1
|
Giersch GEW, Charkoudian N. Regulation of body temperature and blood pressure in women: Mechanisms and implications for heat illness risk. Exp Physiol 2025; 110:196-199. [PMID: 38607298 PMCID: PMC11782169 DOI: 10.1113/ep091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Increasing global temperatures due to ongoing climate change phenomena have resulted in increased risk of exertional heat illness in otherwise healthy, young individuals who work or play in the heat. With increasing participation of women in athletic, military and industrial activities that involve exertion in the heat, there is a growing need to study female physiology in this context. Mechanisms controlling blood pressure and body temperature have substantial overlap in humans, largely due to autonomic mechanisms which contribute to both. Similarly, illnesses that result from excessive heat exposure can often be traced back to imbalances in one or more of these autonomic mechanisms. In recent years, there has been increased recognition of the importance of sex as a biological variable for basic and applied research in these areas. The goal of this paper is to present an update on the integrative physiology and pathophysiology of responses to heat stress in women (thermoregulation and blood pressure regulation). In this context, it is often the case that differences between sexes are presented as 'advantages' and 'disadvantages' of one sex over the other. In our opinion, this is an over-simplification of the physiology which ignores the nuances and complexities of the integrative physiology of responses to heat exposure and exercise, and their relevance for practical outcomes.
Collapse
Affiliation(s)
| | - Nisha Charkoudian
- US Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
2
|
Stone T, Burnash SG, Earley RL, Mulholland AM, Yoder HA, Macdonald HV, Richardson MT, Wingo JE. Metabolic Heat Production Modulates the Cardiovascular Drift-V̇O 2max Relationship Independent of Aerobic Fitness in Women. Med Sci Sports Exerc 2025; 57:181-191. [PMID: 39160757 DOI: 10.1249/mss.0000000000003543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
INTRODUCTION/PURPOSE The purpose of this study was to test the hypothesis that cardiovascular (CV) drift and associated decrements in maximal oxygen uptake (V̇O 2max ) are greater in high-fit compared with low-fit women during exercise at the same %V̇O 2max , but comparable at the same rate of metabolic heat production. METHODS Six high-fit (HI) and six low-fit (LO) women cycled in 35°C for 15 or 45 min at the same relative intensity (60% V̇O 2max ; 15REL and 45REL) or fixed rate of heat production (500 W; 15FX and 45FX), immediately followed by a graded exercise test to measure V̇O 2max . The separate 15- and 45-min trials permitted measurements of V̇O 2max over the same time interval as CV drift. RESULTS During 45REL, higher heat production in HI (496 ± 51 vs 364 ± 44 W in LO) resulted in greater end-exercise core temperature (38.7°C ± 0.4°C vs 38.2°C ± 0.1°C, P = 0.03), greater increases in HR (15 bpm (10%) vs 10 bpm (6%), P = 0.03) and decreases in stroke volume (11 mL per beat (16%) vs 5 mL per beat (8%), P = 0.001), and larger reductions in V̇O 2max (16% vs 5%, P = 0.04) compared with LO. During 45FX, temperature responses, CV drift, and decreased V̇O 2max were not different between groups (all P > 0.05), despite differences in %V̇O 2max (60% vs 75% for HI and LO, respectively). CONCLUSIONS We conclude metabolic heat production modulates the CV drift-V̇O 2max relationship, independent of fitness level. These results support previous findings showing the magnitude of CV drift is proportional to reductions in V̇O 2max .
Collapse
Affiliation(s)
- Tori Stone
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| | - Sarah G Burnash
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| | - Ryan L Earley
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL
| | | | | | | | - Mark T Richardson
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| | - Jonathan E Wingo
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
3
|
Tetzlaff EJ, Ioannou LG, O'Connor FK, Kaltsatou A, Ly V, Kenny GP. Practical Considerations for Using Personal Cooling Garments for Heat Stress Management in Physically Demanding Occupations: A Systematic Review and Meta-Analysis Using Realist Evaluation. Am J Ind Med 2025; 68:3-25. [PMID: 39498663 DOI: 10.1002/ajim.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Due to rising temperature extremes, workplaces are seeking new solutions, such as using personal cooling garments (PCG) to mitigate and manage workplace heat exposure. This systematic review sought to assess the physiological and perceptual effects of PCGs on workers in standard work clothing performing moderate-to-heavy intensity tasks in hot environments. METHODS A peer-reviewed search strategy was conducted in MEDLINE, Embase, CINAHL, Scopus, Global Health, and Business Source Complete with no language or time limits. A meta-analysis using a realist evaluation framework was then performed to evaluate the effectiveness of the PCGs. RESULTS Thirty-three studies with 764 participants (98% male; average 21 ± 34 participants per study), conducted primarily in a laboratory setting (76%) were included. The studies were 193 ± 190 min in duration and consisted of a moderate-to-heavy work effort of 3.3 ± 1.0 METs in hot ambient conditions (temperature: 35.9 ± 3.3°C, 51.4 ± 12.1% relative humidity, wet bulb globe temperature [WBGT] 31.2 ± 2.6°C). The PCGs (n = 67) facilitated heat exchange through conduction (n = 39), evaporation (n = 4), convection (n = 2), radiation (n = 2), or hybrid combinations (n = 20). Conductive and hybrid PCGs offered the greatest thermoregulatory benefit, whereby core temperature (Tc) and heart rate (HR) reductions were consistently observed (Conductive: Tc: -0.3°C, HR: -12 bpm; Hybrid: Tc:-0.2°C, HR: -10 bpm), while PCGs directed at enhancing evaporative and radiative heat exchange had no or minimal effect on the physiological outcomes assessed (i.e., TC < 0.1°C, HR: < 0.7 bpm). CONCLUSION While the PCGs had a positive overall effect, conductive options offered the most consistent benefit to workers. WBGT, clothing insulation, and duration of wear significantly affected some physiological and perceptual outcomes.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Leonidas G Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Antonia Kaltsatou
- Functional Architecture of Mammals in their Environment Laboratory, School of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Valentina Ly
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Niu Z, Goto T. Effects of individual characteristics and local body functions on sweating response: A review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2185-2204. [PMID: 39141136 PMCID: PMC11519300 DOI: 10.1007/s00484-024-02758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In this study, we conducted a literature review to deepen our understanding of the sweating response of the thermoregulatory system, focusing on the influence of individual characteristics and local body functions. Among the factors related to individual characteristics, improvement in aerobic fitness had a positive effect on the sweating response, whereas aging exerted an inhibitory effect. Short-term artificial acclimation and seasonal heat acclimatization promoted sweating, whereas long-term geographical acclimatization suppressed sweating. Male exhibited higher sweat rates than female when the metabolic heat production was high. Individuals with smaller surface area-to-mass ratios tended to have higher sweat rates than those with larger ratios. Regarding local body functions, sweat distribution in the resting state showed high regional sweat rates in the lower limbs and torso, with higher values in the lower limbs when in the supine position and higher values in the torso when in the seated position. During exercise, the regional sweat rates was high in the torso, whereas the limbs exhibited relatively low sweat rates. These differences in sweat distribution stem from the thermoregulatory potential of each body region, which aims to efficiently regulate body temperature. Local effects have only been examined in the thigh and forearm, with temperature coefficient Q10 ranging from 2 to 5. Only the forehead showed significantly high thermosensitivity among all body regions.
