1
|
Carswell TMR, Hasan M, Giles JW. A scoping review and evaluation of open-source transtibial amputation musculoskeletal models for female populations. Prosthet Orthot Int 2024:00006479-990000000-00264. [PMID: 39259587 DOI: 10.1097/pxr.0000000000000372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/14/2024] [Indexed: 09/13/2024]
Abstract
Musculoskeletal modeling is often used to study people with transtibial amputations. Females in this population are of particular interest as they are underrepresented in research, experience unique challenges, and demonstrate gait biomechanics distinct from males. Because generic models often neglect innate variations between populations, it is important to determine whether data used to develop a model are representative of the population studied. The objective of this study was to review and analyze existing transtibial amputation musculoskeletal models, establish a database from the information compiled, and use the database to select the model most relevant for studying female populations. A scoping search was performed and a database was created based on data detailing the eligible models. Models were evaluated through a weighted decision process based on criteria of their representation of females with transtibial amputations, prosthetic functionality, development transparency, overall functionality, and experimental validation methods. The scoping review identified 3 studies, Willson et al., LaPrè et al., and Miller and Esposito. A database detailing these models was established. The Willson model scored highest on all criteria except overall functionality, where the LaPrè model outscored it. Based on the established weightings, the Willson model was classed most appropriate for the stated goals. The created database can be used by other researchers to guide their own modeling studies, irrespective of the population of focus. Of the 3, the Willson model was found most relevant for studying females with transtibial amputations. This model will be used in future work investigating and addressing challenges of females with transtibial amputations.
Collapse
Affiliation(s)
- Tess M R Carswell
- Orthopaedic Technologies and Biomechanics Laboratory, Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | |
Collapse
|
2
|
Bohm S, Schroll A, Mersmann F, Arampatzis A. Assessment and modelling of the activation-dependent shift in optimal length of the human soleus muscle in vivo. J Physiol 2024; 602:1371-1384. [PMID: 38482557 DOI: 10.1113/jp285986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Previous in vitro and in situ studies have reported a shift in optimal muscle fibre length for force generation (L0) towards longer length at decreasing activation levels (also referred to as length-dependent activation), yet the relevance for in vivo human muscle contractions with a variable activation pattern remains largely unclear. By a combination of dynamometry, ultrasound and electromyography (EMG), we experimentally obtained muscle force-fascicle length curves of the human soleus at 100%, 60% and 30% EMGmax levels from 15 participants aiming to investigate activation-dependent shifts in L0 in vivo. The results showed a significant increase in L0 of 6.5 ± 6.0% from 100% to 60% EMGmax and of 9.1 ± 7.2% from 100% to 30% EMGmax (both P < 0.001), respectively, providing evidence of a moderate in vivo activation dependence of the soleus force-length relationship. Based on the experimental results, an approximation model of an activation-dependent force-length relationship was defined for each individual separately and for the collective data of all participants, both with sufficiently high accuracy (R2 of 0.899 ± 0.056 and R2 = 0.858). This individual approximation approach and the general approximation model outcome are freely accessible and may be used to integrate activation-dependent shifts in L0 in experimental and musculoskeletal modelling studies to improve muscle force predictions. KEY POINTS: The phenomenon of the activation-dependent shift in optimal muscle fibre length for force generation (length-dependent activation) is poorly understood for human muscle in vivo dynamic contractions. We experimentally observed a moderate shift in optimal fascicle length towards longer length at decreasing electromyographic activity levels for the human soleus muscle in vivo. Based on the experimental results, we developed a freely accessible approximation model that allows the consideration of activation-dependent shifts in optimal length in future experimental and musculoskeletal modelling studies to improve muscle force predictions.
Collapse
Affiliation(s)
- Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Tsai MS, Domroes T, Pentidis N, Koschinski S, Schroll A, Bohm S, Arampatzis A, Mersmann F. Effect of the temporal coordination and volume of cyclic mechanical loading on human Achilles tendon adaptation in men. Sci Rep 2024; 14:6875. [PMID: 38519507 PMCID: PMC10960029 DOI: 10.1038/s41598-024-56840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.e., 90% maximum voluntary contraction and approximately 4.5 to 6.5% tendon strain) that were systematically modified in terms of loading frequency (i.e., sessions per week) and overall loading volume (i.e., total time under loading). Before, at mid-term (8 weeks) and after completion of the 16 weeks intervention, AT mechanical properties were determined using a combination of inverse dynamics and ultrasonography. The cross-sectional area (CSA) and length of the free AT were measured using magnetic resonance imaging pre- and post-intervention. The data analysis with a linear mixed model showed significant increases in muscle strength, rest length-normalized AT stiffness, and CSA of the free AT in the intervention group (p < 0.05), yet with no marked differences between protocols. No systematic effects were found considering the temporal coordination of loading and overall loading volume. In all protocols, the major changes in normalized AT stiffness occurred within the first 8 weeks and were mostly due to material rather than morphological changes. Our findings suggest that-in the range of 2.5-5 sessions per week and 180-300 s total high strain loading-the temporal coordination of loading and recovery and overall loading volume is rather secondary for tendon adaptation.
Collapse
Affiliation(s)
- Meng-Shiuan Tsai
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Sophia Koschinski
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin School of Movement Science, Berlin, Germany.
| |
Collapse
|
4
|
Bohm S, Mersmann F, Schroll A, Arampatzis A. Speed-specific optimal contractile conditions of the human soleus muscle from slow to maximum running speed. J Exp Biol 2023; 226:jeb246437. [PMID: 37901934 DOI: 10.1242/jeb.246437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The soleus is the main muscle for propulsion during human running but its operating behavior across the spectrum of physiological running speeds is currently unknown. This study experimentally investigated the soleus muscle activation patterns and contractile conditions for force generation, power production and efficient work production (i.e. force-length potential, force-velocity potential, power-velocity potential and enthalpy efficiency) at seven running speeds (3.0 m s-1 to individual maximum). During submaximal running (3.0-6.0 m s-1), the soleus fascicles shortened close to optimal length and at a velocity close to the efficiency maximum, two contractile conditions for economical work production. At higher running speeds (7.0 m s-1 to maximum), the soleus muscle fascicles still operated near optimum length, yet the fascicle shortening velocity increased and shifted towards the optimum for mechanical power production with a simultaneous increase in muscle activation, providing evidence for three cumulative mechanisms to enhance mechanical power production. Using the experimentally determined force-length-velocity potentials and muscle activation as inputs in a Hill-type muscle model, a reduction in maximum soleus muscle force at speeds ≥7.0 m s-1 and a continuous increase in maximum mechanical power with speed were predicted. The reduction in soleus maximum force was associated with a reduced force-velocity potential. The increase in maximum power was explained by an enhancement of muscle activation and contractile conditions until 7.0 m s-1, but mainly by increased muscle activation at high to maximal running speed.
Collapse
Affiliation(s)
- Sebastian Bohm
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Falk Mersmann
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Arno Schroll
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Adamantios Arampatzis
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
5
|
Kovács B, Dong S, Song Y, Jingyi Y, Béres S, Tihanyi J, Zhang J, Petridis L, Gu Y. A longer Achilles tendon moment arm length is not associated with superior hopping performance. Front Bioeng Biotechnol 2023; 11:1270169. [PMID: 37954019 PMCID: PMC10639158 DOI: 10.3389/fbioe.2023.1270169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Variability in musculoskeletal and lower leg structure has the potential to influence hopping height. Achilles tendon moment arm length and plantarflexor muscle strength can influence ankle joint torque development and, consequently, hopping performance. While most studies have examined the connection of the Achilles tendon moment arm with hopping performance including the resting length, in this study we attempted to explore how the changes in Achilles tendon moment arm are related to hopping performance. Therefore, the purpose of this study was to test for correlations between foot and lower leg muscle structure parameters (i.e., muscle mass, volume, cross-sectional area and Achilles tendon moment arm length) and hopping height performance in relation to changes in Achilles tendon moment arm length. Eighteen participants (10 males 8 female) performed repetitive bilateral hopping on a force platform while sagittal plane kinematics of the lower leg were recorded. Additionally, maximal isometric plantarflexion was measured. To obtain structural parameters of the lower leg, the right lower leg of each participant was scanned with magnetic resonance imaging. The cross-sectional areas of the Achilles tendon, soleus, lateral and medial gastrocnemius were measured, while muscle volumes, muscle mass, and Achilles tendon moment arm length were calculated. Contrary to our initial assumption, longer Achilles tendon moment arm did not result in superior hopping performance. Interestingly, neither maximal isometric plantarflexion force nor muscle size correlated with repetitive bilateral hopping performance. We can assume that the mechanical characteristics of the tendon and the effective utilization of the stored strain energy in the tendon may play a more important role in repetitive hopping than the structural parameters of the lower leg.
Collapse
Affiliation(s)
- Bálint Kovács
- Faculty of Sport Science, Ningbo University, Ningbo, China
- Department of Kinesiology, Hungarian University of Sports Sciences, Budapest, Hungary
| | - Sun Dong
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Ye Jingyi
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Sándor Béres
- Department of Athletics, Hungarian University of Sports Sciences, Budapest, Hungary
| | - József Tihanyi
- Department of Kinesiology, Hungarian University of Sports Sciences, Budapest, Hungary
| | - Jingfeng Zhang
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Leonidas Petridis
- Research Centre for Sport Physiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sport Science, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Arima S, Maeda N, Oda S, Esaki H, Tamura Y, Komiya M, Urabe Y. Acute Effects of Selective Strength Exercise on the Peroneus Longus and Brevis. J Sports Sci Med 2023; 22:397-405. [PMID: 37711716 PMCID: PMC10499122 DOI: 10.52082/jssm.2023.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023]
Abstract
The peroneus muscles are muscles that mainly act in ankle eversion and can be divided into PL and PB, which have different but important roles in foot and ankle functions. Therefore, PL and PB dysfunction can lead to foot and ankle issues, making. selective strength exercise necessary. This study aimed to identify the effect of two different exercise techniques on PL and PB morphologies. Two interventions were performed on separate days: the PL intervention, in which a Thera-Band® was placed on the ball of the foot and pushed out from the contact point, and the PB intervention, in which the Thera-Band® was pulled from the base of the fifth metatarsal. Cross-sectional area (CSA) and thickness of the peroneus muscles at 25% (showing the PL morphology) and 75% (showing the PB morphology) proximal to the line connecting the fibular head and lateral malleolus, as well as ankle strength was measured before and immediately after the interventions and at 10, 20, and 30 min later. A repeated-measures two-way analysis of variance was conducted to identify differences in the effects of the interventions on the PL and PB. Main and interaction effects on CSA, thickness, and ankle strength, with a significant increase in CSA and thickness in the proximal 25% in the PL intervention and the distal 75% in the PB intervention immediately after implementation, were observed (p < 0.05). The transient increase in muscle volume due to edema immediately after exercise indicates the acute effect of exercise. The CSA and thickness of the proximal 25% in the PL intervention and the distal 75% in the PB intervention increased immediately after the intervention, indicating that these interventions can be used to selectively exercise the PL and PB.
