1
|
Flor KC, Maia OAC, Takakura AC, Moreira TS. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Am J Physiol Lung Cell Mol Physiol 2024; 327:L452-L463. [PMID: 39104318 DOI: 10.1152/ajplung.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Szabo S, Totka Z, Nagy-Bozsoky J, Pinter I, Bagany M, Bodo M. Rheoencephalography: A non-invasive method for neuromonitoring. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:10-25. [PMID: 38482467 PMCID: PMC10936697 DOI: 10.2478/joeb-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/07/2024]
Abstract
In neurocritical care, the gold standard method is intracranial pressure (ICP) monitoring for the patient's lifesaving. Since it is an invasive method, it is desirable to use an alternative, noninvasive technique. The computerized real-time invasive cerebral blood flow (CBF) autoregulation (AR) monitoring calculates the status of CBF AR, called the pressure reactivity index (PRx). Studies documented that the electrical impedance of the head (Rheoencephalography - REG) can detect the status of CBF AR (REGx) and ICP noninvasively. We aimed to test REG to reflect ICP and CBF AR. For nineteen healthy subjects we recorded bipolar bifrontal and bitemporal REG derivations and arm bioimpedance pulses with a 200 Hz sampling rate. The challenges were a 30-second breath-holding and head-down-tilt (HDT - Trendelenburg) position. Data were stored and processed offline. REG pulse wave morphology and REGx were calculated. The most relevant finding was the significant morphological change of the REG pulse waveform (2nd peak increase) during the HDT position. Breath-holding caused REG amplitude increase, but it was not significant. REGx in male and female group averages have similar trends during HDT by indicating the active status of CBF AR. The morphological change of REG pulse wave during HDT position was identical to ICP waveform change during increased ICP, reflecting decreased intracranial compliance. A correlation study between ICP and REG was initiated in neurocritical care patients. The noninvasive REG monitoring would also be useful in space research as well as in military medicine during the transport of wounded service members as well as for fighter pilots to indicate the loss of CBF and consciousness.
Collapse
Affiliation(s)
- Sandor Szabo
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Zsolt Totka
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | - Jozsef Nagy-Bozsoky
- University of Szeged, Faculty of General Medicine, Department of Aviation and Space Medicine. Kecskemet, Hungary; Hungarian Defence Forces Medical Center, Aeromedical, Military Medical Screening and Healthcare Instituter;Kecskemet, Hungary
| | | | | | - Michael Bodo
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
3
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
4
|
Tymko MM, Young D, Vergel D, Matenchuk BA, Maier LE, Sivak A, Davenport MH, Steinback CD. The effect of hypoxemia on muscle sympathetic nerve activity and cardiovascular function: a systematic review and meta-analysis. Am J Physiol Regul Integr Comp Physiol 2023; 325:R474-R489. [PMID: 37642283 DOI: 10.1152/ajpregu.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the effect of acute poikilocapnic, high-altitude, and acute isocapnia hypoxemia on muscle sympathetic nerve activity (MSNA) and cardiovascular function. A comprehensive search across electronic databases was performed until June 2021. All observational designs were included: population (healthy individuals); exposures (MSNA during hypoxemia); comparators (hypoxemia severity and duration); outcomes (MSNA; heart rate, HR; and mean arterial pressure, MAP). Sixty-one studies were included in the meta-analysis. MSNA burst frequency increased by a greater extent during high-altitude hypoxemia [P < 0.001; mean difference (MD), +22.5 bursts/min; confidence interval (CI) = -19.20 to 25.84] compared with acute poikilocapnic hypoxemia (P < 0.001; MD, +5.63 bursts/min; CI = -4.09 to 7.17) and isocapnic hypoxemia (P < 0.001; MD, +4.72 bursts/min; CI = -3.37 to 6.07). MSNA burst amplitude was only elevated during acute isocapnic hypoxemia (P = 0.03; standard MD, +0.46 au; CI = -0.03 to 0.90), and MSNA burst incidence was only elevated during high-altitude hypoxemia [P < 0.001; MD, 33.05 bursts/100 heartbeats; CI = -28.59 to 37.51]. Meta-regression analysis indicated a strong relationship between MSNA burst frequency and hypoxemia severity for acute isocapnic studies (P < 0.001) but not acute poikilocapnia (P = 0.098). HR increased by the same extent across each type of hypoxemia [P < 0.001; MD +13.81 heartbeats/min; 95% CI = 12.59-15.03]. MAP increased during high-altitude hypoxemia (P < 0.001; MD, +5.06 mmHg; CI = 3.14-6.99), and acute isocapnic hypoxemia (P < 0.001; MD, +1.91 mmHg; CI = 0.84-2.97), but not during acute poikilocapnic hypoxemia (P = 0.95). Both hypoxemia type and severity influenced sympathetic nerve and cardiovascular function. These data are important for the better understanding of healthy human adaptation to hypoxemia.
Collapse
Affiliation(s)
- Michael M Tymko
- Integrative Cerebrovascular and Environmental Physiology SB Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Desmond Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Vergel
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Brittany A Matenchuk
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lauren E Maier
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Sivak
- H.T. Coutts Education and Physical Education Library, University of Alberta, Edmonton, Alberta, Canada
| | - Margie H Davenport
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sports and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
6
|
Dean JB, Stavitzski NM. The O2-sensitive brain stem, hyperoxic hyperventilation, and CNS oxygen toxicity. Front Physiol 2022; 13:921470. [PMID: 35957982 PMCID: PMC9360621 DOI: 10.3389/fphys.2022.921470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system oxygen toxicity (CNS-OT) is a complex disorder that presents, initially, as a sequence of cardio-respiratory abnormalities and nonconvulsive signs and symptoms (S/Sx) of brain stem origin that culminate in generalized seizures, loss of consciousness, and postictal cardiogenic pulmonary edema. The risk of CNS-OT and its antecedent “early toxic indications” are what limits the use of hyperbaric oxygen (HBO2) in hyperbaric and undersea medicine. The purpose of this review is to illustrate, based on animal research, how the temporal pattern of abnormal brain stem responses that precedes an “oxtox hit” provides researchers a window into the early neurological events underlying seizure genesis. Specifically, we focus on the phenomenon of hyperoxic hyperventilation, and the medullary neurons presumed to contribute in large part to this paradoxical respiratory response; neurons in the caudal Solitary complex (cSC) of the dorsomedial medulla, including putative CO2 chemoreceptor neurons. The electrophysiological and redox properties of O2-/CO2-sensitive cSC neurons identified in rat brain slice experiments are summarized. Additionally, evidence is summarized that supports the working hypothesis that seizure genesis originates in subcortical areas and involves cardio-respiratory centers and cranial nerve nuclei in the hind brain (brainstem and cerebellum) based on, respectively, the complex temporal pattern of abnormal cardio-respiratory responses and various nonconvulsive S/Sx that precede seizures during exposure to HBO2.
Collapse
|
7
|
Moriyama S, Ichinose M, Dobashi K, Matsutake R, Sakamoto M, Fujii N, Nishiyasu T. Hypercapnia elicits differential vascular and blood flow responses in the cerebral circulation and active skeletal muscles in exercising humans. Physiol Rep 2022; 10:e15274. [PMID: 35466573 PMCID: PMC9035754 DOI: 10.14814/phy2.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of a rise in arterial carbon dioxide pressure (PaCO2) on vascular and blood flow responses in the cerebral circulation and active skeletal muscles during dynamic exercise in humans. Thirteen healthy young adults (three women) participated in hypercapnia and normocapnia trials. In both trials, participants performed a two‐legged dynamic knee extension exercise at a constant workload that increased heart rate to roughly 100 beats min−1. In the hypercapnia trial, participants performed the exercise with spontaneous breathing while end‐tidal carbon dioxide pressure (PETCO2), an index of PaCO2, was held at 60 mmHg by inhaling hypercapnic gas (O2: 20.3 ± 0.1%; CO2: 6.0 ± 0.5%). In the normocapnia trial, minute ventilation during exercise was matched to the value in the hypercapnia trial by performing voluntary hyperventilation with PETCO2 clamped at baseline level (i.e., 40–45 mmHg) through inhalation of mildly hypercapnic gas (O2: 20.6 ± 0.1%; CO2: 2.7 ± 1.0%). Middle cerebral artery mean blood velocity and the cerebral vascular conductance index were higher in the hypercapnia trial than in the normocapnia trial. By contrast, vascular conductance in the exercising leg was lower in the hypercapnia trial than in the normocapnia trial. Blood flow to the exercising leg did not differ between the two trials. These results demonstrate that hypercapnia‐induced vasomotion in active skeletal muscles is opposite to that in the cerebral circulation. These differential vascular responses may cause a preferential rise in cerebral blood flow.
