threshold do not appear to have a role in the increased prevalence of sleep apnea in aging women. Moreover, we suggest that mitigation of long-term facilitation could contribute to the increased prevalence of sleep apnea in aging women.
Collapse
|
32
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
33
|
Welch JF, Perim RR, Argento PJ, Sutor TW, Vose AK, Nair J, Mitchell GS, Fox EJ. Effect of acute intermittent hypoxia on cortico-diaphragmatic conduction in healthy humans. Exp Neurol 2021; 339:113651. [PMID: 33607080 PMCID: PMC8678369 DOI: 10.1016/j.expneurol.2021.113651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023]
Abstract
Acute intermittent hypoxia (AIH) is a strategy to improve motor output in humans with neuromotor impairment. A single AIH session increases the amplitude of motor evoked potentials (MEP) in a finger muscle (first dorsal interosseous), demonstrating enhanced corticospinal neurotransmission. Since AIH elicits phrenic/diaphragm long-term facilitation (LTF) in rodent models, we tested the hypothesis that AIH augments diaphragm MEPs in humans. Eleven healthy adults (7 males, age = 29 ± 6 years) were tested. Transcranial and cervical magnetic stimulation were used to induce diaphragm MEPs and compound muscle action potentials (CMAP) recorded by surface EMG, respectively. Stimulus-response curves were generated prior to and 30-60 min after AIH. Diaphragm LTF was assessed by measurement of integrated EMG burst amplitude and frequency during eupnoeic breathing before and after AIH. Following baseline measurements, AIH was delivered from an oxygen generator connected to a facemask under poikilocapnic conditions (15 one minute episodes of 9% inspired oxygen with one minute room air intervals). There were no detectable changes in MEP (-1.5 ± 12.1%, p = 0.96) or CMAP (+0.1 ± 7.8%, p = 0.97) amplitudes across the stimulus-response curve. At stimulation intensities approximating 50% of the difference between minimum and maximum baseline amplitudes, MEP and CMAP amplitudes were also unchanged (p > 0.05). Further, no AIH effect was observed on diaphragm EMG activity during eupnoea post-AIH (p > 0.05). We conclude that unlike hand muscles, poikilocapnic AIH does not enhance diaphragm MEPs or produce diaphragm LTF in healthy humans.
Collapse
Affiliation(s)
- Joseph F Welch
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Raphael R Perim
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Patrick J Argento
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Tommy W Sutor
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Alicia K Vose
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brooks Rehabilitation, Jacksonville, FL, USA
| |
Collapse
|
34
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
35
|
Nadeau JR, Arnold BM, Johnston JM, Muir GD, Verge VMK. Acute intermittent hypoxia enhances regeneration of surgically repaired peripheral nerves in a manner akin to electrical stimulation. Exp Neurol 2021; 341:113671. [PMID: 33684407 DOI: 10.1016/j.expneurol.2021.113671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
The intrinsic repair response of injured peripheral neurons is enhanced by brief electrical stimulation (ES) at time of surgical repair, resulting in improved regeneration in rodents and humans. However, ES is invasive. Acute intermittent hypoxia (AIH) - breathing alternate cycles of regular air and air with ~50% normal oxygen levels (11% O2), considered mild hypoxia, is an emerging, promising non-invasive therapy that promotes motor function in spinal cord injured rats and humans. AIH can increase neural activity and under moderately severe hypoxic conditions improves repair of peripherally crushed nerves in mice. Thus, we posited an AIH paradigm similar to that used clinically for spinal cord injury, will improve surgically repaired peripheral nerves akin to ES, including an impact on regeneration-associated gene (RAG) expression-a predictor of growth states. Alterations in early RAG expression were examined in adult male Lewis rats that underwent tibial nerve coaptation repair with either 2 days AIH or normoxia control treatment begun on day 2 post-repair, or 1 h ES treatment (20 Hz) at time of repair. Three days post-repair, AIH or ES treatments effected significant and parallel elevated RAG expression relative to normoxia control at the level of injured sensory and motor neuron cell bodies and proximal axon front. These parallel impacts on RAG expression were coupled with significant improvements in later indices of regeneration, namely enhanced myelination and increased numbers of newly myelinated fibers detected 20 mm distal to the tibial nerve repair site or sensory and motor neurons retrogradely labeled 28 mm distal to the repair site, both at 25 days post nerve repair; and improved return of toe spread function 5-10 weeks post-repair. Collectively, AIH mirrors many beneficial effects of ES on peripheral nerve repair outcomes. This highlights its potential for clinical translation as a non-invasive means to effect improved regeneration of injured peripheral nerves.