Collapse
Affiliation(s)
- Satoshi Arima
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Noriaki Maeda
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Sakura Oda
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Hinata Esaki
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Tamura
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Makoto Komiya
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yukio Urabe
- Department of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
7
|
Kosaka T, Sasajima S, Yasuda A, Mino S, Kubo K. Effects of tendon elastic energy and electromyographic activity pattern on jumping height and pre-stretch augmentation during jumps with different pre-stretch intensity. J Sports Sci 2023; 41:1317-1325. [PMID: 37847798 DOI: 10.1080/02640414.2023.2269720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The present study aimed to investigate the effects of tendon elastic energy and electromyographic activity patterns (ratio of pre-landing to concentric: mEMG PLA/CON; ratio of eccentric to concentric; mEMG ECC/CON) on jump performance. Twenty-nine males performed five kinds of unilateral jumps using only ankle joint (no-countermovement jump: noCMJ; countermovement jump: CMJ; drop jumps at 10, 20 and 30 cm drop height: DJ10, DJ20 and DJ30). Jumping height, pre-stretch augmentation and electromyographic activity of the plantar flexor muscles were measured. The elastic energy of the Achilles tendon was measured during isometric contractions. Relative tendon elastic energy (to body mass) was highly correlated with jumping heights of CMJ, DJ10 and DJ20 but not with noCMJ and DJ30, whereas that was significantly correlated with pre-stretch augmentation in CMJ, but not with three DJs. The mEMG PLA/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with DJ10, whereas the mEMG ECC/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with CMJ and DJ10. These results suggested that jumping exercises with low pre-stretch intensity benefited from tendon elastic energy, but those with high pre-stretch intensity benefited from electromyographic activity patterns.
Collapse
Affiliation(s)
- Takehiro Kosaka
- Department of Life Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Shuhei Sasajima
- Department of Life Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Ayaka Yasuda
- Department of Life Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Soushi Mino
- Department of Life Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Kubo
- Department of Life Science, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
8
|
Kovács B, Petridis L, Négyesi J, Sebestyén Ö, Jingyi Y, Zhang J, Gu Y, Tihanyi J. An Acute Transition from Rearfoot to Forefoot Strike does not Induce Major Changes in Plantarflexor Muscles Activation for Habitual Rearfoot Strike Runners. J Sports Sci Med 2023; 22:512-525. [PMID: 37711699 PMCID: PMC10499148 DOI: 10.52082/jssm.2023.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Footstrike pattern has received increased attention within the running community because there is a common belief that forefoot strike running (FFS) is more advantageous (i.e., improve performance and reduce running injuries) than rearfoot strike running (RFS) in distance running. Literature reports suggest greater knee joint flexion magnitude and initial knee angle during stance in FFS compared with RFS running We examined the EMG activation of the triceps surae muscles during an acute transition from RFS to FFS strike. We tested the hypothesis that due to larger knee flexion in FFS the gastrocnemius muscles possibly decrease their EMG activity because muscle fascicles operate under unfavorable conditions. Fourteen competitive healthy middle- and long-distance runners who were habitual RFS runners ran on a treadmill at three speeds: 12, 14, and 16 km·h-1. Each running speed was performed with both FFS and RFS patterns. Lower limb kinematics in the sagittal plane and normalized electromyography (EMG) activity of medial gastrocnemius proximal, middle and distal regions, lateral gastrocnemius and soleus muscles were compared between footstrike patterns and running speeds across the stride cycle. Contrary to our expectations, the knee joint range of motion was similar in FFS and RFS running. However, the sagittal plane ankle joint motion was greater (p < 0.01) while running with FFS, resulting in a significantly greater muscle-tendon unit lengthening (p < 0.01) in FFS compared with RFS running. In addition, medial and lateral gastrocnemius showed higher EMG activity in FFS compared with RFS running in the late swing and early stance but only for a small percentage of the stride cycle. However, strike patterns and running speed failed to induce region-specific activation differences within the medial gastrocnemius muscle. Overall, well-trained RFS runners are able to change to FFS running by altering only the ankle joint kinematics without remarkably changing the EMG activity pattern.
Collapse
Affiliation(s)
- Bálint Kovács
- Ningbo University, Faculty of Sport Science, Ningbo, China
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Leonidas Petridis
- Research Centre for Sport Physiology, Hungarian University of Sport Sciences, Hungary
| | - János Négyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Örs Sebestyén
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Ye Jingyi
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - Jingfeng Zhang
- University of Chinese Academy of Sciences, Department of Radiology, HwaMei Hospital, Ningbo, China
| | - Yaodong Gu
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - József Tihanyi
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Choi YJ, Chalatzoglidis G, Trapezanidou M, Delmas S, Savva E, Yacoubi B, Arabatzi F, Christou EA. Adolescent boys who participate in sports exhibit similar ramp torque control with young men despite differences in strength and tendon characteristics. Eur J Appl Physiol 2023; 123:965-974. [PMID: 36607415 PMCID: PMC10718087 DOI: 10.1007/s00421-022-05130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The goal of this paper was to determine if sports participation influences torque control differently for adolescent boys and young men during a slow ramp task. METHODS Twenty-one adolescent boys (11 athletes) and 31 young men (16 athletes) performed a slow ramp increase in plantar flexion torque from 0 to maximum. We quantified torque control as the coefficient of variation (CV) of torque during the ramp and quantified the Achilles tendon mechanical properties using ultrasonography. RESULTS Relative to adolescent boys, young men were taller, heavier, stronger, and had a longer and stiffer Achilles tendon. However, these characteristics were not different between athletes and non-athletes in adolescent boys. For the CV of torque, there was a significant interaction with sports participation, indicating that only adolescent boys who were non-athletes had greater variability than young men. The CV of torque of all participants was predicted from the maximum torque and torque oscillations from 1 to 2 Hz, whereas the CV of torque for adolescent boys was predicted only from torque oscillations from 1 to 2 Hz. CONCLUSION These findings suggested that adolescent boys who participate in sports exhibited lower torque variability during a slow ramp task, which was not explained by differences in Achilles tendon properties or strength.
Collapse
Affiliation(s)
- Yoon Jin Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8205, USA
| | - George Chalatzoglidis
- Laboratory of Neuromechanics, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Martha Trapezanidou
- Laboratory of Neuromechanics, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stefan Delmas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8205, USA
| | - Evangelia Savva
- Laboratory of Neuromechanics, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8205, USA
| | - Fotini Arabatzi
- Laboratory of Neuromechanics, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8205, USA.
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
SHIOTANI HIROTO, TAKAHASHI KATSUKI, HONMA YUKI, TOMARI KAZUKI, HAYASHI HIDETAKA, SADO NATSUKI, KAWAKAMI YASUO. Mechanical Linkage between Achilles Tendon and Plantar Fascia Accounts for Range of Motion of Human Ankle-Foot Complex. Med Sci Sports Exerc 2023; 55:66-73. [PMID: 35977106 PMCID: PMC9770132 DOI: 10.1249/mss.0000000000003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The human ankle-foot complex possesses a passive range of motion (ROM) through changes in tibiocalcaneal ( θcal ) and foot arch ( θarch ) angles. Based on the anatomical linkage between the Achilles tendon (AT) and plantar fascia (PF), we hypothesized that AT and PF with different mechanical properties conjointly modulate the passive ROM of the human ankle-foot complex. We examined the association of AT and PF stiffness with passive ankle-foot ROM and further addressed differences between sexes. METHODS A series of sagittal magnetic resonance images of the foot and passive ankle plantar flexion torque were obtained for 20 men and 20 women with their ankle-foot passively rotated from 30° of plantar flexion to 20° of dorsiflexion. Based on the measured changes in AT and PF lengths, θcal , θarch , and passive torque, AT and PF stiffness were determined. RESULTS Upon passive ankle dorsiflexion, AT and PF were lengthened; their length changes were inversely correlated. Men showed a stiffer AT, more compliant PF, less calcaneal rotation, and greater foot arch deformation compared with women. Furthermore, we found inverse correlations between AT stiffness and ROM of θcal , and between PF stiffness and ROM of θarch in men and women. CONCLUSIONS Passive AT and PF extensibility counter each other. AT and PF stiffness and passive ROM of ankle-foot components were countered between sexes; however, associations between stiffness and passive ROM of the ankle-foot complex were consistent between sexes. Our findings support the notion that the balanced mechanical interaction between the AT and PF can account for the passive ROM of the human ankle-foot complex in vivo , and the differences between sexes.