Collapse
Affiliation(s)
- Shodai Moriyama
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory School of Business Administration Meiji University Tokyo Japan
| | - Kohei Dobashi
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
- Faculty of Education Hokkaido University of Education Hokkaido Japan
| | - Ryoko Matsutake
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Mizuki Sakamoto
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| |
Collapse
|
8
|
Madirazza K, Pecotic R, Pavlinac Dodig I, Valic M, Dogas Z. Blockade of alpha2-adrenergic receptors in the caudal raphe region enhances the renal sympathetic nerve activity response to acute intermittent hypercapnia in rats. Physiol Res 2022; 71:159-169. [PMID: 35043650 DOI: 10.33549/physiolres.934717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The study investigated the role of alpha2-adrenergic receptors of the caudal raphe region in the sympathetic and cardiovascular responses to the acute intermittent hypercapnia (AIHc). Urethane-anesthetized, vagotomized, mechanically ventilated Sprague-Dawley rats (n=38) were exposed to the AIHc protocol (5×3 min, 15 % CO2+50 % O2) in hyperoxic background (50 % O2). alpha2-adrenergic receptor antagonist-yohimbine was applied intravenously (1 mg/kg, n=9) or microinjected into the caudal raphe region (2 mM, n=12) prior to exposure to AIHc. Control groups of animals received saline intravenously (n=7) or into the caudal raphe region (n=10) prior to exposure to AIHc. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored before exposure to the AIHc protocol (T0), during five hypercapnic episodes (THc1-5) and at 15 min following the end of the last hypercapnic episode (T15). Following intravenous administration of yohimbine, RSNA was significantly greater during THc1-5 and at T15 than in the control group (P<0.05). When yohimbine was microinjected into the caudal raphe region, AIHc elicited greater increases in RSNA during THc1-5 when compared to the controls (THc1: 138.0+/-4.0 % vs. 123.7+/-4.8 %, P=0.032; THc2: 137.1+/-5.0 % vs. 124.1+/-4.5 %, P=0.071; THc3: 143.1+/-6.4 % vs. 122.0±4.8 %, P=0.020; THc4: 146.1+/-6.2 % vs. 120.7+/-5.7 %, P=0.007 and THc5: 143.2+/-7.7 % vs. 119.2+/-7.2 %, P=0.038). During THc1-5, significant decreases in HR from T0 were observed in all groups, while changes in MAP were observed in the group that received yohimbine intravenously. These findings suggest that blockade of the alpha2-adrenegic receptors in the caudal raphe region might have an important role in sympathetic responses to AIHc.
Collapse
Affiliation(s)
- K Madirazza
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia.
| | | | | | | | | |
Collapse
|
9
|
Averyanova I, Vdovenko S. Gas exchange readjustments in response to hypoxia and hypercapnia exposure in Magadan region military service draftees. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.21.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Our study identified gas exchange and external respiration characteristics during hypoxia and hypercapnia exposure in young men of the Magadan Region. Materials and methods. A comprehensive survey in young men of military age, 18-21 yr., permanent residents of the Russia’s Northeast, was conducted. A hypoxic-&-hypercapnic respiration test with no CO2 absorption was used. Before and after respiration, using indirect calorimetry method, we analyzed gas composition in exhaled air, external respiration variables, body energy expenditure at rest, respiratory quotient, ventilation equivalents for oxygen and carbon dioxide (Carbonic gas analyzer, Medgraphics VO2000 gas meter). Statistical data processing was performed with Statistica 7.0 package. Results. Significant post-respiratory dynamics in most indicators of gas exchange and external respiration was found. In response to hypoxia and hypercapnia effects, an increase in the energy consumption at rest, in minute volume of body temperature and pressure saturation, in carbon dioxide emission and oxygen consumption per minute was observed with significantly decreased oxygen utilization factor. Conclusion. Effects of hypoxic-&-hypercapnic test can be seen as pronounced readjustments in analyzed variables: intensed metabolism at the test peak and that reduced below baseline in the recovery period. In this case, breathing patterns are readjusted with pronounced increase in pulmonary ventilation and higher values in breathing depth in comparison with the baseline value at each stage of the recovery period, up to its 3rd minute.
Collapse
|
10
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
11
|
Abstract
Obstructive sleep apnea (OSA) is a disease that results from loss of upper airway muscle tone leading to upper airway collapse during sleep in anatomically susceptible persons, leading to recurrent periods of hypoventilation, hypoxia, and arousals from sleep. Significant clinical consequences of the disorder cover a wide spectrum and include daytime hypersomnolence, neurocognitive dysfunction, cardiovascular disease, metabolic dysfunction, respiratory failure, and pulmonary hypertension. With escalating rates of obesity a major risk factor for OSA, the public health burden from OSA and its sequalae are expected to increase, as well. In this chapter, we review the mechanisms responsible for the development of OSA and associated neurocognitive and cardiometabolic comorbidities. Emphasis is placed on the neural control of the striated muscles that control the pharyngeal passages, especially regulation of hypoglossal motoneuron activity throughout the sleep/wake cycle, the neurocognitive complications of OSA, and the therapeutic options available to treat OSA including recent pharmacotherapeutic developments.
Collapse
Affiliation(s)
- Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Abstract
The clinical term dyspnea (a.k.a. breathlessness or shortness of breath) encompasses at least three qualitatively distinct sensations that warn of threats to breathing: air hunger, effort to breathe, and chest tightness. Air hunger is a primal homeostatic warning signal of insufficient alveolar ventilation that can produce fear and anxiety and severely impacts the lives of patients with cardiopulmonary, neuromuscular, psychological, and end-stage disease. The sense of effort to breathe informs of increased respiratory muscle activity and warns of potential impediments to breathing. Most frequently associated with bronchoconstriction, chest tightness may warn of airway inflammation and constriction through activation of airway sensory nerves. This chapter reviews human and functional brain imaging studies with comparison to pertinent neurorespiratory studies in animals to propose the interoceptive networks underlying each sensation. The neural origins of their distinct sensory and affective dimensions are discussed, and areas for future research are proposed. Despite dyspnea's clinical prevalence and impact, management of dyspnea languishes decades behind the treatment of pain. The neurophysiological bases of current therapeutic approaches are reviewed; however, a better understanding of the neural mechanisms of dyspnea may lead to development of novel therapies and improved patient care.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States; Faculty of Health Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
13
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
14
|
Fernandes LG, Trenhago PR, Feijóo RA, Blanco PJ. Integrated cardiorespiratory system model with short timescale control mechanisms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3332. [PMID: 32189436 DOI: 10.1002/cnm.3332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/26/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
A compartmental model of the cardiorespiratory system featuring pulsatile blood flow and gas transport, as well as closed loop mechanisms of cardiorespiratory regulation is presented. Short timescale regulatory action includes baroreflex, peripheral and central chemoreflex feedback. The cardiorespiratory model is composed by compartments to describe blood flow and gas exchange in the major systemic and pulmonic regions. The control systems include formulations to afferent activity of arterial baroreceptor and peripheral and central chemoreceptors. Simulations described here include situations of hypoxia, hypercapnia, and hemorrhage. The overall responses of our simulations agree with physiological (experimental) and theoretical data. Our results suggest that the present model could be used to further understand the interplay among major regulatory mechanisms in the functioning of the cardiovascular and respiratory systems in cases of normal and abnormal physiological conditions.