Collapse
Affiliation(s)
- J R Nadeau
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| | - B M Arnold
- Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| | - J M Johnston
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| | - G D Muir
- Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada
| | - V M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada.
| |
Collapse
|
36
|
Jarrard CP, Nagel MJ, Stray-Gundersen S, Tanaka H, Lalande S. Hypoxic preconditioning attenuates ischemia-reperfusion injury in young healthy adults. J Appl Physiol (1985) 2021; 130:846-852. [DOI: 10.1152/japplphysiol.00772.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion injury induced by restoration of blood flow following occlusion impairs flow-mediated dilation, a marker of endothelium-dependent vasodilation. In young healthy adults, exposure to intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, before an ischemia-reperfusion injury significantly attenuated the reduction in flow-mediated dilation. Thus, hypoxic preconditioning represents a potential strategy to mitigate the effect of ischemia-reperfusion injury associated with ischemic events.
Collapse
Affiliation(s)
- Caitlin P. Jarrard
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Mercedes J. Nagel
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Sophie Lalande
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
37
|
Camacho-Cardenosa M, Quesada-Gómez JM, Camacho-Cardenosa A, Leal A, Dorado G, Torrecillas-Baena B, Casado-Díaz A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J Stem Cells 2020; 12:1667-1690. [PMID: 33505607 PMCID: PMC7789125 DOI: 10.4252/wjsc.v12.i12.1667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) of bone marrow are the progenitor of osteoblasts and adipocytes. MSC tend to differentiate into adipocytes, instead of osteoblasts, with aging. This favors the loss of bone mass and development of osteoporosis. Hypoxia induces hypoxia inducible factor 1α gene encoding transcription factor, which regulates the expression of genes related to energy metabolism and angiogenesis. That allows a better adaptation to low O2 conditions. Sustained hypoxia has negative effects on bone metabolism, favoring bone resorption. Yet, surprisingly, cyclic hypoxia (CH), short times of hypoxia followed by long times in normoxia, can modulate MSC differentiation and improve bone health in aging. AIM To evaluate the CH effect on MSC differentiation, and whether it improves bone mineral density in elderly. METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes, in CH (3% O2 for 1, 2 or 4 h, 4 d a week). Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes, respectively. In addition, gene expression of marker genes, for osteogenesis or adipogenesis, have been quantified by quantitative real time polymerase chain reaction. The in vivo studies with elderly (> 75 years old; n = 10) were carried out in a hypoxia chamber, simulating an altitude of 2500 m above sea level, or in normoxia, for 18 wk (36 CH sessions of 16 min each). Percentages of fat mass and bone mineral density from whole body, trunk and right proximal femur (femoral, femoral neck and trochanter) were assessed, using dual-energy X-ray absorptiometry. RESULTS CH (4 h of hypoxic exposure) inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes, respectively. However, both parameters were not significantly affected by the other shorter hypoxia times assessed. The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation, in MSC induced to differentiate into osteoblasts. Interestingly, osteocalcin (associated to energy metabolism) was upregulated. Vascular endothelial growth factor an expression and low-density lipoprotein receptor related protein 5/6/dickkopf Wnt signaling pathway inhibitor 1 (associated to Wnt/β-catenin pathway activation) increased in osteoblasts. Yet, they decreased in adipocytes after CH treatments, mainly with the longest hypoxia times. However, the same CH treatments increased the osteoprotegerin/receptor activator for nuclear factor kappa B ligand ratio in both cell types. An increase in total bone mineral density was observed in elderly people exposed to CH, but not in specific regions. The percentage of fat did not vary between groups. CONCLUSION CH may have positive effects on bone health in the elderly, due to its possible inhibitory effect on bone resorption, by increasing the osteoprotegerin / receptor activator for nuclear factor kappa B ligand ratio.