Collapse
Affiliation(s)
- HIROTO SHIOTANI
- Faculty of Sport Sciences, Waseda University, Tokorozawa, JAPAN,Human Performance Laboratory, Comprehensive Research Organization of Waseda University, Tokyo, JAPAN
| | - KATSUKI TAKAHASHI
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, JAPAN,Research Fellow of Japan Society for the Promotion of Science, Tokyo, JAPAN
| | - YUKI HONMA
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, JAPAN
| | - KAZUKI TOMARI
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, JAPAN
| | - HIDETAKA HAYASHI
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, JAPAN
| | - NATSUKI SADO
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, JAPAN
| | - YASUO KAWAKAMI
- Faculty of Sport Sciences, Waseda University, Tokorozawa, JAPAN,Human Performance Laboratory, Comprehensive Research Organization of Waseda University, Tokyo, JAPAN
| |
Collapse
|
11
|
Bennett EC, Machado E, Fletcher JR. How do differences in Achilles' tendon moment arm lengths affect muscle-tendon dynamics and energy cost during running? Front Sports Act Living 2023; 5:1125095. [PMID: 37139299 PMCID: PMC10150092 DOI: 10.3389/fspor.2023.1125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The relationship between the Achilles tendon moment arm length (ATMA) and the energy cost of running (Erun) has been disputed. Some studies suggest a short ATMA reduces Erun while others claim a long ATMA reduces Erun. For a given ankle joint moment, a short ATMA permits a higher tendon strain energy storage, whereas a long ATMA reduces muscle fascicle force and muscle energy cost but shortening velocity is increased, elevating the metabolic cost. These are all conflicting mechanisms to reduce Erun, since AT energy storage comes at a metabolic cost. Neither of these proposed mechanisms have been examined together. Methods We measured ATMA using the tendon travel method in 17 males and 3 females (24 ± 3 years, 75 ± 11 kg, 177 ± 7 cm). They ran on a motorized treadmill for 10 min at 2.5 m · s-1 while Erun was measured. AT strain energy storage, muscle lengths, velocities and muscle energy cost were calculated during time-normalized stance from force and ultrasound data. A short (SHORT n = 11, ATMA = 29.5 ± 2.0 mm) and long (LONG, n = 9, ATMA = 36.6 ± 2.5 mm) ATMA group was considered based on a bimodal distribution of measured ATMA. Results Mean Erun was 4.9 ± 0.4 J · kg-1 · m-1. The relationship between ATMA and Erun was not significant (r 2 = 0.13, p = 0.12). Maximum AT force during stance was significantly lower in LONG (5,819 ± 1,202 N) compared to SHORT (6,990 ± 920 N, p = 0.028). Neither AT stretch nor AT strain energy storage was different between groups (mean difference: 0.3 ± 1 J · step-1, p = 0.84). Fascicle force was significantly higher in SHORT (508 ± 93 N) compared to LONG (468 ± 84 N. p = 0.02). Fascicle lengths and velocities were similar between groups (p > 0.72). Muscle energy cost was significantly lower in LONG (0.028 ± 0.08 J · kg · step-1) compared to SHORT (0.045 ± 0.14 J · kg · step-1 p = 0.004). There was a significant negative relationship between ATMA and total muscle energy cost relative to body mass across the stance phase (r = -0.699, p < 0.001). Discussion Together these results suggest that a LONG ATMA serves to potentially reduce Erun by reducing the muscle energy cost of the plantarflexors during stance. The relative importance of AT energy storage and return in reducing Erun should be re-considered.
Collapse
|
12
|
Radovanović G, Bohm S, Peper KK, Arampatzis A, Legerlotz K. Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. SPORTS MEDICINE - OPEN 2022; 8:149. [PMID: 36538166 PMCID: PMC9768072 DOI: 10.1186/s40798-022-00545-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Assuming that the mechanisms inducing adaptation in healthy tendons yield similar responses in tendinopathic tendons, we hypothesized that a high-loading exercise protocol that increases tendon stiffness and cross-sectional area in male healthy Achilles tendons may also induce comparable beneficial adaptations in male tendinopathic Achilles tendons in addition to improving pain and function. OBJECTIVES We investigated the effectiveness of high-loading exercise in Achilles tendinopathy in terms of inducing mechanical (tendon stiffness, maximum strain), material (Young's modulus), morphological (tendon cross-sectional area (CSA)), maximum voluntary isometric plantar flexor strength (MVC) as well as clinical adaptations (Victorian Institute of Sports Assessment-Achilles (VISA-A) score and pain (numerical rating scale (NRS))) as the primary outcomes. As secondary outcomes, drop (DJ) and counter-movement jump (CMJ) height and intratendinous vascularity were assessed. METHODS We conducted a controlled clinical trial with a 3-month intervention phase. Eligibility criteria were assessed by researchers and medical doctors. Inclusion criteria were male sex, aged between 20 and 55 years, chronic Achilles tendinopathy confirmed by a medical doctor via ultrasound-assisted assessment, and a severity level of less than 80 points on the VISA-A score. Thirty-nine patients were assigned by sequential allocation to one of three parallel arms: a high-loading intervention (training at ~ 90% of the MVC) (n = 15), eccentric exercise (according to the Alfredson protocol) as the standard therapy (n = 15) and passive therapy (n = 14). Parameters were assessed pre- and-post-intervention. Data analysis was blinded. RESULTS Primary outcomes: Plantar flexor MVC, tendon stiffness, mean CSA and maximum tendon strain improved only in the high-loading intervention group by 7.2 ± 9.9% (p = 0.045), 20.1 ± 20.5% (p = 0.049), 8.98 ± 5.8% (p < 0.001) and -12.4 ± 10.3% (p = 0.001), respectively. Stiffness decreased in the passive therapy group (-7.7 ± 21.2%; p = 0.042). There was no change in Young's modulus in either group (p > 0.05). The VISA-A score increased in all groups on average by 19.8 ± 15.3 points (p < 0.001), while pain (NRS) dropped by -0.55 ± 0.9 points (p < 0.001). SECONDARY OUTCOMES CMJ height decreased for all groups (-0.63 ± 4.07 cm; p = 0.005). There was no change in DJ height and vascularity (p > 0.05) in either group. CONCLUSION Despite an overall clinical improvement, it was exclusively the high-loading intervention that induced significant mechanical and morphological adaptations of the plantar flexor muscle-tendon unit. This might contribute to protecting the tendon from strain-induced injury. Thus, we recommend the high-loading intervention as an effective (alternative) therapeutic protocol in Achilles tendinopathy rehabilitation management in males. CLINICAL TRIALS REGISTRATION NUMBER NCT02732782.
Collapse
Affiliation(s)
- Goran Radovanović
- grid.7468.d0000 0001 2248 7639Institute of Sports Sciences, Movement Biomechanics, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany ,grid.11500.350000 0000 8919 8412Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, Faculty of Health Sciences, University of Applied Sciences and Medical University, 20457 Hamburg, Germany ,grid.11500.350000 0000 8919 8412Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, University of Applied Sciences and Medical University, 20457 Hamburg, Germany
| | - Sebastian Bohm
- grid.7468.d0000 0001 2248 7639Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kim Kristin Peper
- grid.6936.a0000000123222966Munich Institute of Robotics and Machine Intelligence, Technische Universität München, 80992 Munich, Germany
| | - Adamantios Arampatzis
- grid.7468.d0000 0001 2248 7639Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kirsten Legerlotz
- grid.7468.d0000 0001 2248 7639Institute of Sports Sciences, Movement Biomechanics, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
13
|
Does the Achilles Tendon Influence Foot Strike Patterns During an Exhaustive Run? J Appl Biomech 2022; 38:263-270. [PMID: 35894909 DOI: 10.1123/jab.2021-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
The study purpose was to investigate whether there is a relationship between the Achilles tendon (AT) length, moment arm length, and the foot strike pattern (FP) change during an exhaustive run (EXR) in nonrearfoot FP runners. Twenty-eight runners were recruited and divided into 2 groups (highly trained/moderately trained) according to their weekly training volume. Participants underwent the graded exercise test, the EXR with biomechanical analysis at the beginning, and at the end, and the magnetic resonance imaging scan of the AT. Correlations were used to assess associations between FP change (value of the difference between end and beginning) and the selected performance and AT variables. AT length significantly correlated with the FP change according to foot strike angle (r = -.265, P = .049). The AT moment arm length significantly correlated with the FP change according to strike index during EXR (r = -.536, P = .003). Multiple regression showed that AT length was a significant predictor for the FP change according to foot strike angle if the second predictor was the graded exercise test duration and the third predictor was training group association. These results suggest that a runner's training volume, along with a longer AT and AT moment arm appear to be associated with the ability to maintain a consistent FP during EXR by nonrearfoot FP runners.
Collapse
|
14
|
Tecchio P, Zamparo P, Nardello F, Monte A. Achilles tendon mechanical properties during walking and running are underestimated when its curvature is not accounted for. J Biomech 2022; 137:111095. [PMID: 35472710 DOI: 10.1016/j.jbiomech.2022.111095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Achilles tendon (AT) mechanical properties can be estimated using an inverse dynamic approach, taking into account the tendon internal moment arm (IMA) and its kinematic behavior. Although AT presents a curvilinear line of action, a straight-line function to estimate IMA and AT length is often utilized in the literature. In this study, we combined kinetic, kinematic and ultrasound data to understand the impact of two different approaches (straight-line vs. curvilinear) in determining AT mechanical properties in vivo (during walking and running at the self-selected speed). AT force and power were calculated based on data of AT IMA and AT length derived by both respective methods. All investigated parameters were significantly affected by the method utilized (paired t-test; p < 0.05): when using the curvilinear method IMA was about 5% lower and AT length about 1.2% higher, whereas peak and mean values of AT force and power were 5% higher when compared to the straight-line method (both in walking and running). Statistic-parametric mapping (SMP) analysis revealed significant differences in IMA during the early and the late stance phase of walking and during the late stance phase of running (p < 0.01); SPM revealed significant differences also in AT length during the entire stance phase in both locomotion modes (p < 0.01). These results confirm and extend previous findings to human locomotion: neglecting the AT curvature might be a source of error, resulting in underestimates not only of internal moment arm and tendon length, but also of tendon force and power.
Collapse
Affiliation(s)
- Paolo Tecchio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany.
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
15
|
Waugh CM, Scott A. Case Studies in Physiology: Adaptation of Loading-Bearing Tendons during Pregnancy. J Appl Physiol (1985) 2022; 132:1280-1289. [PMID: 35271408 DOI: 10.1152/japplphysiol.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregnancy is characterized by hormone changes that could alter musculoskeletal (MSK) properties and temporarily increase soft tissue injury risk. Whilst the prevalence of MSK injuries in pregnancy has not yet proven itself to be a widespread problem, indirect evidence indicates an uptake in the prevalence of strength training and vigorous-intensity activity during pregnancy, which may result in increased MSK injury incidence. Combining this evidence with the association between sex hormones and MSK injury risk, we recognize the potential importance of this research area and believe the (prospective) examination of connective tissue properties in relation to hormonal changes in pregnancy are appropriate. Given the dearth of information on MSK adaptations to pregnancy, we present a variety of morphological, mechanical and functional tendon data from two consecutive pregnancies in one woman as a means of highlighting this under-researched topic. This data may be representative of the general pregnant population, or it may be highly individualized - more research is required for a better understanding of MSK adaptation and injury risk during and after pregnancy.