Collapse
Affiliation(s)
- Luciano G Fernandes
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Paulo R Trenhago
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Raúl A Feijóo
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Pablo J Blanco
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Pho H, Berger S, Freire C, Kim LJ, Shin MK, Streeter SR, Hosamane N, Cabassa ME, Anokye-Danso F, Dergacheva O, Amorim MR, Fleury-Curado T, Jun JC, Schwartz AR, Ahima RS, Mendelowitz D, Polotsky VY. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 2021; 44:6149135. [PMID: 33624805 PMCID: PMC8193564 DOI: 10.1093/sleep/zsab046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. Vsevolod (Seva) Y. Polotsky, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Johns Hopkins Asthma and Allergy Center, Rm 4B65, Baltimore, MD 21224.
| |
Collapse
|
16
|
Klemcke HG, Calderon ML, Crimmins SL, Ryan KL, Xiang L, Hinojosa-Laborde C. Effects of ketamine analgesia on cardiorespiratory responses and survival to trauma and hemorrhage in rats. J Appl Physiol (1985) 2021; 130:1583-1593. [PMID: 33830812 DOI: 10.1152/japplphysiol.00476.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketamine is the recommended analgesic on the battlefield for soldiers with hemorrhage, despite a lack of supportive evidence from laboratory or clinical studies. Hence, this study determined the effects of ketamine analgesia on cardiorespiratory responses and survival to moderate (37% blood volume; n = 8/group) or severe hemorrhage (50% blood volume; n = 10/group) after trauma in rats. We used a conscious hemorrhage model with extremity trauma (fibular fracture + soft tissue injury) while measuring mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) by telemetry, and respiration rate (RR), minute volume (MV), and tidal volume (TV) via whole body plethysmography. Male rats received saline (S) or 5.0 mg/kg ketamine (K) (100 µL/100 g body wt) intra-arterially after trauma and hemorrhage. All rats survived 37% hemorrhage. For 50% hemorrhage, neither survival times [180 min (SD 78) vs. 209 min (SD 66)] nor percent survival (60% vs. 80%) differed between S- and K-treated rats. After 37% hemorrhage, K (compared with S) increased MAP and decreased Tb and MV. After 50% hemorrhage, K (compared with S) increased MAP but decreased HR and MV. K effects on cardiorespiratory function were time dependent, significant but modest, and transient at the analgesic dose given. K effects on Tb were also significant but modest and more prolonged. With the use of this rat model, our data support the use of K as an analgesic in injured, hypovolemic patients.NEW & NOTEWORTHY Ketamine administration at a dose shown to alleviate pain in nonhemorrhaged rats with extremity trauma had only modest and transient effects on multiple aspects of cardiorespiratory function after both moderate (37%) and severe (50%) traumatic hemorrhages. Such effects did not alter survival.
Collapse
Affiliation(s)
- Harold G Klemcke
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Mariam L Calderon
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Stephen L Crimmins
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Kathy L Ryan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Lusha Xiang
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | | |
Collapse
|
17
|
Ghali MGZ. Dynamic changes in arterial pressure following high cervical transection in the decerebrate rat. J Spinal Cord Med 2021; 44:399-410. [PMID: 31525149 PMCID: PMC8081319 DOI: 10.1080/10790268.2019.1639974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Objective: Spinal transection has variable effects on arterial pressure, with some investigators demonstrating a precipitous decline and others reporting only a minimal decrease below normal. Recovery of arterial pressure following spinalization occurs with varying time courses - in some cases over days and in others over weeks to months. Given these findings, we sought to systematically test the hypothesis that in the unanesthetized decerebrate rat, arterial pressure would recover to pre-transection values over an acute time course.Design: Experiments were performed on a total of six Sprague-Dawley unanesthetized decerebrate adult male rats. In four rats, we determined dynamic changes in arterial pressure and heart rate in response to C1 transection.Results: Immediately following spinal cord injury, there were significant decreases in systolic blood (SBP) and mean arterial pressure (MAP), but not diastolic blood pressure (DBP). SBP, DBP, and MAP were significantly greater 170 min post-transection compared to immediate and 5 min-post transection values and were not statistically significantly different from pre-transection control. Heart rate decreased significantly following transection, but not immediately following the spinal cord injury. Lung inflation elicited depressor responses in all animals tested (n = 4 animals) and in three animals resulted in bradycardia. Hypercapnia tests effected a decrease in arterial pressure and heart rate (n = 3 animals).Conclusions: We demonstrate that in the unanesthetized decerebrate spinalized animal, arterial pressure is reduced by spinal transection and recovers over an acute time course to pre-transection values.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Busch SA, van Diepen S, Roberts R, Steele AR, Berthelsen LF, Smorschok MP, Bourgoin C, Steinback CD. Short-term hypoxia does not promote arrhythmia during voluntary apnea. Physiol Rep 2021; 9:e14703. [PMID: 33426815 PMCID: PMC7797307 DOI: 10.14814/phy2.14703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
The presence of bradycardic arrhythmias during volitional apnea at altitude may be caused by chemoreflex activation/sensitization. We investigated whether bradyarrhythmic episodes became prevalent in apnea following short‐term hypoxia exposure. Electrocardiograms (ECG; lead II) were collected from 22 low‐altitude residents (F = 12; age=25 ± 5 years) at 671 m. Participants were exposed to normobaric hypoxia (Spo2 ~79 ± 3%) over a 5‐h period. ECG rhythms were assessed during both free‐breathing and maximal volitional end‐expiratory and end‐inspiratory apnea at baseline during normoxia and hypoxia exposure (20 min [AHX]; 5 h [HX5]). Free‐breathing HR became elevated at AHX (78 ± 10 bpm; p < 0.0001) and HX5 (80 ± 12 bpm; p < 0.0001) compared to normoxia (68 ± 10 bpm), whereas apnea caused significant bradycardia at AHX (nadir end‐expiratory −17 ± 14 bpm; p < 0.001) and HX5 (nadir end‐expiratory −19 ± 15 bpm; p < 0.001), but not during normoxia (nadir end‐expiratory −4 ± 13 bpm), with no difference in bradycardia responses between apneas at AHX and HX5. Conduction abnormalities were noted in five participants during normoxia (Premature Ventricular Contraction, Sinus Pause, Junctional Rhythm, Atrial Foci), which remained unchanged during apnea at AHX and HX5 (Premature Ventricular Contraction, Premature Atrial Contraction, Sinus Pause). End‐inspiratory apneas were overall longer across conditions (normoxia p < 0.05; AHX p < 0.01; HX5 p < 0.001), with comparable HR responses to end‐expiratory and fewer occurrences of arrhythmia. While short‐term hypoxia is sufficient to elicit bradycardia during apnea, the occurrence of arrhythmias in response to apnea was not affected. These findings indicate that previously observed bradyarrhythmic events in untrained individuals at altitude only become prevalent following chronic hypoxia specificlly.
Collapse
Affiliation(s)
- Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Sean van Diepen
- Department of Critical Care and Divison of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Richard Roberts
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Megan P Smorschok
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Cody Bourgoin
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Tian Y, Geng D, Wang Y, Shi L, Yu H, He W, Zhu Y, Jun S, Fu C, Wang X, Zhang X, Yuan F, Wang S. Contribution of retrotrapezoid nucleus neurons to CO 2 -amplified cardiorespiratory activity in spontaneously hypertensive rats. J Physiol 2020; 599:1115-1130. [PMID: 33347681 DOI: 10.1113/jp280246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.