Collapse
Affiliation(s)
| | - José Manuel Quesada-Gómez
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | | | - Alejo Leal
- Servicio de Traumatología, Hospital de Cáceres, Cáceres 10004, Spain
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba-CIBERFES, 14071 Córdoba, Spain
| | - Bárbara Torrecillas-Baena
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
38
|
Wan N, Tang X, Ding H, Yan Y, Zhuang Y, Qi C, Chen Q, Xie W, Zhang J, Wang Y, Liang M, Ning W, Cao J. Influence of coexistence of mild OSA on airway mucus hypersecretion in patients with COPD. J Breath Res 2020; 15. [PMID: 33339013 DOI: 10.1088/1752-7163/abd52e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/17/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE The coexistence of chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) can cause multiple system damage, and the main physiological mechanisms are continuous hypoxia and intermittent hypoxia (IH). Airway mucus hypersecretion is an important clinical feature of COPD, which can cause a progressive decline of lung function, acute COPD aggravation, and disease progression. The purpose of our study is to determine the influence of the coexistence of mild OSA on airway mucus hypersecretion. PATIENTS AND METHODS Clinical data and airway epithelial samples were collected. The average fluorescence intensity of MUC5AC and the number of goblet cells were measured through immunofluorescence staining. MUC5AC expression was measured in human bronchial epithelial (HBE) cells exposed to normoxia, IH, particulate matter (PM), and PM+IH using real-time quantitative polymerase chain reaction and western blotting. RESULTS FEV1% pred and FEV1/FVC were higher in patients with COPD-OSA overlap syndrome(OS) than in patients with COPD alone. Patients with OS had less sputum volume than patients with COPD alone.MUC5AC expression and the number of goblet cells in the airway epithelium in the COPD alone group were significantly higher than those in the OS groups. The PM+IH group had lower MUC5AC mRNA and protein expression in HBE cells than the PM group. CONCLUSIONS The coexistence of mild OSA may reduce goblet cell proliferation and MUC5AC expression in the airway epithelium of patients with COPD. Mild IH inhibited PM-induced up-regulation of MUC5AC expression in the mRNA and protein levels in HBE cells.
Collapse
Affiliation(s)
- Nansheng Wan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Xin Tang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, CHINA
| | - Hui Ding
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Yuxia Yan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Yan Zhuang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University College of Life Sciences, Tianjin, Tianjin, CHINA
| | - Qianqian Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Wei Xie
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Maoli Liang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, CHINA
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, Nankai University College of Life Sciences, Tianjin, Tianjin, CHINA
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, CHINA
| |
Collapse
|
39
|
Stutz J, Oliveras R, Eiholzer R, Spengler CM. No Decrease in Blood Pressure After an Acute Bout of Intermittent Hyperpnea and Hypoxia in Prehypertensive Elderly. Front Physiol 2020; 11:556220. [PMID: 33123023 PMCID: PMC7566905 DOI: 10.3389/fphys.2020.556220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Prevalence of hypertension, subjective sleep complaints and snoring increases with age. Worse sleep and snoring, in turn, are independent risk factors to develop hypertension. Both respiratory muscle training (RMT) and intermittent hypoxia (IH) are suggested to have positive effects on these physiological and behavioral variables. This study therefore aimed to test the acute effects of a single bout of RMT, with and without IH, on resting blood pressure (BP) and sleep. Fourteen prehypertensive elderly performed a 60-min session of (a) intermittent voluntary normocapnic hyperpnea (HYP) alone, (b) HYP in combination with IH (HYP&IH) and (c) a sham intervention in randomized order. BP, hemodynamics, heart rate variability (HRV), cardiac baroreflex sensitivity (BRS) and pulse wave velocity (PWV) were assessed before and 15, 30 and 45 min after each intervention. Variables of sleep were assessed with actigraphy, pulse oximetry and with questionnaires during and after the night following each intervention. Neither HYP nor HYP&IH resulted in a decrease in BP. Repeated measures ANOVA revealed no significant interaction effect for systolic BP (p = 0.090), diastolic BP (p = 0.151), HRV parameters, BRS and PWV (all p > 0.095). Fragmentation index was lower after both HYP (−6.5 units) and HYP&IH (−8.4 units) compared to sham, p(ANOVA) = 0.046, although pairwise comparisons reveal no significant differences. There were no other significant effects for the remaining sleep variables. We conclude that one bout of intermittent hyperpnea, alone or in combination with IH, is not effective in lowering blood pressure or improving sleep in prehypertensive elderly.