Collapse
Affiliation(s)
- Charlie M Waugh
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Scott
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Esposito M, Wannop JW, Stefanyshyn DJ. Effects of midsole cushioning stiffness on Achilles tendon stretch during running. Sci Rep 2022; 12:4193. [PMID: 35264630 PMCID: PMC8907303 DOI: 10.1038/s41598-022-07719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Footwear midsole material can have a direct influence on running performance. However, the exact mechanism of improved performance remains unknown. The purpose of this study was to determine if Achilles tendon energetics could potentially play a role in the performance improvements, by testing if changes in footwear midsole stiffness elicit changes in Achilles tendon stretch. Fourteen runners ran in two footwear conditions while kinematic, kinetic, metabolic and ultrasound data were recorded. There was a moderate positive correlation between the difference in stretch and the difference in performance, which was statistically significant (r(12) = 0.563, p = 0.036). Twelve participants had greater stretch and better performance in the same footwear condition. Based on stretch estimates, the difference between conditions in energy returned from the Achilles tendon was 3.9% of the mechanical energy required per step. Energy return of this magnitude would be relevant and could cause the improved performance observed. These results suggest that increasing energy returned from the Achilles could be a valid mechanism for improving running performance due to changes in footwear. These findings lead the way for future research to further understand internal mechanisms behind improved running performance.
Collapse
Affiliation(s)
- Michael Esposito
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.
| | - John W Wannop
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Darren J Stefanyshyn
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Theis N, Noorkoiv M, Lavelle G, Ryan J. Predictors of Treatment Response to Progressive Resistance Training for Adolescents With Cerebral Palsy. Phys Ther 2021; 101:6358614. [PMID: 34473304 DOI: 10.1093/ptj/pzab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The aim of the study was to examine the variability in plantar-flexor muscle strength changes after progressive resistance training for adolescents with cerebral palsy (CP) and to identify baseline variables associated with change in muscle strength. METHODS Thirty-three adolescents with CP were randomized to a 10-week progressive resistance training program as part of a randomized controlled trial (STAR trial). The associations between muscle strength at 10 weeks (n = 30 adolescents) and 22 weeks (n = 28 adolescents) and biomechanical and neuromuscular baseline characteristics, motor function, and fidelity to the program were examined with multivariable linear regression. RESULTS Changes in plantar-flexor muscle strength from baseline ranged from -47.7% to 192.3% at 10 weeks and -54.3% to 198.4% at 22 weeks. Muscle activation was the only variable associated with change in strength at 10 weeks and 22 weeks. A model containing peak muscle activity and baseline muscle strength explained 49.1% of the variation in change in muscle strength (R2 = 0.491) at 10 weeks and 49.2% of the variation in change muscle strength at 22 weeks (R2 = 0.492). CONCLUSION Assessing levels of muscle activation may be able to identify responders to a progressive resistance training program for adolescents with CP. These findings are a first step toward developing tools that can inform decision making in the clinical setting. IMPACT Due to the heterogenous nature of CP, it is challenging to assess the efficacy of strength training programs in individuals with CP and to understand the variability in outcomes among participants. This study provides a better understanding of the factors that predict response to an exercise program so that resistance training can be directed to those who will potentially benefit from it. LAY SUMMARY There is wide variability in how well young people with CP respond to resistance training. If you are a young person with CP, your physical therapist can measure the amount of gastrocnemius muscle activity you have, so as to get an indication of how well you will respond.
Collapse
Affiliation(s)
- Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Marika Noorkoiv
- College of Health and Life Sciences, Brunel University London, London, UK
| | - Grace Lavelle
- College of Health and Life Sciences, Brunel University London, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jennifer Ryan
- College of Health and Life Sciences, Brunel University London, London, UK.,Department of Public Health and Epidemiology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
18
|
Yeh CH, Calder JD, Antflick J, Bull AMJ, Kedgley AE. Maximum dorsiflexion increases Achilles tendon force during exercise for midportion Achilles tendinopathy. Scand J Med Sci Sports 2021; 31:1674-1682. [PMID: 33864294 DOI: 10.1111/sms.13974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Rehabilitation is an important treatment for non-insertional Achilles tendinopathy. To date, eccentric loading exercises (ECC) have been the predominant choice; however, mechanical evidence underlying their use remains unclear. Other protocols, such as heavy slow resistance loading (HSR), have shown comparable outcomes, but with less training time. This study aims to identify the effect of external loading and other variables that influence Achilles tendon (AT) force in ECC and HSR. Ground reaction force and kinematic data during ECC and HSR were collected from 18 healthy participants for four loading conditions. The moment arms of the AT were estimated from MRIs of each participant. AT force then was calculated using the ankle torque obtained from inverse dynamics. In the eccentric phase, the AT force was not larger than in the concentric phase in both ECC and HSR. Under the same external load, the force through the AT was larger in ECC with the knee bent than in HSR with the knee straight due to increased dorsiflexion angle of the ankle. Multivariate regression analysis showed that external load and maximum dorsiflexion angle were significant predictors of peak AT force in both standing and seated positions. Therefore, to increase the effectiveness of loading the AT, exercises should apply adequate external load and reach maximum dorsiflexion during the movement. Peak dorsiflexion angle affected the AT force in a standing position at twice the rate of a seated position, suggesting standing could prove more effective for the same external loading and peak dorsiflexion angle.
Collapse
Affiliation(s)
- Chia-Han Yeh
- Department of Bioengineering, Imperial College London, London, UK
| | - James D Calder
- Department of Bioengineering, Imperial College London, London, UK.,Fortius Clinic, London, UK
| | | | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Angela E Kedgley
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
19
|
Shorter heels are linked with greater elastic energy storage in the Achilles tendon. Sci Rep 2021; 11:9360. [PMID: 33931686 PMCID: PMC8087768 DOI: 10.1038/s41598-021-88774-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Previous research suggests that the moment arm of the m. triceps surae tendon (i.e., Achilles tendon), is positively correlated with the energetic cost of running. This relationship is derived from a model which predicts that shorter ankle moment arms place larger loads on the Achilles tendon, which should result in a greater amount of elastic energy storage and return. However, previous research has not empirically tested this assumed relationship. We test this hypothesis using an inverse dynamics approach in human subjects (n = 24) at speeds ranging from walking to sprinting. The spring function of the Achilles tendon was evaluated using specific net work, a metric of mechanical energy production versus absorption at a limb joint. We also combined kinematic and morphological data to directly estimate tendon stress and elastic energy storage. We find that moment arm length significantly determines the spring-like behavior of the Achilles tendon, as well as estimates of mass-specific tendon stress and elastic energy storage at running and sprinting speeds. Our results provide support for the relationship between short Achilles tendon moment arms and increased elastic energy storage, providing an empirical mechanical rationale for previous studies demonstrating a relationship between calcaneal length and running economy. We also demonstrate that speed and kinematics moderate tendon performance, suggesting a complex relationship between lower limb geometry and foot strike pattern.
Collapse
|
20
|
Favier CD, Finnegan ME, Quest RA, Honeyfield L, McGregor AH, Phillips ATM. An open-source musculoskeletal model of the lumbar spine and lower limbs: a validation for movements of the lumbar spine. Comput Methods Biomech Biomed Engin 2021; 24:1310-1325. [PMID: 33641546 DOI: 10.1080/10255842.2021.1886284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Musculoskeletal models of the lumbar spine have been developed with varying levels of detail for a wide range of clinical applications. Providing consistency is ensured throughout the modelling approach, these models can be combined with other computational models and be used in predictive modelling studies to investigate bone health deterioration and the associated fracture risk. To provide precise physiological loading conditions for such predictive modelling studies, a new full-body musculoskeletal model including a detailed and consistent representation of the lower limbs and the lumbar spine was developed. The model was assessed against in vivo measurements from the literature for a range of spine movements representative of daily living activities. Comparison between model estimations and electromyography recordings was also made for a range of lifting tasks. This new musculoskeletal model will provide a comprehensive physiological mechanical environment for future predictive finite element modelling studies on bone structural adaptation. It is freely available on https://simtk.org/projects/llsm/.
Collapse
Affiliation(s)
- C D Favier
- Structural Biomechanics in the Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - M E Finnegan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - R A Quest
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - L Honeyfield
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - A H McGregor
- Musculoskeletal Lab in the Department of Surgery and Cancer, Imperial College London, London, UK
| | - A T M Phillips
- Structural Biomechanics in the Department of Civil and Environmental Engineering, Imperial College London, London, UK
| |
Collapse
|
21
|
Motor Control and Achilles Tendon Adaptation in Adolescence: Effects of Sport Participation and Maturity. J Hum Kinet 2021; 76:101-116. [PMID: 33603928 PMCID: PMC7877283 DOI: 10.2478/hukin-2021-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important but unresolved research question in adolescent children is the following: “Does sport participation interact with maturation to change motor control and the mechanical and morphological properties of tendons?” Here, we address this important research question with a longitudinal study around the age of peak height velocity (PHV). Our purpose was to characterize the interactive effects of maturation and sports participation on motor control and the mechanical and morphological properties of the Achilles tendon (AT) in adolescent athletes and non-athletes. Twenty-two adolescent athletes (13.1 ± 1.1 years) and 19 adolescent non-athletes (12.8 ± 1.1 years) volunteered for this study. We quantified motor control as the coefficient of variation of torque during a ramp task. In addition, we quantified the AT morphological and mechanical properties using ultrasonography from 18 months before to 12 months after PHV. We found that motor control improved with maturation in both athletes and non-athletes. We found that athletes have a greater increase in body mass with maturation that relates to greater plantarflexion peak force and AT peak stress. Also, athletes have a thicker and longer AT, as assessed with resting cross-sectional area and length. Although the rate of increase in the morphological change with maturation was similar for athletes and non-athletes, the rate of increase in normalized AT stiffness was greater for athletes. This increased AT stiffness in athletes related to peak force and stress. In summary, maturation improves motor control in adolescent children. Further, we provide novel longitudinal evidence that sport participation interacts with maturation in adolescents to induce adaptive effects on the Achilles tendon morphology and mechanical properties. These findings have the potential to minimize the risk of injuries and maximize athletic development in talented adolescents.
Collapse
|
22
|
Passive Mechanical Properties of Human Medial Gastrocnemius and Soleus Musculotendinous Unit. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8899699. [PMID: 33628828 PMCID: PMC7889354 DOI: 10.1155/2021/8899699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: -10.96° ± 3.48°; SOL: -8.50° ± 4.03°), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42 mm; SOL: 31.39 ± 6.42 mm), and stiffness (GM: 23.18 ± 13.46 Nmm-1; SOL: 31.57 ± 13.26 Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50 MPa; SOL: 4.90 ± 1.88 MPa, p = 0.024), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50 N; SOL: 174.59 ± 79.54 N, p = 0.020). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.