Collapse
Affiliation(s)
- Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Danyang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei He
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufang Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shirui Jun
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xin Wang
- Physiology Laboratory of Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, 050000, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
20
|
Díaz HS, Andrade DC, Toledo C, Schwarz KG, Pereyra KV, Díaz-Jara E, Marcus NJ, Del Rio R. Inhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure. Hypertension 2020; 77:718-728. [PMID: 33307852 DOI: 10.1161/hypertensionaha.120.16056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02±0.29 versus 1.14±0.24), reduced cardiac arrhythmia incidence (141.5±26.7 versus 35.67±12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83±2.26 versus 4.33±1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4±0.3 versus 4.0±0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.
Collapse
Affiliation(s)
- Hugo S Díaz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - David C Andrade
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile (D.C.A.)
| | - Camilo Toledo
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Karla G Schwarz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Katherin V Pereyra
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Esteban Díaz-Jara
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, IA (N.J.M.)
| | - Rodrigo Del Rio
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile (R.D.R.)
| |
Collapse
|
21
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
22
|
Tanaka T, Sato H, Kasai K. Lethal physiological effects of carbon dioxide exposure at high concentration in rats. Leg Med (Tokyo) 2020; 47:101746. [PMID: 32717552 DOI: 10.1016/j.legalmed.2020.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 11/26/2022]
Abstract
The acute toxicity of high concentrations of carbon dioxide (CO2) was investigated in anesthetized rats using physiological parameters. At an oxygen concentration of 21%, the survival time decreased in a concentration-dependent manner from ≥7.3 h at 20% CO2 to 1.0 h at 50% CO2. The animals were divided into groups that were exposed to 40% CO2 and 21% O2 balanced with nitrogen (CO2 group), 40% CO2 and 12.6% O2 (CO2-Hypoxia group), 0% CO2 and 12.6% O2 (Hypoxia group), and 0% CO2 and 21% O2 (Control group) for 3 h. In the CO2 group, mean blood pressure (MBP) increased temporarily in the first 60 min followed by a gradual decrease, while breathing rate (BR) decreased immediately up to 3 h and the concentration of serum indicators reflecting organ damage increased. Most of these effects progressed in the CO2-Hypoxia group. The Hypoxia group showed a contrasting response to the CO2 groups in MBP and BR, and a slight partial increase in the serum indicators. Histological changes were not observed in any primary organs of any group, except for eosinophilic or necrosis of pyramidal cells in the hippocampal CA1 region of the CO2 group. These results indicate that high concentrations of CO2 inhalation are toxic, likely due to BR suppression, and that hypoxia produced under a high CO2 environment, while showing little effect on its own, enhances the toxic effects of CO2.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
23
|
Abstract
Variability in cardiovascular spectra was first described by Stephan Hales in 1733. Traube and Hering initially noted respirophasic variation of the arterial pressure waveform in 1865 and Sigmund Mayer noted a lower frequency oscillation of the same in anesthetized rabbits in 1876. Very low frequency oscillations were noted by Barcroft and Nisimaru in 1932, likely representing vasogenic autorhythmicity. While the origins of Traube Hering and very low frequency oscillatory variability in cardiovascular spectra are well described, genesis mechanisms and functional significance of Mayer waves remain in controversy. Various theories have posited baroreflex and central supraspinal mechanisms for genesis of Mayer waves. Several studies have demonstrated the persistence of Mayer waves following high cervical transection, indicating a spinal capacity for genesis of these oscillations. We suggest a general tendency for central sympathetic neurons to oscillate at the Mayer wave frequency, the presence of multiple Mayer wave oscillators throughout the brainstem and spinal cord, and possible contemporaneous genesis by baroreflex and vasomotor mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Emil Zaki Ghali
- Department of Medicine, Inova Alexandria Hospital, Alexandria, VA, USA; Department of Cardiothoracic Surgery, El Gomhoureya General Hospital, Alexandria, Egypt
| |
Collapse
|
24
|
Díaz HS, Andrade DC, Toledo C, Pereyra KV, Schwarz KG, Díaz-Jara E, Lucero C, Arce-Álvarez A, Schultz HD, Silva JN, Takakura AC, Moreira TS, Marcus NJ, Del Rio R. Episodic stimulation of central chemoreceptor neurons elicits disordered breathing and autonomic dysfunction in volume overload heart failure. Am J Physiol Lung Cell Mol Physiol 2019; 318:L27-L40. [PMID: 31617729 PMCID: PMC6985876 DOI: 10.1152/ajplung.00007.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, Nebraska
| | - Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
25
|
Kaur S, Saper CB. Neural Circuitry Underlying Waking Up to Hypercapnia. Front Neurosci 2019; 13:401. [PMID: 31080401 PMCID: PMC6497806 DOI: 10.3389/fnins.2019.00401] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea is a sleep and breathing disorder, in which, patients suffer from cycles of atonia of airway dilator muscles during sleep, resulting in airway collapse, followed by brief arousals that help re-establish the airway patency. These repetitive arousals which can occur hundreds of times during the course of a night are the cause of the sleep-disruption, which in turn causes cognitive impairment as well as cardiovascular and metabolic morbidities. To prevent this potential outcome, it is important to target preventing the arousal from sleep while preserving or augmenting the increase in respiratory drive that reinitiates breathing, but will require understanding of the neural circuits that regulate the cortical and respiratory responses to apnea. The parabrachial nucleus (PB) is located in rostral pons. It receives chemosensory information from medullary nuclei that sense increase in CO2 (hypercapnia), decrease in O2 (hypoxia) and mechanosensory inputs from airway negative pressure during apneas. The PB area also exerts powerful control over cortical arousal and respiration, and therefore, is an excellent candidate for mediating the EEG arousal and restoration of the airway during sleep apneas. Using various genetic tools, we dissected the neuronal sub-types responsible for relaying the stimulus for cortical arousal to forebrain arousal circuits. The present review will focus on the circuitries that regulate waking-up from sleep in response to hypercapnia.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Andrzejewski K, Budzińska K, Kaczyńska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson's disease. Physiol Res 2019; 68:285-293. [PMID: 30628829 DOI: 10.33549/physiolres.933949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing impairments, such as an alteration in breathing pattern, dyspnoea, and sleep apnoea, are common health deficits recognised in Parkinson's disease (PD). The mechanism that underlies these disturbances, however, remains unclear. We investigated the effect of the unilateral damage to the rat nigrostriatal pathway on the central ventilatory response to hypercapnia, evoked by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). The respiratory experiments were carried out in conscious animals in the plethysmography chamber. The ventilatory parameters were studied in normocapnic and hyperoxic hypercapnia before and 14 days after the neurotoxin injection. Lesion with the 6-OHDA produced an increased tidal volume during normoxia. The magnified response of tidal volume and a decrease of breathing frequency to hypercapnia were observed in comparison to the pre-lesion and sham controls. Changes in both respiratory parameters resulted in an increase of minute ventilation of the response to CO(2) by 28% in comparison to the pre-lesion state at 60 s. Our results demonstrate that rats with implemented unilateral PD model presented an altered respiratory pattern most often during a ventilatory response to hypercapnia. Preserved noradrenaline and specific changes in dopamine and serotonin characteristic for this model could be responsible for the pattern of breathing observed during hypercapnia.
Collapse
Affiliation(s)
- K Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
27
|
Lavezzi AM, Poloniato A, Rovelli R, Lorioli L, Iasi GA, Pusiol T, Barera G, Ferrero S. Massive Amniotic Fluid Aspiration in a Case of Sudden Neonatal Death With Severe Hypoplasia of the Retrotrapezoid/Parafacial Respiratory Group. Front Pediatr 2019; 7:116. [PMID: 31019904 PMCID: PMC6458245 DOI: 10.3389/fped.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
We report a case of a baby, who, after pregnancy complicated by maternal Addison's disease and Hashimoto's thyroiditis and natural delivery, unexpectedly presented a cardiorespiratory collapse and died 1 hour after birth without responding to prolonged neonatal resuscitation maneuvers. The cause of death was reliably established by carrying out a forensic postmortem examination. More specifically, the histological examination of the lungs showed the presence of abundant endoalveolar and endobronchial cornea scales caused by absorption of amniotic fluid. The neuropathological examination of the brainstem highlighted severe hypodevelopment of the retrotrapezoid/parafacial respiratory group, which is a complex of neurons located in the caudal pons that is involved in respiratory rhythm coordination, especially expiration, in conditions of enhanced respiratory drive, as well as in chemoreception. This neuropathological finding shed new light on the mechanisms underlying the massive amniotic fluid aspiration which led to this early death.