Collapse
Affiliation(s)
- Zhuoxi Niu
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan.
| | - Tomonobu Goto
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Kenny GP, Tetzlaff EJ, Journeay WS, Henderson SB, O’Connor FK. Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events. Temperature (Austin) 2024; 11:203-246. [PMID: 39193048 PMCID: PMC11346563 DOI: 10.1080/23328940.2024.2361223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 08/29/2024] Open
Abstract
The likelihood of exposure to overheated indoor environments is increasing as climate change is exacerbating the frequency and severity of hot weather and extreme heat events (EHE). Consequently, vulnerable populations will face serious health risks from indoor overheating. While the relationship between EHE and human health has been assessed in relation to outdoor temperature, indoor temperature patterns can vary markedly from those measured outside. This is because the built environment and building characteristics can act as an important modifier of indoor temperatures. In this narrative review, we examine the physiological and behavioral determinants that influence a person's susceptibility to indoor overheating. Further, we explore how the built environment, neighborhood-level factors, and building characteristics can impact exposure to excess heat and we overview how strategies to mitigate building overheating can help reduce heat-related mortality in heat-vulnerable occupants. Finally, we discuss the effectiveness of commonly recommended personal cooling strategies that aim to mitigate dangerous increases in physiological strain during exposure to high indoor temperatures during hot weather or an EHE. As global temperatures continue to rise, the need for a research agenda specifically directed at reducing the likelihood and impact of indoor overheating on human health is paramount. This includes conducting EHE simulation studies to support the development of consensus-based heat mitigation solutions and public health messaging that provides equitable protection to heat-vulnerable people exposed to high indoor temperatures.
Collapse
Affiliation(s)
- Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily J. Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - W. Shane Journeay
- Departments of Medicine and Community Health and Epidemiology, Dalhousie Medicine New Brunswick and Dalhousie University, Saint John, NB, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
- Department of Rehabilitative Care, Providence Healthcare-Unity Health Toronto, Toronto, ON, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
- National Collaborating Centre for Environmental Health, Vancouver, BC, Canada
| | - Fergus K. O’Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Tetzlaff EJ, O'Connor FK, Meade RD, Kenny GP. An exploratory survey of on-site heat stress management practices in the Canadian mining industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:409-422. [PMID: 38718416 DOI: 10.1080/15459624.2024.2332722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
With climate change fueling more frequent and intense periods of hot weather, heat stress management programs are becoming increasingly important for protecting the health and safety of workers in the Canadian mining industry. While the inclusion of heat-mitigation measures such as those provided by the American College of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) are commonly employed by industry, there is a need to develop more comprehensive industry-specific measures for heat stress prevention and management. To better understand current heat management practices and identify opportunities for improvement, an exploratory survey of 51 employees responsible for health and safety at underground mining (n = 35), and surface operations (n = 16) (e.g., open-pit mining, milling, smelting, and exploration site) was conducted in Canada. The respondents answered 50 questions related to workplace heat stress management, including descriptors of the workplace environment, perceived heat stress hazard, administration of heat stress management programming, heat stress emergency procedures, environmental monitoring strategies, and knowledge of mining-specific regulations related to heat stress. Twenty-four managers (47%) reported that heat-related illnesses led to restricted duty or lost time claims at their site, with a median of 5 [IQR: 2-10, max: 30] reportable heat-related illnesses occurring per site annually. Many also felt that heat-related illnesses are under-reported by their workforce (n = 36, 71%). Most sites reported established heat stress management programs to prevent heat illness (n = 43, 84%), typically based on the TLVs (n = 38, 75%). Although some organizations do conduct pre-task evaluations for heat stress (n = 30, 59%), more than half do not conduct post-job evaluations (n = 28, 55%) or pre-employment screening for heat stress vulnerability (n = 3, 6%). While our findings indicate that the health and safety managers recognize the hazard posed by heat and have stated practices to help address the hazard, we also observed inconsistencies in heat stress management programming across the sample. Developing and adopting a standard heat stress management and reporting system would be an important step toward protecting workers from existing and emerging threats from extreme heat and climate change.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Heat Division, Climate Change and Innovation Bureau, Healthy Environments and Consumer Safety Branch, Safe Environments Directorate, Health Canada, Ottawa, Canada
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
7
|
Morrissey-Basler MC, Eason CM, Clines SH, Kaufman CE, Casa DJ. Perceived challenges and barriers for females working in the heat. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:97-107. [PMID: 37801404 DOI: 10.1080/15459624.2023.2268725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Given rising temperatures, globally, heat exposures and catastrophic heat illnesses are a major concern in laborer and industrial sectors. The purpose of this study was to evaluate the perceptions of females laboring in the heat regarding challenges and barriers encountered in their respective industries while working in the heat. A consensual qualitative research (CQR) design was employed to gain information related to participant occupational and job characteristics, feelings while working in the heat, adjustments made by employers when they work in the heat, and their experience working in the heat specific to their identified sex. Females were eligible to participate if they were currently employed in an environment that required them to work in the heat. Twelve females participated in a single, 45-60 min one-on-one semi-structured interview. Participants reported working in the manufacturing, agriculture, tourism, and railroad industries. Upon completion of data analysis, one primary theme was identified: heat stress mitigation strategies, which were further broken down into two subthemes of formal strategies provided by the employer and informal strategies driven by the employees. Participants indicated there was a lack of heat stress prevention strategies implemented by their employers, which resulted in employees creating their own strategies to protect themselves and their coworkers from heat stress. Results indicated there are limited heat stress prevention strategies that are provided in industries that include females working in the heat. Unique considerations should be made to protect this population from the dangers of heat stress and must go beyond workers protecting themselves.
Collapse
Affiliation(s)
- Margaret C Morrissey-Basler
- Department of Health Sciences, Providence College, Providence, Rhode Island
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Christianne M Eason
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Stephanie H Clines
- Department of Athletic Training, Sacred Heart University, Fairfield, Connecticut
| | - Cecilia E Kaufman
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
8
|
Wang IL, Chen YM, Yao S, Su Y, Mündel T, Lei TH. Whole-body passive heating at moderate hyperthermic state impairs static and dynamic balance in healthy females. Gait Posture 2024; 107:199-206. [PMID: 37852885 DOI: 10.1016/j.gaitpost.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Whether static and dynamic balances can be impaired with increasing core temperature in female participants remains unknown. PURPOSE We tested the hypothesis that static and dynamic balances can be further impaired with systematic increases of core temperature by Δ1 °C and Δ 2 °C using whole-body passive heating. METHOD Eighteen female participants underwent a control trial (Con) and two progressive passive heating trials with Δ 1 °C and Δ 2 °C increase of oral temperature (TOral) using 45 °C water bath. In each trial, we assessed static balance with both eye open and closed and assessed dynamic balance using obstacle crossing at 10 %, 20 % and 30 % of the participant's leg length. RESULTS Static balance was not different between Con and Δ1 °C but was different between Δ1 °C and Δ 2 °C in an eye closed condition. Furthermore, Δ 2 °C greatly impaired both static and dynamic balances when compared to Con. The joint angles and toe clearance increased while leading heel-obstacle distance decreased during crossing obstacles at the height of 20 % and 30 % leg length with leading limbs in the Δ2 °C compared to Δ 1 °C and Con (All P < 0.05). However, no differences in joint kinematics and toe clearance with trailing limbs were observed (All P > 0.05). CONCLUSION In female participants, static and dynamic balances only became impaired when TOral increased 2 °C from baseline.