Collapse
|
23
|
Buffey AJ, Onambélé-Pearson GL, Erskine RM, Tomlinson DJ. The validity and reliability of the Achilles tendon moment arm assessed with dual-energy X-ray absorptiometry, relative to MRI and ultrasound assessments. J Biomech 2020; 116:110204. [PMID: 33429074 DOI: 10.1016/j.jbiomech.2020.110204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) in single energy mode has been shown to permit the visualisation of bone and soft tissue, such as the patellar tendon through two-dimensional sagittal imaging. However, there is no validated DXA-based measurement of the Achilles tendon moment arm (dAT). The aims of this study were: 1) to compare in vivo DXA derived measurements of the dAT at rest against two previously validated methods: tendon excursion (TE) and magnetic resonance imaging (MRI) at three ankle angles (-5°, 0° and +10°). 2) analyse the intra-day reliability of the DXA method at all ankle angles and compare between methods. Twelve healthy adults (mean ± SD: 31.4 ± 9.5 years; 174.0 ± 9.5 cm; 76.2 ± 16.6 kg) participated in this study, involving test-retest DXA scans, ultrasound scans and one MRI scan. The dAT was defined as the distance from the centre of the calcaneal-tibial joint axis to the Achilles tendon (AT) muscle-tendon line of action. DXA derived dAT measures were significantly greater than MRI measurements (19.7-24.9%) and were 45.2% significantly larger than the TE method. The test-retest reliability of the DXA technique at 0° was high [CV = 1.38%; ICC = 0.96] and despite the consistently larger dAT lengths obtained using DXA, MRI and DEXA data were strongly correlated (r = 0.878, p < 0.001). In conclusion, the DXA technique allowed for highly reproducible in vivo dAT measurement at rest, which has implications for the calculation of AT forces in vivo and the ability to predict the measurement from one tool to the other, thereby providing a novel basis to contrast existing and future studies.
Collapse
Affiliation(s)
- Aidan J Buffey
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK; Department of Physical Education and Sport Sciences; University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Gladys L Onambélé-Pearson
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Robert M Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK; Institute of Sport, Exercise & Health, University College London, London, UK
| | - David J Tomlinson
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
24
|
Holzer D, Paternoster FK, Hahn D, Siebert T, Seiberl W. Considerations on the human Achilles tendon moment arm for in vivo triceps surae muscle-tendon unit force estimates. Sci Rep 2020; 10:19559. [PMID: 33177655 PMCID: PMC7658232 DOI: 10.1038/s41598-020-76625-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/29/2020] [Indexed: 01/28/2023] Open
Abstract
Moment arm-angle functions (MA-a-functions) are commonly used to estimate in vivo muscle forces in humans. However, different MA-a-functions might not only influence the magnitude of the estimated muscle forces but also change the shape of the muscle’s estimated force-angle relationship (F-a-r). Therefore, we investigated the influence of different literature based Achilles tendon MA-a-functions on the triceps surae muscle–tendon unit F-a-r. The individual in vivo triceps torque–angle relationship was determined in 14 participants performing maximum voluntary fixed-end plantarflexion contractions from 18.3° ± 3.2° plantarflexion to 24.2° ± 5.1° dorsiflexion on a dynamometer. The resulting F-a-r were calculated using 15 literature-based in vivo Achilles tendon MA-a-functions. MA-a-functions affected the F-a-r shape and magnitude of estimated peak active triceps muscle–tendon unit force. Depending on the MA-a-function used, the triceps was solely operating on the ascending limb (n = 2), on the ascending limb and plateau region (n = 12), or on the ascending limb, plateau region and descending limb of the F-a-r (n = 1). According to our findings, the estimated triceps muscle–tendon unit forces and the shape of the F-a-r are highly dependent on the MA-a-function used. As these functions are affected by many variables, we recommend using individual Achilles tendon MA-a-functions, ideally accounting for contraction intensity-related changes in moment arm magnitude.
Collapse
Affiliation(s)
- Denis Holzer
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany.
| | - Florian Kurt Paternoster
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany
| | - Daniel Hahn
- Human Movement Science, Ruhr University Bochum, Faculty of Sport Science, Bochum, Germany.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Wolfgang Seiberl
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany. .,Department of Human Sciences, Human Movement Science, Bundeswehr University Munich, Neubiberg, Germany.
| |
Collapse
|
25
|
Effects of Achilles Tendon Moment Arm Length on Insertional Achilles Tendinopathy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insertional Achilles tendinopathy (IAT) is caused by traction force of the tendon. The effectiveness of the suture bridge technique in correcting it is unknown. We examined the moment arm in patients with IAT before and after surgery using the suture bridge technique, in comparison to that of healthy individuals. We hypothesized that the suture bridge method influences the moment arm length. An IAT group comprising 10 feet belonging to 8 patients requiring surgical treatment for IAT were followed up postoperatively and compared with a control group comprising 15 feet of 15 healthy individuals with no ankle complaints or history of trauma or surgery. The ratio of the moment arm (MA) length/foot length was found to be statistically significant between the control group, the IAT group preoperatively and the IAT group postoperatively (p < 0.01). Despite no significant difference in the force between the control and preoperative IAT groups, a significantly higher force to the Achilles tendon was observed in the IAT group postoperatively compared to the other groups (p < 0.05). This study demonstrates that a long moment arm may be one of the causes of IAT, and the suture bridge technique may reduce the Achilles tendon moment arm.
Collapse
|
26
|
Gallinger TL, Fletcher JR, MacIntosh BR. Mechanisms of reduced plantarflexor function in Cerebral palsy: smaller triceps surae moment arm and reduced muscle force. J Biomech 2020; 110:109959. [PMID: 32827781 DOI: 10.1016/j.jbiomech.2020.109959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
Both muscle forces, and moment arm (MA) could contribute to reduced muscle moment in people with Cerebral Palsy (CP). Current reports in CP are conflicting. The tendon travel method of estimating MA requires constant force, but passive force is high and variable in CP, and range of motion is limited. Therefore, the purpose of this study was to examine triceps surae muscle MA in 12 subjects with mild to moderate CP (15-32 years) and 10 typically developing peers (TD, 17-26 years) by tendon travel and by visually measuring the apparent MA. MA was calculated at 90° and at a reference angle (∼106°) with zero net passive moment. The tendon travel (28.8 ± 5.6 mm) and visual methods (29.1 ± 5.5 mm) yielded similar MA in CP (p = 0.94) at the reference angle. TD had significantly larger triceps surae muscle MA than CP subjects (p = 0.002), 35.4 ± 4.1 mm at the reference angle for tendon travel and 35.4 ± 3.6 mm by the visual method. Test/retest revealed less bias (0.8 mm) using the visual method. Calculated active peak isometric force was significantly less in CP (1983.8 ± 887.0 N) than TD (4104.9 ± 1154.9 N, p < 0.001). There are challenges in estimating MA in CP, but the visual method is more reliable. Although a shorter moment arm would reduce the joint moment, joint angular velocity for a given velocity of muscle shortening would be enhanced. Strength training may mitigate the effects of the smaller moment arm and reduced joint moment generated in those with CP.
Collapse
Affiliation(s)
- Tessa L Gallinger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Pentidis N, Mersmann F, Bohm S, Giannakou E, Aggelousis N, Arampatzis A. Effects of long-term athletic training on muscle morphology and tendon stiffness in preadolescence: association with jump performance. Eur J Appl Physiol 2020; 120:2715-2727. [PMID: 32930859 PMCID: PMC7674345 DOI: 10.1007/s00421-020-04490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.
Collapse
Affiliation(s)
- Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erasmia Giannakou
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Nickos Aggelousis
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany. .,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Piponnier E, Ratel S, Chalchat E, Jagot K, Bontemps B, Julian V, Bocock O, Duclos M, Martin V. Plantar flexor muscle-tendon unit length and stiffness do not influence neuromuscular fatigue in boys and men. Eur J Appl Physiol 2020; 120:653-664. [DOI: 10.1007/s00421-020-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
29
|
Cigoja S, Asmussen MJ, Firminger CR, Fletcher JR, Edwards WB, Nigg BM. The Effects of Increased Midsole Bending Stiffness of Sport Shoes on Muscle-Tendon Unit Shortening and Shortening Velocity: a Randomised Crossover Trial in Recreational Male Runners. SPORTS MEDICINE - OPEN 2020; 6:9. [PMID: 32030489 PMCID: PMC7005237 DOI: 10.1186/s40798-020-0241-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individual compliances of the foot-shoe interface have been suggested to store and release elastic strain energy via ligamentous and tendinous structures or by increased midsole bending stiffness (MBS), compression stiffness, and resilience of running shoes. It is unknown, however, how these compliances interact with each other when the MBS of a running shoe is increased. The purpose of this study was to investigate how structures of the foot-shoe interface are influenced during running by changes to the MBS of sport shoes. METHODS A randomised crossover trial was performed, where 13 male, recreational runners ran on an instrumented treadmill at 3.5 m·s-1 while motion capture was used to estimate foot arch, plantar muscle-tendon unit (pMTU), and shank muscle-tendon unit (sMTU) behaviour in two conditions: (1) control shoe and (2) the same shoe with carbon fibre plates inserted to increase the MBS. RESULTS Running in a shoe with increased MBS resulted in less deformation of the arch (mean ± SD; stiff, 7.26 ± 1.78°; control, 8.84 ± 2.87°; p ≤ 0.05), reduced pMTU shortening (stiff, 4.39 ± 1.59 mm; control, 6.46 ± 1.42 mm; p ≤ 0.01), and lower shortening velocities of the pMTU (stiff, - 0.21 ± 0.03 m·s-1; control, - 0.30 ± 0.05 m·s-1; p ≤ 0.01) and sMTU (stiff, - 0.35 ± 0.08 m·s-1; control, - 0.45 ± 0.11 m·s-1; p ≤ 0.001) compared to a control condition. The positive and net work performed at the arch and pMTU, and the net work at the sMTU were significantly lower in the stiff compared to the control condition. CONCLUSION The findings of this study showed that if a compliance of the foot-shoe interface is altered during running (e.g. by increasing the MBS of a shoe), the mechanics of other structures change as well. This could potentially affect long-distance running performance.