Collapse
Affiliation(s)
- Anna M Lavezzi
- Department of Biomedical, Surgical and Dental Sciences, Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, University of Milan, Milan, Italy
| | | | | | - Laura Lorioli
- Neonatal Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Teresa Pusiol
- Institute of Pathology, Hospital of Rovereto, Rovereto, Italy
| | | | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
28
|
Battaglia M, Rossignol O, Bachand K, D'Amato FR, De Koninck Y. Amiloride modulation of carbon dioxide hypersensitivity and thermal nociceptive hypersensitivity induced by interference with early maternal environment. J Psychopharmacol 2019; 33:101-108. [PMID: 29968500 DOI: 10.1177/0269881118784872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Early life adversities are risk factors for anxiety disorders and for pain syndromes, which are, in turn, highly comorbid with anxiety disorders. Repeated cross-fostering mouse pups to adoptive lactating females induces epigenetic modification and heightened mRNA-expression of the acid-sensing-ion-channel-1 gene, altered nociception, and hypersensitivity to 6% carbon dioxide air mixtures, a trait marker of specific human anxiety disorders such as, most clearly and prominently, panic disorder. AIMS We hypothesized that the acid-sensing ion channel inhibitor amiloride can modulate repeated cross-fostering animals' exaggerated responses to carbon dioxide and nociceptive thermal stimulation. METHODS Respiratory carbon dioxide sensitivity was assessed by plethysmography during 6% carbon dioxide air mixture challenges, and nociception was assessed by latency of paw withdrawal to thermal stimulation, in repeated cross-fostering and control animals. To circumvent the blood-brain barrier, prior to testing, amiloride was nebulized in a plethysmograph. Data were analyzed by general linear models. RESULTS Analyses of tidal volume responses to 6% carbon dioxide of animals pre-treated with nebulized amiloride/saline in a randomized crossover design showed significant modulatory effect of amiloride, and amiloride×repeated cross-fostering interaction. In contrast, repeated cross-fostering animals' responses to 6% carbon dioxide after intraperitoneal amiloride, saline, or no treatment, were no different. Analyses of responses to thermal stimuli showed a significant modulatory effect of nebulized amiloride, and repeated cross-fostering×amiloride interaction. CONCLUSIONS Single-dose nebulized amiloride decreased repeated cross-fostering animals' carbon dioxide sensitivity and nociception indices to levels that were no different from those of control animals. Inasmuch as these results pertain to human anxiety and/or pain hypersensitivity, our findings provide a rationale for studying inhaled amiloride in some anxiety disorders and/or pain syndromes.
Collapse
Affiliation(s)
- Marco Battaglia
- Child Youth and Emerging Adult Programme, Centre for Addiction & Mental Health, Toronto, ON, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Karine Bachand
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Semin Pediatr Neurol 2018; 28:29-37. [PMID: 30522725 PMCID: PMC6432941 DOI: 10.1016/j.spen.2018.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this article is to understand the complex role of the central autonomic nervous system in normal and complicated fetal-neonatal transition and how autonomic nervous system dysfunction can lead to brain injury. The central autonomic nervous system supports coordinated fetal transitional cardiovascular, respiratory, and endocrine responses to provide safe transition of the fetus at delivery. Fetal and maternal medical and environmental exposures can disrupt normal maturation of the autonomic nervous system in utero, cause dysfunction, and complicate fetal-neonatal transition. Brain injury may both be caused by autonomic nervous system failure and contribute directly to autonomic nervous system dysfunction in the fetus and newborn. The central autonomic nervous system has multiple roles in supporting transition of the fetus. Future studies should aim to improve real-time monitoring of fetal autonomic nervous system function and in supporting typical autonomic nervous system development even under complicated conditions.
Collapse
|
30
|
Lumb KJ, Schneider JM, Ibrahim T, Rigaux A, Hasan SU. Afferent neural feedback overrides the modulating effects of arousal, hypercapnia and hypoxaemia on neonatal cardiorespiratory control. J Physiol 2018; 596:6009-6019. [PMID: 29676798 PMCID: PMC6265552 DOI: 10.1113/jp275682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Evidence obtained at whole animal, organ-system, and cellular and molecular levels suggests that afferent volume feedback is critical for the establishment of adequate ventilation at birth. As a result of the irreversible nature of the vagal ablation studies performed to date, it was difficult to quantify the roles of afferent volume input, arousal and changes in blood gas tensions on neonatal respiratory control. During reversible perineural vagal block, profound apnoeas and hypoxaemia and hypercarbia were observed, necessitating the termination of perineural blockade. Respiratory depression and apnoeas were independent of sleep state. We demonstrate that profound apnoeas and life-threatening respiratory failure in vagally denervated animals do not result from a lack of arousal or hypoxaemia. A change in sleep state and concomitant respiratory depression result from a lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period. ABSTRACT Afferent volume feedback plays a vital role in neonatal respiratory control. Mechanisms for the profound respiratory depression and life-threatening apnoeas observed in vagally denervated neonatal animals remain unclear. We investigated the roles of sleep states, hypoxic-hypercapnia and afferent volume feedback on respiratory depression using reversible perineural vagal block during the early postnatal period. Seven lambs were instrumented during the first 48 h of life to record/analyse sleep states, diaphragmatic electromyograph, arterial blood gas tensions, systemic arterial blood pressure and rectal temperature. Perineural cuffs were placed around the vagi to attain reversible blockade. Postoperatively, during the awake state, both vagi were blocked using 2% xylocaine for up to 30 min. Compared to baseline values, pHa , P a o 2 and S a o 2 decreased and P ac o 2 increased during perineural blockade (P < 0.05). Four of seven animals exhibited apnoeas of ≥20 s requiring the immediate termination of perineural blockade. Breathing rates decreased from the baseline value of 53 ± 12 to 24 ± 20 breaths min-1 during blockade despite an increased P ac o 2 (P < 0.001). Following blockade, breathing patterns returned to baseline values despite marked hypocapnia ( P ac o 2 33 ± 3 torr; P = 0.03). Respiratory depression and apnoeas were independent of sleep states. The present study provides the much needed physiological evidence indicating that profound apnoeas and life-threatening respiratory failure in vagally denervated animals do not result from a lack of arousal or hypoxaemia. Rather, a change in sleep state and concomitant respiratory depression result from a lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period.
Collapse
Affiliation(s)
- Kathleen J. Lumb
- Department of PediatricsAlberta Children's Hospital Research Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Jennifer M. Schneider
- Department of PediatricsAlberta Children's Hospital Research Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Thowfique Ibrahim
- Department of PediatricsAlberta Children's Hospital Research Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Anita Rigaux
- Department of PediatricsAlberta Children's Hospital Research Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Shabih U. Hasan
- Department of PediatricsAlberta Children's Hospital Research Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
31
|
Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur J Pharmacol 2018; 834:17-29. [PMID: 30012498 DOI: 10.1016/j.ejphar.2018.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Opioid-induced respiratory depression (OIRD) involves decreased sensitivity of ventilatory control systems to decreased blood levels of oxygen (hypoxia) and elevated levels of carbon dioxide (hypercapnia). Understanding the sites and mechanisms by which opioids elicit respiratory depression is pivotal for finding novel therapeutics to prevent and/or reverse OIRD. To examine the contribution of carotid body chemoreceptors OIRD, we used whole-body plethysmography to evaluate hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses including changes in frequency of breathing, tidal volume, minute ventilation and inspiratory drive, after intravenous injection of morphine (10 mg/kg) in sham-operated (SHAM) and in bilateral carotid sinus nerve transected (CSNX) Sprague-Dawley rats. In SHAM rats, morphine produced sustained respiratory depression (e.g., decreases in tidal volume, minute ventilation and inspiratory drive) and reduced the HVR and HCVR responses. Unexpectedly, morphine-induced suppression of HVR and HCVR were substantially greater in CSNX rats than in SHAM rats. This suggests that morphine did not compromise the function of the carotid body-chemoafferent complex and indeed, that the carotid body acts to defend against morphine-induced respiratory depression. These data are the first in vivo evidence that carotid body chemoreceptor afferents defend against rather than participate in OIRD in conscious rats. As such, drugs that stimulate ventilation by targeting primary glomus cells and/or chemoafferent terminals in the carotid bodies may help to alleviate OIRD.