Collapse
Affiliation(s)
- I-Lin Wang
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yi-Ming Chen
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Shun Yao
- Graduate Institute, Jilin Sport University, Changchun, China
| | - Yu Su
- Graduate Institute, Jilin Sport University, Changchun, China
| | - Toby Mündel
- College of Physical Education, Hubei Normal University, Huangshi, China; Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China.
| |
Collapse
|
9
|
Okamoto Y, Otsuka J, Aoki M, Amano T. Transdermal iontophoretic application of l-NAME is available in sweating research induced by heat stress in young healthy adults. Nitric Oxide 2023; 138-139:96-103. [PMID: 37619814 DOI: 10.1016/j.niox.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Iontophoretic transdermal administration of NG-nitro-l-arginine methyl ester hydrochloride [l-NAME, a nitric oxide synthase (NOS) inhibitor] has been used as a non-invasive evaluation of NOS-dependent mechanisms in human skin. However, the availability has yet to be investigated in sweating research. Prior observations using invasive techniques (e.g., intradermal microdialysis technique) to administer l-NAME have implicated that NOS reduces sweating induced by heat stress but rarely influences the response induced by the administration of cholinergic muscarinic receptor agonists. Therefore, we investigated whether the transdermal iontophoretic administration of l-NAME modulates sweating similar to those prior observations. Twenty young healthy adults (10 males, 10 females) participated in two experimental protocols on separate days. Before each protocol, saline (control) and 1% l-NAME were bilaterally administered to the forearm skin via transdermal iontophoresis. In protocol 1, 0.001% and 1% pilocarpine were iontophoretically administered at l-NAME-treated and untreated sites. In protocol 2, passive heating was applied by immersing the lower limbs in hot water (43 °C) until the rectal temperature increased by 0.8 °C above baseline. The sweat rate was continuously measured throughout both protocols. Pilocarpine-induced sweat rate was not significantly different between the control and l-NAME-treated sites in both pilocarpine concentrations (P ≥ 0.316 for the treatment effect and interaction of treatment and pilocarpine concentration). The sweat rate during passive heating was attenuated at the l-NAME-treated site relative to the control (treatment effect, P = 0.020). Notably, these observations are consistent with prior sweating studies administrating l-NAME into human skin using intradermal microdialysis techniques. Based on the similarity of our results with already known observations, we conclude that transdermal iontophoresis of l-NAME is a valid non-invasive technique for the investigation of the mechanisms of sweating related to NOS during heat stress.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Junto Otsuka
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Mao Aoki
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| |
Collapse
|
10
|
Ni W, Nikolaou N, Ward-Caviness CK, Breitner S, Wolf K, Zhang S, Wilson R, Waldenberger M, Peters A, Schneider A. Associations between medium- and long-term exposure to air temperature and epigenetic age acceleration. ENVIRONMENT INTERNATIONAL 2023; 178:108109. [PMID: 37517177 PMCID: PMC10656697 DOI: 10.1016/j.envint.2023.108109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Climate change poses a serious threat to human health worldwide, while aging populations increase. However, no study has ever investigated the effects of air temperature on epigenetic age acceleration. This study involved 1,725 and 1,877 participants from the population-based KORA F4 (2006-2008) and follow-up FF4 (2013-2014) studies, respectively, conducted in Augsburg, Germany. The difference between epigenetic age and chronological age was referred to as epigenetic age acceleration and reflected by Horvath's epigenetic age acceleration (HorvathAA), Hannum's epigenetic age acceleration (HannumAA), PhenoAge acceleration (PhenoAA), GrimAge acceleration (GrimAA), and Epigenetic Skin and Blood Age acceleration (SkinBloodAA). Daily air temperature was estimated using hybrid spatiotemporal regression-based models. To explore the medium- and long-term effects of air temperature modeled in time and space on epigenetic age acceleration, we applied generalized estimating equations (GEE) with distributed lag non-linear models, and GEE, respectively. We found that high temperature exposure based on the 8-week moving average air temperature (97.5th percentile of temperature compared to median temperature) was associated with increased HorvathAA, HannumAA, GrimAA, and SkinBloodAA: 1.83 (95% CI: 0.29-3.37), 11.71 (95% CI: 8.91-14.50), 2.26 (95% CI: 1.03-3.50), and 5.02 (95% CI: 3.42-6.63) years, respectively. Additionally, we found consistent results with high temperature exposure based on the 4-week moving average air temperature was associated with increased HannumAA, GrimAA, and SkinBloodAA: 9.18 (95% CI: 6.60-11.76), 1.78 (95% CI: 0.66-2.90), and 4.07 (95% CI: 2.56-5.57) years, respectively. For the spatial variation in annual average temperature, a 1 °C increase was associated with an increase in all five measures of epigenetic age acceleration (HorvathAA: 0.41 [95% CI: 0.24-0.57], HannumAA: 2.24 [95% CI: 1.95-2.53], PhenoAA: 0.32 [95% CI: 0.05-0.60], GrimAA: 0.24 [95%: 0.11-0.37], and SkinBloodAA: 1.17 [95% CI: 1.00-1.35] years). In conclusion, our results provide first evidence that medium- and long-term exposures to high air temperature affect increases in epigenetic age acceleration.
Collapse
Affiliation(s)
- Wenli Ni
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany.
| | - Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| |
Collapse
|
11
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
12
|
Turner CG, Stanhewicz AE, Nielsen KE, Otis JS, Feresin RG, Wong BJ. Effects of biological sex and oral contraceptive pill use on cutaneous microvascular endothelial function and nitric oxide-dependent vasodilation in humans. J Appl Physiol (1985) 2023; 134:858-867. [PMID: 36861674 PMCID: PMC10042598 DOI: 10.1152/japplphysiol.00586.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The purpose of this study was to evaluate in vivo endothelial function and nitric oxide (NO)-dependent vasodilation between women in either menstrual or placebo pill phases of their respective hormonal exposure [either naturally cycling (NC) or using oral contraceptive pills (OCPs)] and men. A planned subgroup analysis was then completed to assess endothelial function and NO-dependent vasodilation between NC women, women using OCP, and men. Endothelium-dependent and NO-dependent vasodilation were assessed in the cutaneous microvasculature using laser-Doppler flowmetry, a rapid local heating protocol (39°C, 0.1 °C/s), and pharmacological perfusion through intradermal microdialysis fibers. Data are represented as means ± standard deviation. Men displayed greater endothelium-dependent vasodilation (plateau, men: 71 ± 16 vs. women: 52 ± 20%CVCmax, P < 0.01), but lower NO-dependent vasodilation (men: 52 ± 11 vs. women: 63 ± 17%NO, P = 0.05) compared with all women. Subgroup analysis revealed NC women had lower endothelium-dependent vasodilation (plateau, NC women: 48 ± 21%CVCmax, P = 0.01) but similar NO-dependent vasodilation (NC women: 52 ± 14%NO, P > 0.99), compared with men. Endothelium-dependent vasodilation did not differ between women using OCP and men (P = 0.12) or NC women (P = 0.64), but NO-dependent vasodilation was significantly greater in women using OCP (74 ± 11%NO) than both NC women and men (P < 0.01 for both). This study highlights the importance of directly quantifying NO-dependent vasodilation in cutaneous microvascular studies. This study also provides important implications for experimental design and data interpretation.NEW & NOTEWORTHY This study supports differences in microvascular endothelial function and nitric oxide (NO)-dependent vasodilation between women in low hormone phases of two hormonal exposures and men. However, when separated into subgroups of hormonal exposure, women during placebo pills of oral contraceptive pill (OCP) use have greater NO-dependent vasodilation than naturally cycling women in their menstrual phase and men. These data improve knowledge of sex differences and the effect of OCP use on microvascular endothelial function.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Karen E Nielsen
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
13
|
Corbett J, Wright J, Tipton MJ. Sex differences in response to exercise heat stress in the context of the military environment. BMJ Mil Health 2023; 169:94-101. [PMID: 32094215 DOI: 10.1136/jramc-2019-001253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/26/2023]
Abstract
Women can now serve in ground close combat (GCC) roles, where they may be required to operate alongside men in hot environments. However, relative to the average male soldier, female soldiers are less aerobically fit, with a smaller surface area (A D), lower mass (m) with higher body fat and a larger A D/m ratio. This increases cardiovascular strain, reduces heat exchange with the environment and causes a greater body temperature increase for a given heat storage, although a large A D/m ratio can be advantageous. Physical employment standards for GCC roles might lessen the magnitude of fitness and anthropometric differences, yet even when studies control for these factors, women sweat less than men at high work rates. Therefore, the average female soldier in a GCC role is likely to be at a degree of disadvantage in many hot environments and particularly during intense physical activity in hot-arid conditions, although heat acclimation may mitigate some of this effect. Any thermoregulatory disadvantage may be exacerbated during the mid-luteal phase of the menstrual cycle, although the data are equivocal. Likewise, sex differences in behavioural thermoregulation and cognition in the heat are not well understood. Interestingly, there is often lower reported heat illness incidence in women, although the extent to which this is influenced by behavioural factors or historic differences in role allocation is unclear. Indeed, much of the extant literature lacks ecological validity and more work is required to fully understand sex differences to exercise heat stress in a GCC context.