Collapse
Affiliation(s)
- Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Michael J Asmussen
- Department of Biology, Faculty of Science & Technology, Mount Royal University, Calgary, AB, Canada
| | - Colin R Firminger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Schumacher C, Sharbafi M, Seyfarth A, Rode C. Biarticular muscles in light of template models, experiments and robotics: a review. J R Soc Interface 2020; 17:20180413. [PMID: 32093540 PMCID: PMC7061696 DOI: 10.1098/rsif.2018.0413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022] Open
Abstract
Leg morphology is an important outcome of evolution. A remarkable morphological leg feature is the existence of biarticular muscles that span adjacent joints. Diverse studies from different fields of research suggest a less coherent understanding of the muscles' functionality in cyclic, sagittal plane locomotion. We structured this review of biarticular muscle function by reflecting biomechanical template models, human experiments and robotic system designs. Within these approaches, we surveyed the contribution of biarticular muscles to the locomotor subfunctions (stance, balance and swing). While mono- and biarticular muscles do not show physiological differences, the reviewed studies provide evidence for complementary and locomotor subfunction-specific contributions of mono- and biarticular muscles. In stance, biarticular muscles coordinate joint movements, improve economy (e.g. by transferring energy) and secure the zig-zag configuration of the leg against joint overextension. These commonly known functions are extended by an explicit role of biarticular muscles in controlling the angular momentum for balance and swing. Human-like leg arrangement and intrinsic (compliant) properties of biarticular structures improve the controllability and energy efficiency of legged robots and assistive devices. Future interdisciplinary research on biarticular muscles should address their role for sensing and control as well as non-cyclic and/or non-sagittal motions, and non-static moment arms.
Collapse
Affiliation(s)
- C. Schumacher
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - M. Sharbafi
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - A. Seyfarth
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - C. Rode
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
31
|
Letter to the editor regarding: Effects of cerebral palsy on Achilles tendon moment arm length - Do children with CP have larger or smaller moment arms than typically developing children? Commentary on: Alexander et al. J Biomech 2019; 92:175-177. [PMID: 31164223 DOI: 10.1016/j.jbiomech.2019.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 11/23/2022]
|
32
|
Wade FE, Lewis GS, Piazza SJ. Estimates of Achilles tendon moment arm differ when axis of ankle rotation is derived from ankle motion. J Biomech 2019; 90:71-77. [DOI: 10.1016/j.jbiomech.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
33
|
Pentidis N, Mersmann F, Bohm S, Giannakou E, Aggelousis N, Arampatzis A. Triceps Surae Muscle-Tendon Unit Properties in Preadolescent Children: A Comparison of Artistic Gymnastic Athletes and Non-athletes. Front Physiol 2019; 10:615. [PMID: 31164838 PMCID: PMC6536691 DOI: 10.3389/fphys.2019.00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Knowledge regarding the effects of athletic training on the properties of muscle and tendon in preadolescent children is scarce. The current study compared Achilles tendon stiffness, plantar flexor muscle strength and vertical jumping performance of preadolescent athletes and non-athletes to provide insight into the potential effects of systematic athletic training. Twenty-one preadolescent artistic gymnastic athletes (9.2 ± 1.6 years, 15 girls) and 11 similar-aged non-athlete controls (9.0 ± 1.7 years, 6 girls) participated in the study. The training intensity and volume of the athletes was documented for the last 6 months before the measurements. Subsequently, vertical ground reaction forces were measured with a force plate to assess jumping performance during squat (SJ) and countermovement jumps (CMJ) in both groups. Muscle strength of the plantar flexor muscles and Achilles tendon stiffness were examined using ultrasound, electromyography, and dynamometry. The athletes trained 6 days per week with a total of 20 h of training per week. Athletes generated significantly greater plantar flexion moments normalized to body mass compared to non-athletes (1.75 ± 0.32 Nm/kg vs. 1.31 ± 0.33 Nm/kg; p = 0.001) and achieved a significantly greater jump height in both types of jumps (21.2 ± 3.62 cm vs. 14.9 ± 2.32 cm; p < 0.001 in SJ and 23.4 ± 4.1 cm vs. 16.4 ± 4.1 cm; p < 0.001 in CMJ). Achilles tendon stiffness did not show any statistically significant differences (p = 0.413) between athletes (116.3 ± 32.5 N/mm) and non-athletes (106.4 ± 32.8 N/mm). Athletes were more likely to reach strain magnitudes close to or higher than 8.5% strain compared to non-athletes (frequency: 24% vs. 9%) indicating an increased mechanical demand for the tendon. Although normalized muscle strength and jumping performance were greater in athletes, gymnastic-specific training in preadolescence did not cause a significant adaptation of Achilles tendon stiffness. The potential contribution of the high mechanical demand for the tendon to the increasing risk of tendon overuse call for the implementation of specific exercises in the athletic training of preadolescent athletes that increase tendon stiffness and support a balanced adaptation within the muscle-tendon unit.
Collapse
Affiliation(s)
- Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erasmia Giannakou
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Nickos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
34
|
FIRMINGER COLINR, BRUCE OLIVIAL, WANNOP JOHNW, STEFANYSHYN DARRENJ, EDWARDS WBRENT. Effect of Shoe and Surface Stiffness on Lower Limb Tendon Strain in Jumping. Med Sci Sports Exerc 2019; 51:1895-1903. [DOI: 10.1249/mss.0000000000002004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Deforth M, Zwicky L, Horn T, Hintermann B. The effect of foot type on the Achilles tendon moment arm and biomechanics. Foot (Edinb) 2019; 38:91-94. [PMID: 30849670 DOI: 10.1016/j.foot.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim was to calculate the Achilles tendon moment arm in different degrees of plantarflexion for pes planus, pes cavus and normal arched feet. METHODS 99 patients (99 radiographs; 40 males, 59 females; mean age 49 years, SD 15) with a healthy ankle joint and a preoperative weightbearing lateral radiograph of the foot were included. Three groups (pes planus, pes cavus and normal-arched feet) with equal sample sizes (n=33) were formed. On radiographs, the angle formed between a horizontal line and the line connecting the insertion of the Achilles tendon with the center of rotation of the ankle, was measured. The interrater reliabilities (ICC) of the angle alpha were compared on radiographs and on MRIs. Using the angle alpha, the Achilles tendon moment arm was calculated in different plantarflexion positions. RESULTS The ICC of alpha was higher on radiographs (0.84, [0.73-0.91]) than on MRIs (0.61, [0.27-0.81]). The average alpha was statistically significantly different (normal arched foot 31 degrees (°), pes planus 24°, pes cavus 36°, p=0.021), resulting in a significant shorter Achilles tendon moment arm for pes cavus than for pes planus (p<0.0001) and normal arched feet (p=0.006) in neutral position. CONCLUSION The data suggests that it is feasible to use radiographs to measure the Achilles tendon moment arm. The maximum Achilles tendon moment arm is reached at different angles of ankle flexion for pes cavus, pes planus and normal-arched feet. This has to be taken into consideration when planning surgeries.
Collapse
Affiliation(s)
- Manja Deforth
- Clinic for Orthopaedic and Trauma Surgery, Kantonsspital Baselland, Switzerland
| | - Lukas Zwicky
- Clinic for Orthopaedic and Trauma Surgery, Kantonsspital Baselland, Switzerland
| | - Tamara Horn
- Clinic for Orthopaedic and Trauma Surgery, Kantonsspital Baselland, Switzerland
| | - Beat Hintermann
- Clinic for Orthopaedic and Trauma Surgery, Kantonsspital Baselland, Switzerland.
| |
Collapse
|
36
|
Ankle Rotation and Muscle Loading Effects on the Calcaneal Tendon Moment Arm: An In Vivo Imaging and Modeling Study. Ann Biomed Eng 2018; 47:590-600. [PMID: 30386951 DOI: 10.1007/s10439-018-02162-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
In this combined in vivo and computational modeling study, we tested the central hypothesis that ankle joint rotation and triceps surae muscle loading have independent and combinatory effects on the calcaneal (i.e., Achilles) tendon moment arm (CTma) that are not fully captured in contemporary musculoskeletal models of human movement. We used motion capture guided ultrasound imaging to estimate instantaneous variations in the CTma during a series of isometric and isotonic contractions compared to predictions from scaled, lower extremity computational models. As hypothesized, we found that muscle loading: (i) independently increased the CTma by up to 8% and (ii) attenuated the effects of ankle joint rotation, the latter likely through changes in tendon slack and tendon curvature. Neglecting the effects of triceps surae muscle loading in lower extremity models led to an underestimation of the CTma, on average, particularly in plantarflexion when those effects were most prominent. We also found little agreement between in vivo estimates and model predictions on an individual subject by subject basis, alluding to unaccounted for variation in anatomical morphology and thus fundamental limitations in model scaling. Together, these findings contribute to improving our understanding of the physiology of ankle moment and power generation and novel opportunities for model development.
Collapse
|
37
|
Tomlinson DJ, Erskine RM, Morse CI, Onambélé GL. Impact of Above-Average Proanabolic Nutrients Is Overridden by High Protein and Energy Intake in the Muscle-Tendon Unit Characteristics of Middle- to Older-Aged Adults. J Nutr 2018; 148:1776-1785. [PMID: 30247586 PMCID: PMC6209810 DOI: 10.1093/jn/nxy185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background The impact, within a single cohort, of independent modulators of skeletal muscle quality, including age, adiposity and obesity, habitual nutritional intake, and physical activity (PA), is unclear. Objective We examined the bivariate associations between age, adiposity, habitual nutritional intake, and PA against 11 key intrinsic muscle-tendon unit (MTU) characteristics to identify the strongest predictors. We also compared overall profile differences between MTU categories with the use of z scores shown in radar graphs. Methods Fifty untrained independently living men (n = 15) and women (n = 35) aged 43-80 y (mean ± SD: 64 ±9 y) were categorized by adiposity [men: normal adiposity (NA) <28%, high adiposity (HA) ≥28%; women: NA <40%, HA ≥40%] and body mass index [BMI (in kg/m2); normal: 18 to <25; overweight: ≥25 to <30; and obese: ≥30]. Group differences were examined by body composition assessed with the use of dual-energy X-ray absorptiometry, habitual nutritional intake through a 3-d food diary, PA (work, leisure, sport) using the Baecke questionnaire, 14 serum cytokine concentrations using multiplex luminometry, and 11 MTU characteristics of the gastrocnemius medialis using a combination of isokinetic dynamometry, electromyography, and ultrasonography. Results Interestingly, classification by BMI highlighted differences between normal and obese individuals in 6 of 11 MTU characteristics (P < 0.001 to P = 0.043). No significant differences were reported in serum cytokine concentrations between adiposity and BMI classifications. BMI predicted 8 of 11 (r = 0.62-0.31, P < 0.001 to P = 0.032), daily energy intake predicted 7 of 11 (r = 0.45-0.34, P = 0.002-0.036), age predicted 5 of 11 (r = -0.49-0.32, P < 0.001 to P = 0.032), work-based PA predicted 5 of 11 (r = 0.43-0.32, P = 0.003-0.048), and adiposity predicted 4 of 11 (r = 0.51-0.33, P < 0.001 to P = 0.022) MTU characteristics. Mathematical z scores and radar graphs showed how endocrine and dietary profiles, but not PA, differed between the top and bottom ∼20% of muscle unit size and specific force. Conclusions Given the number of factors associated with MTU, education should be targeted to both adequate food quantity and quality (especially protein intake) and increasing habitual moderate to vigorous PA while decreasing sedentary behavior. Specific endocrine variables are also proposed as key pharmaceutical targets.