Collapse
|
32
|
The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. J Hypertens 2018. [PMID: 28650915 DOI: 10.1097/hjh.0000000000001427] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
: Although medullary control of blood pressure (BP) has been extensively studied, the contribution of critical regions, such as pressor sites in the caudal medulla and upper cervical spinal cord and the lateral tegmental field, remains controversial and underappreciated. A series of pressor sites caudal to the caudal ventrolateral medulla (CVLM), including the caudal pressor area (CPA) and medullocervical pressor area, play an important role in control of BP. Activation and inhibition of these sites elicits pressor and depressor responses, respectively. Basal sympathetic tone is provided principally by the medullary lateral tegmental field and rostral ventrolateral medulla (RVLM). RVLM presympathetic neurons, which project to and drive preganglionic sympathetic somata in the intermediolateral cell column, are powerfully regulated by neurons in CVLM via tonic and phasic inhibition. The current state of knowledge is summarized thus: rostrocaudally organized columns of pressor sites caudal to CVLM extend to the upper cervical spinal cord; CPA pressor responses are RVLM-dependent; CPA mediates pressor responses by (first) inhibiting RVLM-projecting inhibitory CVLM units and (second) activating RVLM-projecting excitatory CVLM units; the chemoreflex is CPA-dependent; the baroreflex is CPA-independent; pressor responses to raphe obscurus stimulation are CPA-dependent; and medullocervical pressor area pressor responses are RVLM-independent, likely mediated by direct projections to the intermediolateral cell column. In this review, we seek to underscore and characterize the critical role played by the caudal medulla and upper cervical spinal cord in BP regulation and highlight important gaps in knowledge in interactions between the caudal medulla and other regions controlling BP, which may prove critical in revealing central mechanisms underlying pathophysiology of, and pharmacotherapeutic targets for, hypertension.
Collapse
|
33
|
Giannese F, Luchetti A, Barbiera G, Lampis V, Zanettini C, Knudsen GP, Scaini S, Lazarevic D, Cittaro D, D'Amato FR, Battaglia M. Conserved DNA Methylation Signatures in Early Maternal Separation and in Twins Discordant for CO 2 Sensitivity. Sci Rep 2018; 8:2258. [PMID: 29396481 PMCID: PMC5797081 DOI: 10.1038/s41598-018-20457-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Respiratory and emotional responses to blood-acidifying inhalation of CO2 are markers of some human anxiety disorders, and can be enhanced by repeatedly cross-fostering (RCF) mouse pups from their biological mother to unrelated lactating females. Yet, these dynamics remain poorly understood. We show RCF-associated intergenerational transmission of CO2 sensitivity in normally-reared mice descending from RCF-exposed females, and describe the accompanying alterations in brain DNA methylation patterns. These epigenetic signatures were compared to DNA methylation profiles of monozygotic twins discordant for emotional reactivity to a CO2 challenge. Altered methylation was consistently associated with repeated elements and transcriptional regulatory regions among RCF-exposed animals, their normally-reared offspring, and humans with CO2 hypersensitivity. In both species, regions bearing differential methylation were associated with neurodevelopment, circulation, and response to pH acidification processes, and notably included the ASIC2 gene. Our data show that CO2 hypersensitivity is associated with specific methylation clusters and genes that subserve chemoreception and anxiety. The methylation status of genes implicated in acid-sensing functions can inform etiological and therapeutic research in this field.
Collapse
Affiliation(s)
- Francesca Giannese
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Giulia Barbiera
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Zanettini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,National Institute on Drug Abuse, Medication Development Program Molecular Targets and Medications Discovery Branch, Intramural Research Program, NIH, Baltimore, USA
| | - Gun Peggy Knudsen
- The Norwegian Institute of Public Health Department of Genetics, Environment and Mental Health, Oslo, Norway
| | - Simona Scaini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Dejan Lazarevic
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada. .,Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
34
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Quintanilla RA, Schultz HD, Marcus NJ, Amann M, Del Rio R. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? Am J Physiol Heart Circ Physiol 2017; 314:H464-H474. [PMID: 29167119 DOI: 10.1152/ajpheart.00407.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | | | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University , Des Moines, Iowa
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes , Punta Arenas , Chile.,Centro de Envejecimiento y Regeneracion, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017; 96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
The precise neural circuitry that mediates arousal during sleep apnea is not known. We previously found that glutamatergic neurons in the external lateral parabrachial nucleus (PBel) play a critical role in arousal to elevated CO2 or hypoxia. Because many of the PBel neurons that respond to CO2 express calcitonin gene-related peptide (CGRP), we hypothesized that CGRP may provide a molecular identifier of the CO2 arousal circuit. Here, we report that selective chemogenetic and optogenetic activation of PBelCGRP neurons caused wakefulness, whereas optogenetic inhibition of PBelCGRP neurons prevented arousal to CO2, but not to an acoustic tone or shaking. Optogenetic inhibition of PBelCGRP terminals identified a network of forebrain sites under the control of a PBelCGRP switch that is necessary to arouse animals from hypercapnia. Our findings define a novel cellular target for interventions that may prevent sleep fragmentation and the attendant cardiovascular and cognitive consequences seen in obstructive sleep apnea. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Joshua L Wang
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Loris Ferrari
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Stephen Thankachan
- Department of Psychiatry, Harvard Medical School & VA Boston Healthcare, 1400 VFW Parkway, West Roxbury, MA, USA
| | - Daniel Kroeger
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anne Venner
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Patrick M Fuller
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Badrov MB, Barak OF, Mijacika T, Shoemaker LN, Borrell LJ, Lojpur M, Drvis I, Dujic Z, Shoemaker JK. Ventilation inhibits sympathetic action potential recruitment even during severe chemoreflex stress. J Neurophysiol 2017; 118:2914-2924. [PMID: 28835525 PMCID: PMC5686238 DOI: 10.1152/jn.00381.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (age 33 ± 12 yr), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during 1) functional residual capacity apnea (FRCApnea) and 2) continued RBR. Data from RBR were analyzed at matched (i.e., to FRCApnea) hemoglobin saturation (HbSat) levels (RBRMatched) or more severe levels (RBREnd). A third protocol compared alternating periods (30 s) of FRC and RBR (FRC-RBRALT). Subjects continued each protocol until 85% volitional tolerance. AP patterns in MSNA (i.e., providing the true neural content of each sympathetic burst) were studied using wavelet-based methodology. First, for similar levels of chemoreflex stress (both HbSat: 71 ± 6%; P = NS), RBRMatched was associated with reduced AP frequency and APs per burst compared with FRCApnea (both P < 0.001). When APs were binned according to peak-to-peak amplitude (i.e., into clusters), total AP clusters increased during FRCApnea (+10 ± 2; P < 0.001) but not during RBRMatched (+1 ± 2; P = NS). Second, despite more severe chemoreflex stress during RBREnd (HbSat: 56 ± 13 vs. 71 ± 6%; P < 0.001), RBREnd was associated with a restrained increase in the APs per burst (FRCApnea: +18 ± 7; RBREnd: +11 ± 5) and total AP clusters (FRCApnea: +10 ± 2; RBREnd: +6 ± 4) (both P < 0.01). During FRC-RBRALT, all periods of FRC elicited sympathetic AP recruitment (all P < 0.001), whereas all periods of RBR were associated with complete withdrawal of AP recruitment (all P = NS). Presently, we demonstrate that ventilation per se restrains and/or inhibits sympathetic axonal recruitment during high, and even extreme, chemoreflex stress.NEW & NOTEWORTHY The current study demonstrates that the sympathetic neural recruitment patterns observed during chemoreflex activation induced by rebreathing or apnea are restrained and/or inhibited by the act of ventilation per se, despite similar, or even greater, levels of severe chemoreflex stress. Therefore, ventilation modulates not only the timing of sympathetic bursts but also the within-burst axonal recruitment normally observed during progressive chemoreflex stress.