Collapse
Affiliation(s)
- Jo Corbett
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - J Wright
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK.,Reserach Associate, British Army, London, UK
| | - M J Tipton
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
14
|
Giersch GEW, Taylor KM, Caldwell AR, Charkoudian N. Body mass index, but not sex, influences exertional heat stroke risk in young healthy men and women. Am J Physiol Regul Integr Comp Physiol 2023; 324:R15-R19. [PMID: 36342147 DOI: 10.1152/ajpregu.00168.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exertional heat stroke (EHS) remains a persistent threat for individuals working or playing in the heat, including athletes and military and emergency service personnel. However, influence of biological sex and/or body mass index (BMI) on the risk of EHS remain poorly understood. The purpose of this study was to retrospectively assess the influence of sex and BMI on risk of EHS in the active-duty US Army. We analyzed data from 2016 to 2021, using a matched case-control approach, where each individual with a diagnosis of EHS was matched to five controls based on calendar time, unit ID, and job category, to capture control individuals who were matched to EHS events by location, time, and activity. We used a multivariate logistic regression model mutually adjusted for sex, BMI, and age to compare 745 (n = 61 F) individuals (26 ± 7 yr) with a diagnosed EHS to 4,290 (n = 384 F) case controls (25 ± 5 yr). Group average BMI were similar: 26.6 ± 3.1 (EHS) and 26.5 ± 3.6 kg/m2 (CON). BMI was significantly (P < 0.0001) associated with higher risk of EHS with a 3% increase in risk of EHS for every unit increase in BMI. Notably, sex was not associated with any difference in risk for EHS (P = 0.54). These data suggest that young healthy people with higher BMI have significantly higher risk of EHS, but, contrary to what some have proposed, this risk was not higher in young women.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Kathryn M Taylor
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
15
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
16
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Tsoutsoubi L, Ioannou LG, Mantzios K, Ziaka S, Nybo L, Flouris AD. Cardiovascular Stress and Characteristics of Cold-Induced Vasodilation in Women and Men during Cold-Water Immersion: A Randomized Control Study. BIOLOGY 2022; 11:1054. [PMID: 36101432 PMCID: PMC9312820 DOI: 10.3390/biology11071054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cold-induced vasodilation (CIVD) is a phenomenon that refers to a paradoxical increase in finger temperature that sometimes occurs during cold exposure. The aim of this study was to compare CIVD responses between women and men, during exposure to different environmental conditions. METHODS Seven men and seven women participated in a matched controlled study consisting of a familiarization protocol followed by three experimental sessions (cool (10.8 °C WBGT), thermoneutral (17.2 °C WBGT), and hot (27.2 °C WBGT)). In each session, participants were asked to immerse their left hand and foot in warm water (35 ± 1 °C) for five minutes. Thereafter, the left hand and foot were immersed in cold water (8 ± 1 °C) for 40 min. After that, the left hand and foot were removed from the water and participants remained seated for five minutes. RESULTS For a matched thermal stress, women experienced an elevated cardiovascular strain (heart rate and in some cases mean arterial pressure) and higher frequency of CIVD reactions (men: 31 vs. women: 60) in comparison to their male counterparts. CONCLUSIONS The present study demonstrated that women experienced elevated cardiovascular strain and higher frequency of CIVD reactions, particularly in the toes, compared to their male counterparts during cold-water immersion.
Collapse
Affiliation(s)
- Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.T.); (L.G.I.); (K.M.); (S.Z.)
| | - Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.T.); (L.G.I.); (K.M.); (S.Z.)
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.T.); (L.G.I.); (K.M.); (S.Z.)
| | - Styliani Ziaka
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.T.); (L.G.I.); (K.M.); (S.Z.)
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.T.); (L.G.I.); (K.M.); (S.Z.)
| |
Collapse
|
18
|
Wolf ST, Bernard TE, Kenney WL. Heat exposure limits for young unacclimatized males and females at low and high humidity. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:415-424. [PMID: 35537193 PMCID: PMC9741844 DOI: 10.1080/15459624.2022.2076859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Little is known about the separate and combined influences of humidity conditions, sex, and aerobic fitness on heat tolerance in unacclimatized males and females. The purpose of the current study was to describe heat tolerance, in terms of critical WBGT (WBGTcrit), in unacclimatized young males and females in hot-dry (HD) and warm-humid (WH) environments. Eighteen subjects (9 M/9F; 21 ± 2 yr) were tested during exercise at 30% V̇O2max in a controlled environmental chamber. Progressive heat stress exposures were performed with either (1) constant dry-bulb temperature (Tdb) of 34 and 36 °C and increasing ambient water vapor pressure (Pa) (Pcrit trials; WH); or (2) constant Pa of 12 and 16 mmHg and increasing Tdb (Tcrit trials; HD). Chamber Tdb and Pa, and subject esophageal temperature (Tes), were continuously monitored throughout each trial. After a 30-min equilibration period, progressive heat stress continued until subject heat balance could no longer be maintained and a clear rise in Tes was observed. Absolute WBGTcrit and WBGTcrit adjusted to a metabolic rate of 300 W (WBGT300), and the difference between WBGTcrit and occupational exposure limits (OEL; ΔOEL) was assessed. WBGTcrit, WBGT300, and ΔOEL were higher in WH compared to HD (p < 0.0001) for females but were the same between environments for males (p ≥ 0.21). WBGTcrit was higher in females compared to males in WH (p < 0.0001) but was similar between sexes in HD (p = 0.44). When controlling for metabolic rate, WBGT300 and ΔOEL were higher in males compared to females in WH and HD (both p < 0.0001). When controlling for sex, V̇O2max was not associated with WBGT300 or ΔOEL for either sex (r ≤ 0.12, p ≥ 0.49). These findings suggest that WBGTcrit is higher in females compared to males in WH, but not HD, conditions. Additionally, the WBGTcrit is lower in females, but not males, in HD compared to WH conditions.
Collapse
Affiliation(s)
- S. Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Thomas E. Bernard
- College of Public Health, University of South Florida, Tampa, Florida
| | - W. Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
19
|
Topham TH, Smallcombe JW, Clark B, Brown HA, Telford RD, Jay O, Periard JD. The influence of sex and biological maturation on the sudomotor response to exercise-heat stress: Are girls disadvantaged? Am J Physiol Regul Integr Comp Physiol 2022; 323:R161-R168. [PMID: 35670483 DOI: 10.1152/ajpregu.00328.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both adult females and children have been reported to have a lower sweating capacity and thus reduced evaporative heat loss potential which may increase their susceptibility to exertional hyperthermia in the heat. Compared to males, females have a lower maximal sweat rate and thus a theoretically lower maximum skin wettedness, due to a lower sweat output per gland. Similarly, children have been suggested to be disadvantaged in high ambient temperatures due to a lower sweat production and therefore reduced evaporative capacity, despite modifications of heat transfer due to physical attributes and possible evaporative efficiency. The reported reductions in sudomotor activity of females and children suggests a lower sweating capacity in girls. However, due to the complexities of isolating sex and maturation from the confounding effects of morphological differences (e.g., body surface area-to-mass ratio) and metabolic heat production, limited evidence exists supporting whether children and, more specifically, girls are at a thermoregulatory disadvantage. Furthermore, a limited number of child-adult comparison studies involve females and very few studies have directly compared regional and whole-body sudomotor activity between boys and girls. This mini review highlights the exercise-induced sudomotor response of females and children, summarises previous research investigating the sudomotor response to exercise in girls and suggests important areas for further research.