Collapse
Affiliation(s)
- David J Tomlinson
- Health, Exercise, and Active Living Research Center, Manchester Metropolitan University, Crewe, United Kingdom
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute of Sport, Exercise, and Health, University College London, London, United Kingdom
| | - Christopher I Morse
- Health, Exercise, and Active Living Research Center, Manchester Metropolitan University, Crewe, United Kingdom
| | - Gladys L Onambélé
- Health, Exercise, and Active Living Research Center, Manchester Metropolitan University, Crewe, United Kingdom
| |
Collapse
|
38
|
Delabastita T, Bogaerts S, Vanwanseele B. Age-Related Changes in Achilles Tendon Stiffness and Impact on Functional Activities: A Systematic Review and Meta-Analysis. J Aging Phys Act 2018; 27:1-12. [PMID: 29722592 DOI: 10.1123/japa.2017-0359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Achilles tendon stiffness determines calf muscle functioning during functional activities. However, contrasting evidence was found in studies comparing Achilles tendon stiffness in older and younger adults. Therefore, this systematic review compares Achilles tendon stiffness and elastic modulus in older and younger adults and reviews functional implications. Studies revealed by systematic bibliographic searches were included if healthy older adults were investigated, and if Achilles tendon stiffness was measured using ultrasound and dynamometry. Meta-analyses were performed to compare Achilles tendon stiffness and elastic modulus in older and younger adults. Achilles tendon stiffness (weighted standardized mean difference = 1.40, 95% confidence intervals [0.42-2.38]) and elastic modulus (weighted standardized mean difference = 1.74, 95% confidence intervals [0.99-2.49]) were decreased in older compared with younger adults. Decreased Achilles tendon stiffness was related to walking performance and balance. Possibly, decreased Achilles tendon stiffness is caused by altered elastic modulus in older adults. Training interventions increasing Achilles tendon stiffness could improve functional capacity.
Collapse
|
39
|
Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep 2018; 8:13856. [PMID: 30218024 PMCID: PMC6138712 DOI: 10.1038/s41598-018-31587-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The Achilles tendon (AT), the largest tendon in the human body has a unique structural feature, that is the fascicles in the AT display spiral twist. However, their functional and structural roles are still unclear. We used subject-specific computational models and tissue mechanical experiment to quantitatively characterize the role of fascicle twist in the Achilles tendon. Ten subject-specific finite element (FE) models of the Achilles tendon were developed from ultrasound images. Fascicle twist was implemented in these models using the material coordinate system available in our FE framework. Five different angles (0~60°) were implemented and material property optimization was performed for each of them (total 50 sets) using results from uniaxial stretch experiment. We showed that fascicle twist allows for even distribution of stress across the whole tendon, thus improving tissue strength. The predicted rupture load increased up to 40%. A number of connective tissues display similar fascicle twists in their structure. The resulting non-uniform strain distribution has been hypothesized as a primary factor in tissue degeneration and injuries. Therefore, our technique will be used to design biomechanically informed training and rehabilitation protocols for management of connective tissue injuries and degeneration.
Collapse
|
40
|
Baxter JR, Hullfish TJ, Chao W. Functional deficits may be explained by plantarflexor remodeling following Achilles tendon rupture repair: Preliminary findings. J Biomech 2018; 79:238-242. [PMID: 30166224 DOI: 10.1016/j.jbiomech.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/03/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
Achilles tendon ruptures are common injuries that often lead to long-term functional deficits. Despite the prevalence of these injuries, the mechanism responsible for limited function has not yet been established. Therefore, the purpose of this study was to present preliminary findings that support a hypothesis that skeletal muscle remodeling is the driving factor of poor outcomes in some patients. Biomechanical and ultrasonography assessments were performed on a patient that presented with poor functional outcomes 2.5 years after a surgically-repaired acute Achilles tendon rupture. Single-leg heel raise height was decreased by 75% in the affected limb (3.0 cm compared to 11.9 cm) while walking mechanics showed no deficits. Ultrasonography revealed that the affected medial gastrocnemius muscle was less thick and had shorter, more pennate fascicles compared to the unaffected limb. A simple computational model of a maximal-effort plantarflexion contraction was employed to test the implications of changes in muscle architecture on single-leg heel raise function. Subject-specific measurements of fascicle length and pennation were input into the model, which supported these architectural parameters as being drivers of heel raise function. These preliminary findings support the hypothesis that an Achilles tendon rupture elicits changes in skeletal muscle architecture, which reduces the amount of work and power the joint can generate. This multidisciplinary framework of biomechanical, imaging, and computational modeling provides a unique platform for studying the complex interactions between structure and function in patients recovering from Achilles tendon injuries.
Collapse
Affiliation(s)
- Josh R Baxter
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Todd J Hullfish
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wen Chao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Rasske K, Franz JR. Aging effects on the Achilles tendon moment arm during walking. J Biomech 2018; 77:34-39. [PMID: 29945784 DOI: 10.1016/j.jbiomech.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
Abstract
The Achilles tendon (AT) moment arm transforms triceps surae muscle forces into a moment about the ankle which is critical for functional activities like walking. Moreover, the AT moment arm changes continuously during walking, as it depends on both ankle joint rotation and triceps surae muscle loading (presumably due to bulging of the muscle belly). Here, we posit that aging negatively effects the architecturally complex AT moment arm during walking, which thereby contributes to well-documented reductions in ankle moment generation during push-off. We used motion capture-guided ultrasound imaging to quantify instantaneous variations in the AT moment arms of young (23.9 ± 4.3 years) and older (69.9 ± 2.6 years) adults during walking, their dependence on triceps surae muscle loading, and their association with ankle moment generation during push-off. Older adults walked with 11% smaller AT moment arms and 11% smaller peak ankle moments during push-off than young adults. Moreover, as hypothesized, these unfavourable changes were significantly and positively correlated (r2 = 0.38, p < 0.01). More surprisingly, aging attenuated load-dependent increases in the AT moment arm (i.e., those between heel-strike and push-off at the same ankle angle); only young adults exhibited a significant increase in their AT moment arm due to triceps surae muscle-loading. Age-associated reductions in triceps surae volume or activation, and thus muscle bulging during force generation, may compromise the mechanical advantage of the AT during the critical push-off phase of walking in older adults. Thus, strategies to restore and/or improve locomotor performance in our aging population should consider these functionally important changes in musculoskeletal behavior.
Collapse
Affiliation(s)
- Kristen Rasske
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States.
| |
Collapse
|
42
|
Fletcher JR, MacIntosh BR. Estimates of Achilles Tendon Moment Arm Length at Different Ankle Joint Angles: Effect of Passive Moment. J Appl Biomech 2018; 34:220-225. [PMID: 29873287 DOI: 10.1123/jab.2016-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The length of a muscle's moment arm can be estimated noninvasively using ultrasound and the tendon excursion method. The main assumption with the tendon excursion method is that the force acting on the tendon during passive rotation is constant. However, passive force changes through the range of motion, and thus moment arm is underestimated. The authors attempted to account for passive force on the measurement of Achilles tendon moment arm using the tendon excursion method in 8 male and female runners. Tendon excursion was measured using ultrasound while the ankle was passively rotated at 0.17 rad·s-1. Moment arm was calculated at 5° intervals as the ratio of tendon displacement to joint rotation from 70° to 115°. Passive moment (MP) was measured using a dynamometer. The displacement attributable to MP was calculated by monitoring tendon displacement during a ramp isometric maximum contraction. MP was 5.7 (2.1) N·m at 70° and decreased exponentially from 70° to 90°. This resulted in MP-corrected moment arms that were significantly larger than uncorrected moment arms at joint angles where MP was present. Furthermore, MP-corrected moment arms did not change with ankle angle, which was not the case for uncorrected moment arms.
Collapse
|
43
|
Wrist tendon moment arms: Quantification by imaging and experimental techniques. J Biomech 2018; 68:136-140. [PMID: 29306550 PMCID: PMC5793998 DOI: 10.1016/j.jbiomech.2017.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
Subject-specific musculoskeletal models require accurate values of muscle moment arms. The aim of this study was to compare moment arms of wrist tendons obtained from non-invasive magnetic resonance imaging (MRI) to those obtained from an in vitro experimental approach. MRI was performed on ten upper limb cadaveric specimens to obtain the centrelines for the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL) tendons. From these, the anatomical moment arms about each of the flexion-extension (FE) and radioulnar deviation (RUD) axes of the wrist were calculated. Specimens were mounted on a physiologic wrist simulator to obtain functional measurements of the moment arms using the tendon excursion method. No differences were observed between anatomical and functional values of the FE and RUD moment arms of FCR, ECRL and ECRB, and the RUD moment arm of ECU (p > .075). Scaling the anatomical moment arms relative to ECRB in FE and ECU in RUD reduced differences in the FE moment arm of FCU and the RUD moment arm of APL to less than 15% (p > .139). However, differences persisted in moment arms of FCU in RUD, and ECU and APL in FE (p < .008). This study shows that while measurements of moment arms of wrist tendons using imaging do not always conform to values obtained using in vitro experimental approaches, a stricter protocol could result in the acquisition of subject-specific moment arms to personalise musculoskeletal models.