Collapse
Affiliation(s)
- Mark B Badrov
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Otto F Barak
- Department of Physiology, University of Split School of Medicine, Split, Croatia.,Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Mijacika
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | | | | | - Mihajlo Lojpur
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Ivan Drvis
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia; and
| | - Zeljko Dujic
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada; .,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
37
|
Oliveira LM, Tuppy M, Moreira TS, Takakura AC. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model. Exp Neurol 2017; 293:172-180. [DOI: 10.1016/j.expneurol.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/05/2023]
|
38
|
Laouafa S, Perrin-Terrin AS, Jeton F, Elliot-Portal E, Tam R, Bodineau L, Voituron N, Soliz J. Pharmacological, but not genetic, alteration of neural Epo modifies the CO 2/H + central chemosensitivity in postnatal mice. Respir Physiol Neurobiol 2017; 242:73-79. [PMID: 28396201 DOI: 10.1016/j.resp.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022]
Abstract
Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity. Nevertheless, it is known that the sensitivity to CO2/H+ during the mammalian respiratory network maturation process is age-dependent. Accordingly, in this study we wanted to test the hypothesis that cerebral Epo is involved in the breathing stimulation induced by the activation of central CO2/H+ chemoreceptors at earlier postnatal ages. To this end, en bloc brainstem-spinal cord preparations were obtained from P4 mice and the fictive breathing response to CO2-induced acidosis or metabolic acidosis was analyzed. This age (P4) was chosen because previous research from our laboratory showed that Epo altered (in a dose- and time-dependent manner) the fictive ventilation elicited in brainstem-spinal cord preparations. Moreover, as it was observed that peripheral chemoreceptors determined the respiratory sensitivity of central chemoreceptors to CO2, the use of this technique restricts our observations to central modulation. Our results did not show differences between preparations from control and transgenic animals (Tg21: overexpressing cerebral Epo; Epo-TAgh: cerebral Epo deficient mice). However, when Tg21 brainstem preparations were incubated for 1h with sEpoR, or with inhibitors of ERK/Akt (thus blocking the activation of the Epo molecular pathway), the fictive breathing response to CO2-induced acidosis was blunted. Our data suggest that variation of the Epo/sEpoR ratio is central to breathing modulation during CO2 challenges, and calls attention to clinical perspectives based on the use of Epo drugs at birth in hypoventilation cases.
Collapse
Affiliation(s)
- Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne, France
| | - Anne-Sophie Perrin-Terrin
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Florine Jeton
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Elizabeth Elliot-Portal
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Rose Tam
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
39
|
Webb CL, Milsom WK. Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel. J Comp Physiol B 2017; 187:793-802. [DOI: 10.1007/s00360-017-1079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
|
40
|
Toledo C, Andrade DC, Lucero C, Arce-Alvarez A, Díaz HS, Aliaga V, Schultz HD, Marcus NJ, Manríquez M, Faúndez M, Del Rio R. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. J Physiol 2017; 595:2479-2495. [PMID: 28181258 DOI: 10.1113/jp273558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance. Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood. We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem. Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. ABSTRACT Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h-1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h-1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h-1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg μl-1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Valentín Aliaga
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mónica Manríquez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcelo Faúndez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
41
|
Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology 2017; 88:1187-1196. [PMID: 28202704 DOI: 10.1212/wnl.0000000000003751] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Laouafa S, Elliot-Portal E, Revollo S, Schneider Gasser EM, Joseph V, Voituron N, Gassmann M, Soliz J. Hypercapnic ventilatory response is decreased in a mouse model of excessive erythrocytosis. Am J Physiol Regul Integr Comp Physiol 2016; 311:R940-R947. [PMID: 27605561 DOI: 10.1152/ajpregu.00226.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 11/22/2022]
Abstract
The impact of cerebral erythropoietin (Epo) in the regulation of the hypercapnic ventilatory response (HcVR) is controversial. While we reported that cerebral Epo does not affect the central chemosensitivity in C57Bl6 mice receiving an intracisternal injection of sEpoR (the endogenous antagonist of Epo), a recent study in transgenic mice with constitutive high levels of human Epo in brain and circulation (Tg6) and in brain only (Tg21), showed that Epo blunts the HcVR, maybe by interacting with central and peripheral chemoreceptors. High Epo serum levels in Tg6 mice lead to excessive erythrocytosis (hematocrit ~80-90%), the main symptom of chronic mountain sickness (CMS). These latter results support the hypothesis that reduced central chemosensitivity accounts for the hypoventilation observed in CMS patients. To solve this intriguing divergence, we reevaluate HcVR in Tg6 and Tg21 mouse lines, by assessing the metabolic rate [O consumption (V̇) and CO production (V̇)], a key factor modulating ventilation, the effect of which was not considered in the previous study. Our results showed that the decreased HcVR observed in Tg6 mice (~70% reduction; < 0.01) was due to a significant decrease in the metabolism (~40%; < 0.0001) rather than Epo's effect on CO chemosensitivity. Additional analysis in Tg21 mice did not reveal differences of HcVR or metabolism. We concluded that cerebral Epo does not modulate the central chemosensitivity system, and that a metabolic effect upon CO inhalation is responsible for decreased HcVR observed in Tg6 animals. As CMS patients also show decreased HcVR, our findings might help to better understand respiratory disorders at high altitude.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Elizabeth Elliot-Portal
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Susana Revollo
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; and
| | - Vincent Joseph
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons," Bobigny, France
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; and.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Jorge Soliz
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada;
| |
Collapse
|
43
|
Totola LT, Takakura AC, Oliveira JAC, Garcia-Cairasco N, Moreira TS. Impaired central respiratory chemoreflex in an experimental genetic model of epilepsy. J Physiol 2016; 595:983-999. [PMID: 27633663 DOI: 10.1113/jp272822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS It is recognized that seizures commonly cause apnoea and oxygen desaturation, but there is still a lack in the literature about the respiratory impairments observed ictally and in the post-ictal period. Respiratory disorders may involve changes in serotonergic transmission at the level of the retrotrapezoid nucleus (RTN). In this study, we evaluated breathing activity and the role of serotonergic transmission in the RTN with a rat model of tonic-clonic seizures, the Wistar audiogenic rat (WAR). We conclude that the respiratory impairment in the WAR could be correlated to an overall decrease in the number of neurons located in the respiratory column. ABSTRACT Respiratory disorders may involve changes in serotonergic neurotransmission at the level of the chemosensitive neurons located in the retrotrapezoid nucleus (RTN). Here, we investigated the central respiratory chemoreflex and the role of serotonergic neurotransmission in the RTN with a rat model of tonic-clonic seizures, the Wistar audiogenic rat (WAR). We found that naive or kindled WARs have reduced resting ventilation and ventilatory response to hypercapnia (7% CO2 ). The number of chemically coded (Phox2b+ /TH- ) RTN neurons, as well as the serotonergic innervation to the RTN, was reduced in WARs. We detected that the ventilatory response to serotonin (1 mm, 50 nl) within the RTN region was significantly reduced in WARs. Our results uniquely demonstrated a respiratory impairment in a genetic model of tonic-clonic seizures, the WAR strain. More importantly, we demonstrated an overall decrease in the number of neurons located in the ventral respiratory column (VRC), as well as a reduction in serotonergic neurons in the midline medulla. This is an important step forward to demonstrate marked changes in neuronal activity and breathing impairment in the WAR strain, a genetic model of epilepsy.