Collapse
Affiliation(s)
- Thomas H Topham
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - James W Smallcombe
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Harry A Brown
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Ollie Jay
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Julien D Periard
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| |
Collapse
|
20
|
Skin Blood Flow Responses to Acetylcholine, Local Heating, and to 60% VO2max exercise with and without Nitric Oxide inhibition, in Boys vs. Girls. Pediatr Exerc Sci 2022; 31:67-75. [PMID: 34902840 DOI: 10.1123/pes.2021-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine sex-related differences in the skin blood flow (SkBF) response to exercise, local heating, and acetylcholine (ACh) in children, and to assess nitric oxide contribution to the SkBF response. METHODS Forearm SkBF during local heating (44°C), ACh iontophoresis, and exercise (30-min cycling and 60% of maximum oxygen consumption) was assessed, using laser Doppler fluxmetry, in 12 boys and 12 girls (7-13 y old), with and without nitric oxide synthase inhibition, using Nω-nitro-L-arginine methyl ester iontophoresis. RESULTS Local-heating-induced and ACh-induced SkBF increase were not different between boys and girls (local heating: 1445% [900%] and 1432% [582%] of baseline, P = .57; ACh: 673% [434%] and 558% [405%] of baseline, respectively, P = .18). Exercise-induced increase in SkBF was greater in boys than girls (528% [290%] and 374% [192%] of baseline, respectively, P = .03). Nω-nitro-L-arginine methyl ester blunted the SkBF response to ACh and during exercise (P < .001), with no difference between sexes. CONCLUSION SkBF responses to ACh and local heat stimuli were similar in boys and girls, while the increase in SkBF during exercise was greater in boys. The apparent role of nitric oxide was not different between boys and girls. It is suggested that the greater SkBF response in boys during exercise was related to greater relative heat production and dissipation needs at this exercise intensity. The response to body size-related workload should be further examined.
Collapse
|
21
|
Sex Differences in VO 2max and the Impact on Endurance-Exercise Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094946. [PMID: 35564339 PMCID: PMC9105160 DOI: 10.3390/ijerph19094946] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
It was not until 1984 that women were permitted to compete in the Olympic marathon. Today, more women than men participate in road racing in all distances except the marathon where participation is near equal. From the period of 1985 to 2004, the women’s marathon record improved at a rate three times greater than men’s. This has led many to question whether women are capable of surpassing men despite the fact that there remains a 10–12% performance gap in all distance events. The progressive developments in sports performance research and training, beginning with A.V. Hill’s establishment of the concept of VO2max, have allowed endurance athletes to continue performance feats previously thought to be impossible. However, even today women are significantly underrepresented in sports performance research. By focusing more research on the female physiology and sex differences between men and women, we can better define how women differ from men in adapting to training and potentially use this information to improve endurance-exercise performance in women. The male advantage in endurance-exercise performance has commonly been attributed to their higher VO2max, even when expressed as mL/kg/min. It is widely known that oxygen delivery is the primary limiting factor in elite athletes when it comes to improving VO2max, but little research has explored the sex differences in oxygen delivery. Thus, the purpose of this review is to highlight what is known about the sex differences in the physiological factors contributing to VO2max, more specifically oxygen delivery, and the impacts on performance.
Collapse
|
22
|
Amano T, Fujii N, Kenny GP, Okamoto Y, Inoue Y, Kondo N. Effects of TEA-sensitive K + channel blockade on cholinergic and thermal sweating in endurance trained and untrained men. Exp Physiol 2022; 107:441-449. [PMID: 35340063 DOI: 10.1113/ep090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
NEW & NOTEWORTHY What is the central question of this study? Does inhibition of K+ channels modulate the exercise-training-induced augmentation in cholinergic and thermal sweating? What is the main finding and its importance? Iontophoretic administration of tetraethylammonium, a K+ channel blocker, blunted sweating induced by a low dose (0.001%) of cholinergic agent pilocarpine, but not heat-induced sweating. However, no differences in the cholinergic sweating were observed between young endurance trained and untrained men. Thus, while K+ channels play a role in the regulation of eccrine sweating, they do not contribute to the increase in sweating commonly observed in endurance trained adults. Our findings provide important new insights into the mechanisms underlying the regulation of sweating by endurance conditioning. ABSTRACT We evaluated the hypothesis that the activation of K+ channels mediate the exercise-training-induced augmentation in cholinergic and thermal sweating. On separate days, 11 endurance trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 2% tetraethylammonium (TEA, K+ channels blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, a low (0.001%) and high (1%) doses of pilocarpine was administered at the TEA-treated and Control sites over a 60-min period. In protocol 2, participants were passively heated by immersing their lower limbs in hot water (43°C) until core (rectal) temperature (Tco ) increased by 0.8°C above resting levels. Administration of TEA attenuated cholinergic sweating (P = 0.001) during the initial 20-min after the treatment of low dose of pilocarpine only whilst the response was similar between the groups (P = 0.163). Cholinergic and thermal sweating were higher in trained relative to the untrained men (all P≤0.033). Thermal sweating reached ∼90% of the response at a Tco elevation of 0.8°C during initial 20-min of passive heating, which corresponds to the period wherein TEA attenuated cholinergic sweating in protocol 1. However, sweating did not differ between the Control and TEA sites in either group (P = 0.704). We showed that activation of K+ channels does not appear to mediate the elevated sweating response induced by a low dose of pilocarpine in trained men. We also demonstrated that K+ channels do not contribute to sweating during heat stress in either group. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
23
|
Notley SR, Akerman AP, Friesen BJ, Poirier MP, McCourt E, Flouris A, Kenny GP. Heat tolerance and the validity of occupational heat exposure limits in women during moderate-intensity work. Appl Physiol Nutr Metab 2022; 47:711-724. [PMID: 35259026 DOI: 10.1139/apnm-2022-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To mitigate excessive rises in core temperature (>1°C) in non heat-acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provide heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n=19; body surface area-to-mass ratio: 250 (SD 17) cm2/kg) and women (n=15; body surface area-to-mass ratio: 268 (SD 24) cm2/kg) aged 18-45 years during 180-min walking at a moderate metabolic rate (200 W/m2) in WBGTs below (16 and 24°C) and above (28 and 32°C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1°C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1°C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1°C), ACGIH guidelines have comparable effectiveness in non heat-acclimatized men and women when working at a moderate metabolic rate. Novelty points • Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. • Sex did not significantly influence tolerance to uncompensable heat stress • Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.
Collapse
Affiliation(s)
| | | | - Brian J Friesen
- University of Ottawa, Human Kinetics, Ottawa, Ontario, Canada;
| | - Martin P Poirier
- University of Ottawa, School of Human Kinetics, Faculty of Health Sciences, Ottawa, Ontario, Canada;
| | | | - Andreas Flouris
- FAME Laboratory, Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Trikala, Thessaly, Greece.,Department of Research and Technology Development, Biomnic Ltd., Trikala, Thessaly, Greece;
| | - Glen P Kenny
- University of Ottawa, 6363, Ottawa, Canada, K1N 6N5.,Ottawa Hospital Research Institute, 10055, Ottawa, Canada, K1Y 4E9;
| |
Collapse
|
24
|
Abstract
In recent years, there has been a significant expansion in female participation in endurance (road and trail) running. The often reported sex differences in maximal oxygen uptake (VO2max) are not the only differences between sexes during prolonged running. The aim of this narrative review was thus to discuss sex differences in running biomechanics, economy (both in fatigue and non-fatigue conditions), substrate utilization, muscle tissue characteristics (including ultrastructural muscle damage), neuromuscular fatigue, thermoregulation and pacing strategies. Although males and females do not differ in terms of running economy or endurance (i.e. percentage VO2max sustained), sex-specificities exist in running biomechanics (e.g. females have greater non-sagittal hip and knee joint motion compared to males) that can be partly explained by anatomical (e.g. wider pelvis, larger femur-tibia angle, shorter lower limb length relative to total height in females) differences. Compared to males, females also show greater proportional area of type I fibres, are more able to use fatty acids and preserve carbohydrates during prolonged exercise, demonstrate a more even pacing strategy and less fatigue following endurance running exercise. These differences confer an advantage to females in ultra-endurance performance, but other factors (e.g. lower O2 carrying capacity, greater body fat percentage) counterbalance these potential advantages, making females outperforming males a rare exception. The present literature review also highlights the lack of sex comparison in studies investigating running biomechanics in fatigue conditions and during the recovery process.