Collapse
Affiliation(s)
- Jan Stutz
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Ruben Oliveras
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Remo Eiholzer
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
40
|
Effect of a Single Session of Intermittent Hypoxia on Erythropoietin and Oxygen-Carrying Capacity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197257. [PMID: 33020411 PMCID: PMC7579477 DOI: 10.3390/ijerph17197257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia, defined as alternating bouts of breathing hypoxic and normoxic air, has the potential to improve oxygen-carrying capacity through an erythropoietin-mediated increase in hemoglobin mass. The purpose of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass in young healthy individuals. Nineteen participants were randomly assigned to an intermittent hypoxia group (Hyp, n = 10) or an intermittent normoxia group (Norm, n = 9). Intermittent hypoxia consisted of five 4-min hypoxic cycles at a targeted arterial oxygen saturation of 90% interspersed with 4-min normoxic cycles. Erythropoietin levels were measured before and two hours following completion of the protocol. Hemoglobin mass was assessed the day before and seven days after exposure to intermittent hypoxia or normoxia. As expected, the intermittent hypoxia group had a lower arterial oxygen saturation than the intermittent normoxia group during the intervention (Hyp: 89 ± 1 vs. Norm: 99 ± 1%, p < 0.01). Erythropoietin levels did not significantly increase following exposure to intermittent hypoxia (Hyp: 8.2 ± 4.5 to 9.0 ± 4.8, Norm: 8.9 ± 1.7 to 11.1 ± 2.1 mU·mL−1, p = 0.15). Hemoglobin mass did not change following exposure to intermittent hypoxia. This single session of intermittent hypoxia was not sufficient to elicit a significant rise in erythropoietin levels or hemoglobin mass in young healthy individuals.
Collapse
|
41
|
Christiansen L, Chen B, Lei Y, Urbin MA, Richardson MSA, Oudega M, Sandhu M, Rymer WZ, Trumbower RD, Mitchell GS, Perez MA. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. Exp Neurol 2020; 335:113483. [PMID: 32987000 DOI: 10.1016/j.expneurol.2020.113483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Paired corticospinal-motoneuronal stimulation (PCMS) elicits spinal synaptic plasticity in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we examined whether PCMS-induced plasticity could be potentiated by acute intermittent hypoxia (AIH), a treatment also known to induce spinal synaptic plasticity in humans with chronic incomplete cervical SCI. During PCMS, we used 180 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ~1-2 ms before the arrival of antidromic potentials elicited in motoneurons by electrical stimulation of the ulnar nerve. During AIH, participants were exposed to brief alternating episodes of hypoxic inspired gas (1 min episodes of 9% O2) and room air (1 min episodes of 20.9% O2). We examined corticospinal function by measuring motor evoked potentials (MEPs) elicited by cortical and subcortical stimulation of corticospinal axons and voluntary motor output in the FDI muscle before and after 30 min of PCMS combined with AIH (PCMS+AIH) or sham AIH (PCMS+sham-AIH). The amplitude of MEPs evoked by magnetic and electrical stimulation increased after both protocols, but most after PCMS+AIH, consistent with the hypothesis that their combined effects arise from spinal plasticity. Both protocols increased electromyographic activity in the FDI muscle to a similar extent. Thus, PCMS effects on spinal synapses of hand motoneurons can be potentiated by AIH. The possibility of different thresholds for physiological vs behavioral gains needs to be considered during combinatorial treatments.