Collapse
|
44
|
Wolfram S, Morse CI, Winwood KL, Hodson-Tole E, McEwan IM. Achilles tendon moment arm in humans is not affected by inversion/eversion of the foot: a short report. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171358. [PMID: 29410839 PMCID: PMC5792916 DOI: 10.1098/rsos.171358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 06/08/2023]
Abstract
The triceps surae primarily acts as plantarflexor of the ankle joint. However, the group also causes inversion and eversion at the subtalar joint. Despite this, the Achilles tendon moment arm is generally measured without considering the potential influence of inversion/eversion of the foot during plantarflexion. This study investigated the effect of foot inversion and eversion on the plantarflexion Achilles tendon moment arm. Achilles tendon moment arms were determined using the centre-of-rotation method in magnetic resonance images of the left ankle of 11 participants. The foot was positioned at 15° dorsiflexion, 0° or 15° plantarflexion using a Styrofoam wedge. In each of these positions, the foot was either 10° inverted, neutral or 10° everted using an additional Styrofoam wedge. Achilles tendon moment arm in neutral foot position was 47.93 ± 4.54 mm and did not differ significantly when the foot was positioned in 10° inversion and 10° eversion. Hence, inversion/eversion position of the foot may not considerably affect the length of the Achilles tendon moment arm. This information could be useful in musculoskeletal models of the human lower leg and foot and when estimating Achilles tendon forces during plantarflexion with the foot positioned in inversion or eversion.
Collapse
Affiliation(s)
- Susann Wolfram
- Department of Exercise and Sport Science, Health, Exercise and Active Living (HEAL) Research Centre, Manchester Metropolitan University, Crewe, UK
| | - Christopher I. Morse
- Department of Exercise and Sport Science, Health, Exercise and Active Living (HEAL) Research Centre, Manchester Metropolitan University, Crewe, UK
| | - Keith L. Winwood
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Emma Hodson-Tole
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Islay M. McEwan
- Department of Exercise and Sport Science, Health, Exercise and Active Living (HEAL) Research Centre, Manchester Metropolitan University, Crewe, UK
| |
Collapse
|
45
|
Reliability of Achilles Tendon Moment Arm Measured In Vivo Using Freehand Three-Dimensional Ultrasound. J Appl Biomech 2017; 33:300-304. [PMID: 28084870 DOI: 10.1123/jab.2016-0261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigated reliability of freehand three-dimensional ultrasound (3DUS) measurement of in vivo human Achilles tendon (AT) moment arm. Sixteen healthy adults were scanned on 2 separate occasions by a single investigator. 3DUS scans were performed over the free AT, medial malleolus, and lateral malleolus with the ankle passively positioned in maximal dorsiflexion, mid dorsiflexion, neutral, mid plantar flexion and maximal plantar flexion. 3D reconstructions of the AT, medial malleolus, and lateral malleolus were created from manual segmentation of the ultrasound images and used to geometrically determine the AT moment arm using both a straight (straight ATMA) and curved (curved ATMA) tendon line-of-action. Both methods were reliable within- and between-session (intra-class correlation coefficients > 0.92; coefficient of variation < 2.5 %) and revealed that AT moment arm increased by ∼ 7 mm from maximal dorsiflexion (∼ 41mm) to maximal plantar flexion (∼ 48 mm). Failing to account for tendon curvature led to a small overestimation (< 2 mm) of AT moment arm that was most pronounced in ankle plantar flexion, but was less than the minimal detectable change of the method and could be disregarded.
Collapse
|
46
|
Waugh CM, Alktebi T, de Sa A, Scott A. Impact of rest duration on Achilles tendon structure and function following isometric training. Scand J Med Sci Sports 2017; 28:436-445. [PMID: 28603874 DOI: 10.1111/sms.12930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/14/2022]
Abstract
Intervention programs are often sought to strengthen the Achilles tendon (AT) due to its high injury rate. Long rest periods between loading cycles have been found to increase collagen synthesis by tenocytes, suggesting rest duration may be important for tendon adaptation in vivo; however, exercise programs comparing long and short rest duration have not been directly compared. Fourteen adults completed a 12-week progressive training intervention; training sessions consisted of 5×10 isometric plantarflexion contractions each of 3-s duration performed at 90% of MVC three times weekly. Each leg was randomly allocated to long (LRT, 10-s rest) or short rest training (SRT, 3-s rest). We hypothesized that the leg allocated to LRT would demonstrate superior AT collagen organization compared to the leg receiving SRT, which would be related to improved biomechanical function. AT collagen organization and morphology were measured using ultrasound tissue characterization. AT properties were assessed before and after the intervention using a combination of dynamometry, ultrasound imaging, EMG, and motion capture. Contrary to our hypothesis, collagen organization did not improve following either training protocol; conversely, an unexpected decrease in echotype I proportion was seen after SRT (P<.001) but not LRT (P=.58), indicating an apparent protective effect of rest on collagen organization during isometric training. In contrast, AT adaptation was not appreciably enhanced by increasing intercycle rest duration; both protocols were equally effective at inducing significant strength gains and AT mechanical and material adaptation (P≤.001). Further research is necessary to identify optimal loading characteristics for injury prevention and rehabilitation.
Collapse
Affiliation(s)
- C M Waugh
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - T Alktebi
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - A de Sa
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - A Scott
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Alexander C, Lum I, Reid S, Clarke E, Stannage K, El-Sallam Abd A, Herbert R, Donnelly C. A simple but reliable method for measuring 3D Achilles tendon moment arm geometry from a single, static magnetic resonance scan. J Biomech 2017; 55:134-138. [DOI: 10.1016/j.jbiomech.2017.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/03/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
48
|
Kalkman BM, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Desloovere K, Barton GJ, O'Brien TD. Achilles tendon moment arm length is smaller in children with cerebral palsy than in typically developing children. J Biomech 2017; 56:48-54. [PMID: 28318605 DOI: 10.1016/j.jbiomech.2017.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/29/2016] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about both internal and external moment arms is essential since they determine the mechanical advantage of a muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from anthropometric measurements. Sixteen children with CP (age: 10y 7m±3y, 7 hemiplegia, 12 diplegia, GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6m±3y) participated in this case-control study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalized MAAT to be 15% (∼7mm) smaller in children with CP compared to TD children (p=0.003). MAAT could be predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in children with CP and TD children, respectively. Our findings have important implications for clinical decision making since MAAT influences the mechanical advantage about the ankle, which contributes to movement function and is manipulated surgically.
Collapse
Affiliation(s)
- Barbara M Kalkman
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Francesco Cenni
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Alfie Bass
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Gill Holmes
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Gabor J Barton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Thomas D O'Brien
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
49
|
Hussain AW, Onambélé GL, Williams AG, Morse CI. Medial gastrocnemius specific force of adult men with spastic cerebral palsy. Muscle Nerve 2016; 56:298-306. [PMID: 27862024 PMCID: PMC5573928 DOI: 10.1002/mus.25477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 12/05/2022]
Abstract
Introduction: Muscle weakness determines functional impairment in spastic cerebral palsy (SCP). Measurement of specific force (SF) allows for strength comparison with unimpaired populations (controls) accounting for neural (activation and coactivation), architectural (fascicle length and pennation angle), and structural differences (moment arm length). Methods: Medial gastrocnemius (MG) SF (and its determinants) was assessed in both paretic and non‐paretic legs of 11 men with SCP and 11 age‐matched controls during plantarflexion maximal voluntary isometric contraction (MVIC). Results: SCP fascicles were 28% longer than control fascicles (P < 0.05). Pennation angle of SCP patients was 41% smaller than in controls. The physiological cross‐sectional area of SCP MG patients was 47% smaller than in controls (P < 0.05). There was no difference in SF between controls and SCP patients. Conclusions: Weakness in SCP is primarily attributable to deficits in agonist activation and muscle size; consequently, SF measured in the MG is similar between SCP and controls. Muscle Nerve56: 298–306, 2017
Collapse
Affiliation(s)
- Ayser W Hussain
- Health Exercise and Active Living Research Centre, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe Green Road, Cheshire, CW1 5DU, UK
| | - Gladys L Onambélé
- Health Exercise and Active Living Research Centre, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe Green Road, Cheshire, CW1 5DU, UK
| | - Alun G Williams
- Health Exercise and Active Living Research Centre, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe Green Road, Cheshire, CW1 5DU, UK
| | - Christopher I Morse
- Health Exercise and Active Living Research Centre, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe Green Road, Cheshire, CW1 5DU, UK
| |
Collapse
|
50
|
Hashizume S, Fukutani A, Kusumoto K, Kurihara T, Yanagiya T. Comparison of the Achilles tendon moment arms determined using the tendon excursion and three-dimensional methods. Physiol Rep 2016. [PMCID: PMC5064132 DOI: 10.14814/phy2.12967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The moment arm of muscle‐tendon force is a key parameter for calculating muscle and tendon properties. The tendon excursion method was used for determining the Achilles tendon moment arm (ATMA). However, the accuracy of this method remains unclear. This study aimed to investigate the magnitude of error introduced in determining the ATMA using the tendon excursion method by comparing it with the reference three‐dimensional (3D) method. The tendon excursion method determined the ATMA as the ratio between the Achilles tendon displacement during foot rotation from 15° of dorsiflexion to 15° of plantarflexion and the joint rotation angle. A series of foot images was obtained at 15° of dorsiflexion, the neutral position, and 15° of plantarflexion. The 3D value of the ATMA was determined as the shortest distance between the talocrural joint axis and the line of action of the Achilles tendon force. The ATMA determined by the tendon excursion method was smaller by 3.8 mm than that determined using the 3D method. This error may be explained mainly by the length change in the Achilles tendon due to the change in the force applied to it, as passive plantarflexion torque was different by 11 Nm between 15° of dorsiflexion and 15° of plantarflexion. Furthermore, the ATMAs determined using the 3D and tendon excursion methods were significantly correlated but the coefficient of determination was not large (R2 = 0.352). This result suggests that the tendon excursion method may not be feasible to evaluate the individual variability of the ATMA.
Collapse
Affiliation(s)
- Satoru Hashizume
- Human Informatics Research Institute; National Institute of Advanced Industrial Science and Technology; Tokyo Japan
- Faculty of Health and Sports Science; Juntendo University; Chiba Japan
- Japan Society for the Promotion of Science; Tokyo Japan
| | - Atsuki Fukutani
- Japan Society for the Promotion of Science; Tokyo Japan
- The Research Organization of Science and Technology; Ritsumeikan University; Shiga Japan
| | - Kazuki Kusumoto
- Faculty of Science and Industrial Technology; Kurashiki University of Science and the Arts; Okayama Japan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health Science; Ritsumeikan University; Shiga Japan
| | - Toshio Yanagiya
- Faculty of Health and Sports Science; Juntendo University; Chiba Japan
| |
Collapse
|