Collapse
|
25
|
Garcia CK, Renteria LI, Leite-Santos G, Leon LR, Laitano O. Exertional heat stroke: pathophysiology and risk factors. BMJ MEDICINE 2022; 1:e000239. [PMID: 36936589 PMCID: PMC9978764 DOI: 10.1136/bmjmed-2022-000239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
Exertional heat stroke, the third leading cause of mortality in athletes during physical activity, is the most severe manifestation of exertional heat illnesses. Exertional heat stroke is characterised by central nervous system dysfunction in people with hyperthermia during physical activity and can be influenced by environmental factors such as heatwaves, which extend the incidence of exertional heat stroke beyond athletics only. Epidemiological data indicate mortality rates of about 27%, and survivors display long term negative health consequences ranging from neurological to cardiovascular dysfunction. The pathophysiology of exertional heat stroke involves thermoregulatory and cardiovascular overload, resulting in severe hyperthermia and subsequent multiorgan injury due to a systemic inflammatory response syndrome and coagulopathy. Research about risk factors for exertional heat stroke remains limited, but dehydration, sex differences, ageing, body composition, and previous illness are thought to increase risk. Immediate cooling remains the most effective treatment strategy. In this review, we provide an overview of the current literature emphasising the pathophysiology and risk factors of exertional heat stroke, highlighting gaps in knowledge with the objective to stimulate future research.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Liliana I Renteria
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Gabriel Leite-Santos
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Lisa R Leon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Amano T, Asami T, Ichinose-Kuwahara T, Okushima D, Ueda H, Kondo N, Inoue Y. Influence of exercise intensity and regional differences in the sudomotor recruitment pattern in exercising prepubertal boys and young men. Physiol Behav 2022; 243:113642. [PMID: 34762900 DOI: 10.1016/j.physbeh.2021.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
We investigated the influence of exercise intensities and regional differences in the sudomotor recruitment pattern in boys. Six prepubertal boys (age 11 ± 1 yr) cycled at light, moderate, and high exercise intensity (35%, 50%, and 65% VO2max) for 30 min in a temperate condition (28 °C, 40% relative humidity). Local sweat rate (ventilated capsule) and number of activated sweat glands (starch-iodine technique) at five body sites were assessed and sweat gland output was calculated. Responses in boys were compared with those in nine young men (23 ± 1 yr) tested under identical conditions. The forehead, chest, back, and forearm, but not thigh, sweat rate increased from light to moderate and at high intensities in boys (all p ≤ 0.005) but not from moderate to high (all p ≥ 0.071). The sweat rate on the forehead was relatively higher (p ≤ 0.045) and thigh was lower (p ≤ 0.050) than other sites in boys at moderate and high intensities. Exercise intensity-dependent sweating was associated with activating more sweat glands but not increasing glandular output in boys. The sweat rate in boys was attenuated versus men heterogeneously across body sites concurrent to low glandular outputs (all p ≤ 0.027). We conclude that exercise intensity modulates the sweat rate in boys by changing the number of activated sweat glands heterogeneously among skin sites. Age-related differences in the sudomotor pattern are evident at higher exercise intensities. Development of glandular output per gland occurring from boys to young men may play a key role in modulating sweat rate with respect to exercise intensity and regional differences.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Takako Asami
- Laboratory for Human Performance Research, Osaka International University, Moriguchi, Osaka, Japan
| | - Tomoko Ichinose-Kuwahara
- Laboratory for Human Performance Research, Osaka International University, Moriguchi, Osaka, Japan
| | - Dai Okushima
- Laboratory for Human Performance Research, Osaka International University, Moriguchi, Osaka, Japan
| | - Hiroyuki Ueda
- Department of Nurse, Osaka Shin-ai College, Tsurumi-ku, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Moriguchi, Osaka, Japan.
| |
Collapse
|
27
|
Giersch GEW, Charkoudian N, McClung HL. The Rise of the Female Warfighter: Physiology, Performance, and Future Directions. Med Sci Sports Exerc 2021; 54:683-691. [PMID: 34939610 DOI: 10.1249/mss.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Since 1948, the United States military has been open to both men and women as permanent party service members. However, in the majority of the time since, there have been a subset of military occupational specialties (MOS), or job descriptions, open only to men. In particular, jobs requiring more intense physical and/or environmental strain were considered to be beyond the physiological capabilities of women. In the present analysis, we review the literature regarding neuromuscular, physical performance, and environmental physiology in women, to highlight that women have no inherent limitation in their capacity to participate in relevant roles and jobs within the military, within accepted guidelines to promote risk mitigation across sexes. First, we discuss performance and injury risk: both neuromuscular function and physical capabilities. Second, physiological responses to environmental stress. Third, we discuss risk as it relates to reproductive health and nutritional considerations. We conclude with a summary of current physiological, performance and injury risk data in men and women that support our overarching purpose, as well as suggestions for future directions.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA Biophysical and Biomedical Modeling Division, United States Army Research Institute of Environmental Medicine, Natick, MA Oak Ridge Institute for Science and Technology, Oak Ridge, TN
| | | | | |
Collapse
|
28
|
Larson EA, Ely BR, Brunt VE, Francisco MA, Harris SM, Halliwill JR, Minson CT. Brachial and carotid hemodynamic response to hot water immersion in men and women. Am J Physiol Regul Integr Comp Physiol 2021; 321:R823-R832. [PMID: 34643115 DOI: 10.1152/ajpregu.00110.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.
Collapse
Affiliation(s)
- Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brett R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Sarianne M Harris
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
29
|
Ravanelli N, Gendron P, Gagnon D. Revisiting the evaluation of central versus peripheral thermoregulatory control in humans. Am J Physiol Regul Integr Comp Physiol 2021; 321:R91-R99. [PMID: 34075801 DOI: 10.1152/ajpregu.00321.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human thermoregulatory control is often evaluated through the relationship between thermoeffector output and core or mean body temperature. In addition to providing a general indication of whether a variable of interest alters thermoregulatory control, this relationship is often used to determine how this alteration may occur. This latter interpretation relies upon two parameters of the thermoeffector output-body temperature relationship: the onset threshold and thermosensitivity. Traditionally, changes in the onset threshold and thermosensitivity are interpreted as "central" or "peripheral" modulation of thermoregulatory control, respectively. This mini-review revisits the origins of the thermoeffector output-body temperature relationship and its use to interpret "central" or "peripheral" modulation of thermoregulatory control. Against this background, we discuss the strengths and weaknesses of this approach and highlight that "central" thermoregulatory control reflects the neural control of body temperature whereas "peripheral" thermoregulatory control reflects properties specific to the thermoeffector organs. We highlight studies that employed more direct approaches to investigate the neural control of body temperature and peripheral properties of thermoeffector organs. We conclude by encouraging future investigations interested in studying thermoregulatory control to more directly investigate the component of the thermoeffector loop under investigation.heat; human; skin blood flow; sweat; thermoregulatory.