Collapse
Affiliation(s)
- Lasse Christiansen
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
| | - Bing Chen
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America; Shirley Ryan AbilityLab, Northwestern University, Chicago, IL 60611, United States of America
| | - Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America
| | - M A Urbin
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America
| | | | - Martin Oudega
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America; Shirley Ryan AbilityLab, Northwestern University, Chicago, IL 60611, United States of America; Edward Jr. Hines VA Hospital, Chicago, IL 60141, United States of America; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Northwestern University, Chicago, IL 60611, United States of America; Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, PR China
| | - Milap Sandhu
- Shirley Ryan AbilityLab, Northwestern University, Chicago, IL 60611, United States of America
| | - W Zev Rymer
- Shirley Ryan AbilityLab, Northwestern University, Chicago, IL 60611, United States of America
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Cambridge Street, Cambridge, MA 02138, United States of America; Harvard Medical School, Department of Physical Medicine & Rehabilitation, Boston, MA 02115, United States of America
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis and Miami VA Medical Center, Miami, FL, 33136, United States of America; Shirley Ryan AbilityLab, Northwestern University, Chicago, IL 60611, United States of America; Edward Jr. Hines VA Hospital, Chicago, IL 60141, United States of America; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
42
|
Glazachev OS, Geppe NA, Timofeev YS, Samartseva VG, Dudnik EN, Zapara MA, Chebysheva SN. Indicators of individual hypoxia resistance — a way to optimize hypoxic training for children. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2020. [DOI: 10.21508/1027-4065-2020-65-4-78-84] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- O. S. Glazachev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N. A. Geppe
- Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. S. Timofeev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V. G. Samartseva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E. N. Dudnik
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M. A. Zapara
- Sechenov First Moscow State Medical University (Sechenov University)
| | - S. N. Chebysheva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
43
|
Si L, Zhang J, Wang Y, Cao J, Chen BY, Guo HJ. Obstructive sleep apnea and respiratory center regulation abnormality. Sleep Breath 2020; 25:563-570. [PMID: 32870421 DOI: 10.1007/s11325-020-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is a complex disease in which phenotypic analysis and understanding pathological mechanisms facilitate personalized treatment and outcomes. However, the pathophysiology responsible for this robust observation is incompletely understood. The objective of the present work was to review how respiratory center regulation varies during sleep and wakeness in patients with OSA. DATA SOURCES We searched for relevant articles up to December 31, 2019 in PubMed database. METHODS This review examines the current literature on the characteristics of respiratory center regulation during wakefulness and sleep in OSA, detection method, and phenotypic treatment for respiratory center regulation. RESULTS Mechanisms for ventilatory control system instability leading to OSA include different sleep stages in chemoresponsiveness to hypoxia and hypercapnia and different chemosensitivity at different time. One can potentially stabilize the breathing center in sleep-related breathing disorders by identifying one or more of these pathophysiological mechanisms. CONCLUSIONS Advancing mechanism research in OSA will guide symptom research and provide alternate and novel opportunities for effective treatment for patients with OSA.