Collapse
Affiliation(s)
- Leonardo T Totola
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - José Antonio C Oliveira
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Evaluation of Low versus High Volume per Minute Displacement CO₂ Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology. Animals (Basel) 2016; 6:ani6080045. [PMID: 27490573 PMCID: PMC4997270 DOI: 10.3390/ani6080045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Current recommendations for the use of CO ₂ as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute) in order to render the animal insensible prior to exposure to levels of CO ₂ that are associated with pain. However, exposing rats to CO ₂ , concentrations as low as 7% CO ₂ are reported to cause distress and 10%-20% CO ₂ induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO ₂ concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO ₂ that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO ₂ for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO ₂ exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO ₂ also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO ₂ infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO ₂ and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10%) may prolong the duration of panicogenic ranges of ambient CO ₂ , while the use of the higher flow volume per minute displacement rate (100%) increases agitation. Therefore, of the volume displacement per minute rates evaluated, this study suggests that 30% minimizes the potential pain and distress experienced by the animal.
Collapse
|
45
|
Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, Madrid C, Del Rio R. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol 2016; 595:43-51. [PMID: 27218485 DOI: 10.1113/jp272075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
46
|
Oliveira LM, Moreira TS, Kuo FS, Mulkey DK, Takakura AC. α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats. J Neurophysiol 2016; 116:1036-48. [PMID: 27306670 DOI: 10.1152/jn.00023.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (β-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and β-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or β-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; and
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil;
| |
Collapse
|
47
|
Kuo FS, Falquetto B, Chen D, Oliveira LM, Takakura AC, Mulkey DK. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus. J Neurophysiol 2016; 116:1024-35. [PMID: 27306669 DOI: 10.1152/jn.00022.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H(+) but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs.
Collapse
Affiliation(s)
- Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| | - Bárbara Falquetto
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Dawei Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| | - Luiz M Oliveira
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| |
Collapse
|
48
|
Li A, Roy SH, Nattie EE. An augmented CO2 chemoreflex and overactive orexin system are linked with hypertension in young and adult spontaneously hypertensive rats. J Physiol 2016; 594:4967-80. [PMID: 27061304 DOI: 10.1113/jp272199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Activation of central chemoreceptors by CO2 increases sympathetic nerve activity (SNA), arterial blood pressure (ABP) and breathing. These effects are exaggerated in spontaneously hypertensive rats (SHRs), resulting in an augmented CO2 chemoreflex that affects both breathing and ABP. The augmented CO2 chemoreflex and the high ABP are measureable in young SHRs (postnatal day 30-58) and become greater in adult SHRs. Blockade of orexin receptors can normalize the augmented CO2 chemoreflex and the high ABP in young SHRs and normalize the augmented CO2 chemoreflex and significantly lower the high ABP in adult SHRs. In the hypothalamus, SHRs have more orexin neurons, and a greater proportion of them increase their activity with CO2 . The orexin system is overactive in SHRs and contributes to the augmented CO2 chemoreflex and hypertension. Modulation of the orexin system may be beneficial in the treatment of neurogenic hypertension. ABSTRACT Activation of central chemoreceptors by CO2 increases arterial blood pressure (ABP), sympathetic nerve activity and breathing. In spontaneously hypertensive rats (SHRs), high ABP is associated with enhanced sympathetic nerve activity and peripheral chemoreflexes. We hypothesized that an augmented CO2 chemoreflex and overactive orexin system are linked with high ABP in both young (postnatal day 30-58) and adult SHRs (4-6 months). Our main findings are as follows. (i) An augmented CO2 chemoreflex and higher ABP in SHRs are measureable at a young age and increase in adulthood. In wakefulness, the ventilatory response to normoxic hypercapnia is higher in young SHRs (mean ± SEM: 179 ± 11% increase) than in age-matched normotensive Wistar-Kyoto rats (114 ± 9% increase), but lower than in adult SHRs (226 ± 10% increase; P < 0.05). The resting ABP is higher in young SHRs (122 ± 5 mmHg) than in age-matched Wistar-Kyoto rats (99 ± 5 mmHg), but lower than in adult SHRs (152 ± 4 mmHg; P < 0.05). (ii) Spontaneously hypertensive rats have more orexin neurons and more CO2 -activated orexin neurons in the hypothalamus. (iii) Antagonism of orexin receptors with a dual orexin receptor antagonist, almorexant, normalizes the augmented CO2 chemoreflex in young and adult SHRs and the high ABP in young SHRs and significantly lowers ABP in adult SHRs. (iv) Attenuation of peripheral chemoreflexes by hyperoxia does not abolish the augmented CO2 chemoreflex (breathing and ABP) in SHRs, which indicates an important role for the central chemoreflex. We suggest that an overactive orexin system may play an important role in the augmented central CO2 chemoreflex and in the development of hypertension in SHRs.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Sarah H Roy
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Eugene E Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| |
Collapse
|
49
|
Cittaro D, Lampis V, Luchetti A, Coccurello R, Guffanti A, Felsani A, Moles A, Stupka E, D' Amato FR, Battaglia M. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes. Sci Rep 2016; 6:25131. [PMID: 27121911 PMCID: PMC4848503 DOI: 10.1038/srep25131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice’s respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.
Collapse
Affiliation(s)
- Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Lampis
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Genomnia srl, Lainate, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D' Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, University Of Toronto, Toronto, Canada.,Division of Child and Youth Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
50
|
Caldirola D, Schruers KR, Nardi AE, De Berardis D, Fornaro M, Perna G. Is there cardiac risk in panic disorder? An updated systematic review. J Affect Disord 2016; 194:38-49. [PMID: 26802506 DOI: 10.1016/j.jad.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND The recognized relationship between panic disorder (PD) and cardiac disorders (CDs) is not unequivocal. We reviewed the association between PD and coronary artery disease (CAD), arrhythmias, cardiomyopathies, and sudden cardiac death. METHODS We undertook an updated systematic review, according to PRISMA guidelines. Relevant studies dating from January 1, 2000, to December 31, 2014, were identified using the PubMed database and a review of bibliographies. The psychiatric and cardiac diagnostic methodology used in each study was then to very selective inclusion criteria. RESULTS Of 3044 studies, 14 on CAD, 2 on cardiomyopathies, and 1 on arrhythmias were included. Overall, the studies supported a panic-CAD association. Furthermore, in some of the studies finding no association between current full-blown PD and CAD, a broader susceptibility to panic, manifesting as past PD, current agoraphobia, or subthreshold panic symptoms, appeared to be relevant to the development of CAD. Preliminary data indicated associations between panic, arrhythmias, and cardiomyopathies. LIMITATIONS The studies were largely cross-sectional and conducted in cardiological settings. Only a few included blind settings. The clinical conditions of patients with CDs and the qualifications of raters of psychiatric diagnoses were highly heterogeneous. CDs other than CAD had been insufficiently investigated. CONCLUSIONS Our review supported a relationship between PD and CDs. Given the available findings and the involvement of the cardiorespiratory system in the pathophysiology of PD, an in-depth investigation into the panic-CDs association is highly recommended. This should contribute to improved treatment and prevention of cardiac events and/or mortality, linked to PD.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, 22032 Albese con Cassano, Como, Italy.
| | - Koen R Schruers
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands; Center for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, University of Leuven, Tiensestraat 102, P.O. Box 3726, 3000 Leuven, Belgium
| | - Antonio E Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, Teramo, Italy
| | - Michele Fornaro
- Department of Education Science, University of Catania, Catania, Italy
| | - Giampaolo Perna
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, 22032 Albese con Cassano, Como, Italy; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands; Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, Miami University, 33136 Miami, USA
| |
Collapse
|