Collapse
Affiliation(s)
| | - Philippe Gendron
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Quebec, Canada.,School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Wolf ST, Folkerts MA, Cottle RM, Daanen HAM, Kenney WL. Metabolism- and sex-dependent critical WBGT limits at rest and during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2021; 321:R295-R302. [PMID: 34259026 DOI: 10.1152/ajpregu.00101.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Critical environmental limits are environmental thresholds above which heat gain exceeds heat loss and body core temperature (Tc) cannot be maintained at equilibrium. Those limits can be represented as critical wet-bulb globe temperature (WBGTcrit), a validated index that represents the overall thermal environment. Little is known about WBGTcrit at rest and during low-to-moderate intensity exercise, or sex differences in WBGTcrit, in unacclimated young adults. The following hypotheses were tested: 1) WBGTcrit progressively decreases as metabolic heat production (Mnet) increases, 2) no sex differences in WBGTcrit occur at rest, and 3) WBGTcrit is lower during absolute-intensity exercise but higher at relative intensities in women than in men. Thirty-six participants [19 men (M)/17 women (W); 23 ± 4 yr] were tested at rest, during light, absolute-intensity exercise (10 W), or during moderate, relative-intensity exercise [30% maximal oxygen consumption (V̇o2max)] in an environmental chamber. Dry-bulb temperature was clamped as relative humidity or ambient water vapor pressure was increased until an upward inflection was observed in Tc (rectal or esophageal temperature). Sex-aggregated WBGTcrit was lower during 10 W (32.9°C ± 1.7°C, P < 0.0001) and 30% V̇o2max (31.6°C ± 1.1°C, P < 0.0001) exercise versus at rest (35.3°C ± 0.8°C), and lower at 30% V̇o2max versus 10 W (P = 0.01). WBGTcrit was similar between sexes at rest (35.6°C ± 0.8°C vs. 35.0°C ± 0.8°C, P = 0.83), but lower during 10 W (31.9°C ± 1.7°C vs. 34.1°C ± 0.3°C, P < 0.01) and higher during 30% V̇o2max (32.4°C ± 0.8°C vs. 30.8°C ± 0.9°C, P = 0.03) exercise in women versus men. These findings suggest that WBGTcrit decreases as Mnet increases, no sex differences occur in WBGTcrit at rest, and sex differences in WBGTcrit during exercise depend on absolute versus relative intensities.
Collapse
Affiliation(s)
- S Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mireille A Folkerts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rachel M Cottle
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
31
|
Adams WM, Hosokawa Y, Casa DJ, Périard JD, Racinais S, Wingo JE, Yeargin SW, Scarneo-Miller SE, Kerr ZY, Belval LN, Alosa D, Csillan D, LaBella C, Walker L. Roundtable on Preseason Heat Safety in Secondary School Athletics: Heat Acclimatization. J Athl Train 2021; 56:352-361. [PMID: 33878177 DOI: 10.4085/1062-6050-596-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To provide best-practice recommendations for developing and implementing heat-acclimatization strategies in secondary school athletics. DATA SOURCES An extensive literature review on topics related to heat acclimatization and heat acclimation was conducted by a group of content experts. Using the Delphi method, action-oriented recommendations were developed. CONCLUSIONS A period of heat acclimatization consisting of ≥14 consecutive days should be implemented at the start of fall preseason training or practices for all secondary school athletes to mitigate the risk of exertional heat illness. The heat-acclimatization guidelines should outline specific actions for secondary school athletics personnel to use, including the duration of training, the number of training sessions permitted per day, and adequate rest periods in a cool environment. Further, these guidelines should include sport-specific and athlete-specific recommendations, such as phasing in protective equipment and reintroducing heat acclimatization after periods of inactivity. Heat-acclimatization guidelines should be clearly detailed in the secondary school's policy and procedures manual and disseminated to all stakeholders. Heat-acclimatization guidelines, when used in conjunction with current best practices surrounding the prevention, management, and care of secondary school student-athletes with exertional heat stroke, will optimize their health and safety.
Collapse
Affiliation(s)
- William M Adams
- Hydration, Environment, and Thermal Stress Lab, Department of Kinesiology, University of North Carolina at Greensboro
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Sebastien Racinais
- Research and Scientific Support Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Susan W Yeargin
- Department of Exercise Science, University of South Carolina, Columbia
| | | | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas
| | - Denise Alosa
- Athletic Medicine, South Burlington School District, Burlington, VT.,College of Nursing and Health Science, University of Vermont, Burlington
| | - David Csillan
- Department of Physical Therapy, Princeton Orthopedic Associates, NJ
| | - Cynthia LaBella
- Department of Pediatrics, Northwestern University Feinberg School of Medicine Institute for Sports Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | | |
Collapse
|
32
|
Hutchins KP, Borg DN, Bach AJE, Bon JJ, Minett GM, Stewart IB. Female (Under) Representation in Exercise Thermoregulation Research. SPORTS MEDICINE - OPEN 2021; 7:43. [PMID: 34156570 PMCID: PMC8219822 DOI: 10.1186/s40798-021-00334-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/06/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite an increasing rate of women participating in professional sports, emergency services, and military settings where they are exposed to exertional heat stress, our understanding of female thermoregulation and the detrimental effects of heat on women's performance, especially regarding the menstrual cycle, is limited. This review aimed to quantify the representation of women in exercise thermoregulation research between 2010 and 2019 and the frequency that these articles reported details pertaining to female participants' menstrual cycle to determine the volume of novel research that is directly relevant to this growing population. METHODS Original exercise thermoregulatory studies published in three major sports medicine databases (PubMed, MEDLINE, and SPORTDiscus) between 2010 and 2019 were surveyed. Articles were screened to determine the number of female and male participants in the study and whether studies involving women reported menstrual orientation or phase. Research involving healthy adult participants and an exercise protocol with a thermoregulatory outcome measure were included in the review. RESULTS A total of 1407 articles were included in the review, involving 28,030 participants. The annual representation of women ranged from a mean of 11.6% [95% credible interval (CI); 9.2, 14.3] to 17.8% [95% CI; 15.2, 20.6] across the 10 years, indicating studies predominantly included men. Nonetheless, there was a small statistical increase in the overall proportion of women, with a mean overall proportion change of 0.7% [95% CI; 0.2, 1.2] per year. The increase appeared to be driven by a reduction in the number of studies including only men, rather than studies including more women alongside men, or increased women-only studies. Less than one third of articles involving women reported the menstrual orientation of participants and less than one quarter reported both menstrual orientation and phase. This study shows that women were proportionally underrepresented in exercise thermoregulation research during the past decade and the majority of studies did not report menstrual cycle details of female participants. Researchers should consider including women in future work where their inclusion could contribute meaningful data that enhance the evidence-based and ultimately improves our comprehension of women's thermal physiology.
Collapse
Affiliation(s)
- Kate P Hutchins
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia.
| | - David N Borg
- The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Aaron J E Bach
- The National Climate Change Adaption Research Facility, Griffith University, Gold Coast, Australia
| | - Joshua J Bon
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Australian Centre of Excellence for Mathematical and Statistical Frontiers, Brisbane, Australia
| | - Geoffrey M Minett
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ian B Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
33
|
Petkova EP, Dimitrova LK, Sera F, Gasparrini A. Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:865-872. [PMID: 33416949 DOI: 10.1007/s00484-020-02064-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Although a number of epidemiological studies have examined the effects of non-optimal temperatures on mortality in Europe, evidence about the mortality risks associated with exposures to hot and cold temperatures in Bulgaria is scarce. This study provides evidence about mortality attributable to non-optimal temperatures in adults aged 65 and over in Sofia, Bulgaria, between 2000 and 2017. We quantified the relationship between the daily mean temperature and mortality in the total elderly adult population aged 65 and over, among males and females aged 65 and over, as well as individuals aged 65-84 and 85 years or older. We used a distributed lag non-linear model with a 25-day lag to fully capture the effects of both cold and hot temperatures and calculated the fractions of mortality attributable to mild and extreme hot and cold temperatures. Cold temperatures had a greater impact on mortality than hot temperatures during the studied period. Most of the temperature-attributable mortality was due to moderate cold, followed by moderate heat, extreme cold, and extreme heat. The total mortality attributable to non-optimal temperatures was greater among females compared to males and among individuals aged 85 and over compared to those aged 65 to 84. The findings of this study can serve as a foundation for future research and policy development aimed at characterizing and reducing the risks from temperature exposures among vulnerable populations in the country, climate adaptation planning and improved public health preparedness, and response to non-optimal temperatures.