Collapse
Affiliation(s)
- Liang Si
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Zhang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yan Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Cao
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Bao-Yuan Chen
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Heng-Juan Guo
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
44
|
Puri S, El-Chami M, Shaheen D, Ivers B, Panza GS, Badr MS, Lin HS, Mateika JH. Variations in loop gain and arousal threshold during NREM sleep are affected by time of day over a 24-hour period in participants with obstructive sleep apnea. J Appl Physiol (1985) 2020; 129:800-809. [PMID: 32790595 DOI: 10.1152/japplphysiol.00376.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether time of day affects loop gain (LG) and the arousal threshold (AT) during non-rapid eye movement (NREM) sleep. Eleven men with obstructive sleep apnea (apnea-hypopnea index > 5 events/h) completed a constant-routine protocol that comprised 3-h sleep sessions in the evening [10 PM (1) to 1 AM], morning (6 AM to 9 AM), afternoon (2 PM to 5 PM), and subsequent evening [10 PM (2) to 1 AM]. During each sleep session LG and the AT were measured during NREM sleep with a model-based approach. Our results showed the presence of a rhythmicity in both LG (P < 0.0001) and the AT (P < 0.001) over a 24-h period. In addition, LG and the AT were greater in the morning compared with both evening sessions [6 AM vs. 10 PM (1) vs. 10 PM (2): LG (1 cycle/min): 0.71 ± 0.23 vs. 0.60 ± 0.22 (P = 0.01) vs. 0.56 ± 0.10 (P < 0.001), AT (fraction of eupneic breathing): 1.45 ± 0.47 vs. 1.28 ± 0.36 (P = 0.02) vs. 1.20 ± 0.18 (P = 0.001)]. No difference in LG and the AT existed between the evening sessions (LG: P = 0.27; AT: P = 0.24). LG was correlated to measures of the hypocapnic ventilatory response (i.e., a measure of chemoreflex sensitivity) (r = 0.72 and P = 0.045) and the critical closing pressure (i.e., a measure of airway collapsibility) (r = 0.77 and P = 0.02) that we previously published. We conclude that time of day, independent of hallmarks of sleep apnea, affects LG and the AT during NREM sleep. These modifications may contribute to increases in breathing instability in the morning compared with other periods throughout the day/night cycle in individuals with obstructive sleep apnea. In addition, efficaciousness of treatments for obstructive sleep apnea that target LG and the AT may be modified by a rhythmicity in these variables.NEW & NOTEWORTHY Loop gain and the arousal threshold during non-rapid eye movement (NREM) sleep are greater in the morning compared with the afternoon and evening. Loop gain measures are correlated to chemoreflex sensitivity and the critical closing pressure measured during NREM sleep in the evening, morning, and afternoon. Breathing (in)stability and efficaciousness of treatments for obstructive sleep apnea may be modulated by a circadian rhythmicity in loop gain and the arousal threshold.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamad El-Chami
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - David Shaheen
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Blake Ivers
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gino S Panza
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
| | - Jason H Mateika
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
45
|
Chacaroun S, Borowik A, Doutreleau S, Belaidi E, Wuyam B, Tamisier R, Pépin JL, Flore P, Verges S. Cardiovascular and metabolic responses to passive hypoxic conditioning in overweight and mildly obese individuals. Am J Physiol Regul Integr Comp Physiol 2020; 319:R211-R222. [PMID: 32609532 DOI: 10.1152/ajpregu.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation ([Formula: see text]) = 75%; IH, 5 min [Formula: see text] = 75% - 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (-12 ± 15 and -13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and -6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia -21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Anna Borowik
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Stephane Doutreleau
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Bernard Wuyam
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Patrice Flore
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Verges
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
46
|
Gangwar A, Paul S, Ahmad Y, Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep 2020; 10:7899. [PMID: 32404929 PMCID: PMC7220935 DOI: 10.1038/s41598-020-64848-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/09/2020] [Indexed: 01/27/2023] Open
Abstract
Intermittent hypoxia, initially associated with adverse effects of sleep apnea, has now metamorphosed into a module for improved sports performance. The regimen followed for improved sports performance is milder intermittent hypoxic training (IHT) as compared to chronic and severe intermittent hypoxia observed in sleep apnea. Although several studies have indicated the mechanism and enough data on physiological parameters altered by IH is available, proteome perturbations remain largely unknown. Altitude induced hypobaric hypoxia is known to require acclimatization as it causes systemic redox stress and inflammation in humans. In the present study, a short IHT regimen consisting of previously reported physiologically beneficial FIO2 levels of 13.5% and 12% was administered to human subjects. These subjects were then airlifted to altitude of 3500 m and their plasma proteome along with associated redox parameters were analyzed on days 4 and 7 of high altitude stay. We observed that redox stress and associated post-translational modifications, perturbed lipid metabolism and inflammatory signaling were induced by IHT exposure at Baseline. However, this caused activation of antioxidants, energy homeostasis mechanisms and anti-inflammatory responses during subsequent high-altitude exposure. Thus, we propose IHT as a beneficial non-pharmacological intervention that benefits individuals venturing to high altitude areas.
Collapse
Affiliation(s)
- Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
47
|
Kelly MN, Smith DN, Sunshine MD, Ross A, Zhang X, Gumz ML, Esser KA, Mitchell GS. Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1058-R1067. [PMID: 32348679 DOI: 10.1152/ajpregu.00010.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are endogenous and entrainable daily patterns of physiology and behavior. Molecular mechanisms underlie circadian rhythms, characterized by an ~24-h pattern of gene expression of core clock genes. Although it has long been known that breathing exhibits circadian rhythms, little is known concerning clock gene expression in any element of the neuromuscular system controlling breathing. Furthermore, we know little concerning gene expression necessary for specific respiratory functions, such as phrenic motor plasticity. Thus, we tested the hypotheses that transcripts for clock genes (Bmal1, Clock, Per1, and Per2) and molecules necessary for phrenic motor plasticity (Htr2a, Htr2b, Bdnf, and Ntrk2) oscillate in regions critical for phrenic/diaphragm motor function via RT-PCR. Tissues were collected from male Sprague-Dawley rats entrained to a 12-h light-dark cycle at 4 zeitgeber times (ZT; n = 8 rats/group): ZT5, ZT11, ZT17, and ZT23; ZT0 = lights on. Here, we demonstrate that 1) circadian clock genes (Bmal1, Clock, Per1, and Per2) oscillate in regions critical for phrenic/diaphragm function, including the caudal medulla, ventral C3-C5 cervical spinal cord, and diaphragm; 2) the clock protein BMAL1 is localized within CtB-labeled phrenic motor neurons; 3) genes necessary for intermittent hypoxia-induced phrenic/diaphragm motor plasticity (Htr2b and Bdnf) oscillate in the caudal medulla and ventral C3-C5 spinal cord; and 4) there is higher intensity of immunofluorescent BDNF protein within phrenic motor neurons at ZT23 compared with ZT11 (n = 11 rats/group). These results suggest local circadian clocks exist in the phrenic motor system and confirm the potential for local circadian regulation of neuroplasticity and other elements of the neural network controlling breathing.
Collapse
Affiliation(s)
- Mia N Kelly
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Danelle N Smith
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Michael D Sunshine
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Ashley Ross
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
48
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Tomas-Carus P, Olcina G, Timón R, Brazo-Sayavera J. Effects of whole-body vibration under hypoxic exposure on muscle mass and functional mobility in older adults. Aging Clin Exp Res 2020; 32:625-632. [PMID: 31236796 DOI: 10.1007/s40520-019-01246-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ageing is accompanied by a loss of muscle mass and function, which are associated with decrease of functional capacity. Combination of WBV training with normobaric hypoxic exposure could augment the beneficial effects due to synergic effects of both treatments. AIMS The purpose of this study was to examine the effects of 36 sessions of the combined WBV training and normobaric hypoxic exposure on muscle mass and functional mobility in older adults. METHODS Nineteen elderly people were randomly assigned to a: vibration normoxic exposure group (NWBV; n = 10; 20.9% FiO2) and vibration hypoxic exposure group (HWBV; n = 9). Participants developed 36 sessions of WBV training along 18 weeks, which included 4 bouts of 30 s (12.6 Hz in frequency and 4 mm in amplitude) with 60 s of rest between bouts, inside a hypoxic chamber for the HWBV. The "Timed Up and Go Test" evaluated functional mobility. Percentages of lean mass were obtained with dual-energy X-ray absorptiometry. RESULTS Neither statistically significant within group variations nor statistically significant differences between both groups were detected to any parameter. DISCUSSION Baseline characteristics of population, training protocol and the level of hypoxia employed could cause different adaptations on muscle mass and function. CONCLUSIONS The combination of WBV training and hypoxic exposure did not cause any effect on either legs lean mass or functional mobility of older adults.
Collapse
|
49
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
50
|
Serebrovska TV, Grib ON, Portnichenko VI, Serebrovska ZO, Egorov E, Shatylo VB. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High Alt Med Biol 2019; 20:383-391. [DOI: 10.1089/ham.2019.0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Oksana N. Grib
- D.F. Chebotarev State Institute of Gerontology, Kiev, Ukraine
| | | | | | - Egor Egorov
- CellAir Construction GmbH, Stuttgart, Germany
| | | |
Collapse
|