Collapse
Affiliation(s)
- Elisaveta P Petkova
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.
| | - Lyudmila K Dimitrova
- Department of Computer and Information Technology, Prof. Asen Zlatarov University, Burgas, Bulgaria
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK
- Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
34
|
Okamoto Y, Amano T. Effects of sex and menstrual cycle on sweating during isometric handgrip exercise and postexercise forearm occlusion. Exp Physiol 2021; 106:1508-1523. [PMID: 33899281 DOI: 10.1113/ep089464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do sex and menstrual cycle modulate sweating during isometric handgrip exercise and muscle metaboreceptor stimulation? What is the main finding and its importance? Sex modulates sweating during isometric handgrip exercise, as indicated by the lower sweat output per gland in women than in men, but not during muscle metaboreceptor stimulation. Sweat output per gland during isometric handgrip exercise and muscle metaboreceptor stimulation were lower in the mid-luteal phase than in the early follicular phase in women. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response. Our results provide new insights regarding sex- and menstrual cycle-related modulation of the sweating response. ABSTRACT We investigated whether sex and menstrual cycle could modulate sweating during isometric handgrip (IH) exercise and muscle metaboreceptor stimulation. Twelve young, healthy women in the early follicular (EF) and mid-luteal (ML) phases and 14 men underwent two experimental sessions consisting of a 1.5 min IH exercise at 25 and 50% of maximal voluntary contraction (MVC) in a hot environment (35°C, relative humidity 50%) followed by 2 min forearm occlusion to stimulate muscle metaboreceptors. Sweat rates, the number of activated sweat glands and the sweat output per gland (SGO) on the forearm and chest were assessed. Pilocarpine-induced sweating was also assessed via transdermal iontophoresis to compare the responses with those of IH exercise and muscle metaboreceptor stimulation, based on correlation analysis. Sweat rates on the forearm and chest during IH exercise and muscle metaboreceptor stimulation did not differ between men and women in either menstrual cycle phase (all P ≥ 0.144). However, women in both phases showed lower SGO on the forearm and/or chest compared with men during IH exercise at 50% of MVC, with no differences in muscle metaboreceptor stimulation. Women in the ML phase had a lower forearm sweat rate during IH exercise at 50% of MVC (P = 0.015) and SGO during exercise and muscle metaboreceptor stimulation (main effect, both P ≤ 0.003) compared with those in the EF phase. Overall, sweat rate and SGO during IH exercise and muscle metaboreceptor stimulation were correlated with pilocarpine-induced responses (all P ≤ 0.064, r ≥ 0.303). We showed that sex and menstrual cycle modulate sudomotor activity during IH exercise and/or muscle metaboreceptor stimulation. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| |
Collapse
|
35
|
Taylor NAS, Lee JY, Kim S, Notley SR. Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective. J Therm Biol 2021; 97:102858. [PMID: 33863427 DOI: 10.1016/j.jtherbio.2021.102858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
The Asia-Pacific contains over half of the world's population, 21 countries have a Gross Domestic Product <25% of the world's largest economy, many countries have tropical climates and all suffer the impact of global warming. That 'perfect storm' exacerbates the risk of occupational heat illness, yet first responders must perform physically demanding work wearing personal-protective clothing and equipment. Unfortunately, the Eurocentric emphasis of past research has sometimes reduced its applicability to other ethnic groups. To redress that imbalance, relevant contemporary research has been reviewed, to which has been added information applicable to people of Asian, Melanesian and Polynesian ancestry. An epidemiological triad is used to identify the causal agents and host factors of work intolerance within hot-humid climates, commencing with the size dependency of resting metabolism and heat production accompanying load carriage, followed by a progression from the impact of single-layered clothing through to encapsulating ensembles. A morphological hypothesis is presented to account for inter-individual differences in heat production and heat loss, which seems to explain apparent ethnic- and gender-related differences in thermoregulation, at least within thermally compensable states. The mechanisms underlying work intolerance, cardiovascular insufficiency and heat illness are reviewed, along with epidemiological data from the Asia-Pacific. Finally, evidence-based preventative and treatment strategies are presented and updated concerning moisture-management fabrics and barriers, dehydration, pre- and post-exercise cooling, and heat adaptation. An extensive reference list is provided, with >25 recommendations enabling physiologists, occupational health specialists, policy makers, purchasing officers and manufacturers to rapidly extract interpretative outcomes pertinent to the Asia-Pacific.
Collapse
Affiliation(s)
- Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Joo-Young Lee
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Siyeon Kim
- Human Convergence Technology R&D Department, Korea Institute of Industrial Technology, Ansan, Republic of Korea
| | - Sean R Notley
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
36
|
Gemae MR, Akerman AP, McGarr GW, Meade RD, Notley SR, Schmidt MD, Rutherford MM, Kenny GP. Myths and methodologies: Reliability of forearm cutaneous vasodilatation measured using laser‐Doppler flowmetry during whole‐body passive heating. Exp Physiol 2020; 106:634-652. [DOI: 10.1113/ep089073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mohamed R. Gemae
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Ashley P. Akerman
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Madison D. Schmidt
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Maura M. Rutherford
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
37
|
Follos F, Linares C, Vellón JM, López-Bueno JA, Luna MY, Sánchez-Martínez G, Díaz J. The evolution of minimum mortality temperatures as an indicator of heat adaptation: The cases of Madrid and Seville (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141259. [PMID: 32777504 DOI: 10.1016/j.scitotenv.2020.141259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 05/16/2023]
Abstract
The increase in the frequency and intensity of heat waves is one of the most unquestionable effects of climate change. Therefore, the progressive increase in maximum temperatures will have a clear incidence on the increase in mortality, especially in countries that are vulnerable due to geographical location or their socioeconomic characteristics. Different research studies show that the mortality attributable to heat is decreasing globally, and research is centred on future scenarios. One way of detecting the existence of a lesser impact of heat is through the increase in the so-called temperature of minimum mortality (TMM). The objective of this study is to determine the temporal evolution of TMM in two Spanish provinces (Seville and Madrid) during the 1983-2018 period and to evaluate whether the rate of adaptation to heat is appropriate. We used the gross rate of daily mortality due to natural causes (CIEX: A00-R99) and the maximum daily temperature (°C) to determine the quinquennial TMM using dispersion diagrams and realizing fit using quadratic and cubic curvilinear estimation. The same analysis was carried out at the annual level, by fitting an equation to the line of TMM for each province, whose slope, if significant (p < 0.05) represents the annual rate of variation in TMM. The results observed in this quinquennial analysis showed that the TMM is higher in Seville than in Madrid and that it is higher among men than women in the two provinces. Furthermore, there was an increase in TMM in all of the quinquennium and a clear decrease in the final period. At the annual level, the linear fit was significant for Madrid for the whole population and corresponds to an increase in the TMM of 0.58 °C per decade. For Seville the linear fits were significant and the slopes of the fitted lines was 1.1 °C/decade. Both Madrid and Seville are adapting to the increase in temperatures observed over the past 36 years, and women are the group that is more susceptible to heat, compared to men. The implementation of improvements and evaluation of prevention plans to address the impact of heat waves should continue in order to ensure adequate adaptation in the future.
Collapse
Affiliation(s)
- F Follos
- Tdot Solurciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - C Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J M Vellón
- Tdot Solurciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - J A López-Bueno
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - M Y Luna
- State Meteorological Agency, Madrid, Spain
| | | | - J Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
38
|
Amano T, Fujii N, Kenny GP, Okamoto Y, Inoue Y, Kondo N. Effects of L-type voltage-gated Ca 2+ channel blockade on cholinergic and thermal sweating in habitually trained and untrained men. Am J Physiol Regul Integr Comp Physiol 2020; 319:R584-R591. [PMID: 32966123 DOI: 10.1152/ajpregu.00167.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
39
|
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7795. [PMID: 33114437 PMCID: PMC7662600 DOI: 10.3390/ijerph17217795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered "state of the art," based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
40
|
Amano T, Fujii N, Kenny GP, Nishiyasu T, Inoue Y, Kondo N. The relative contribution of α- and β-adrenergic sweating during heat exposure and the influence of sex and training status. Exp Dermatol 2020; 29:1216-1224. [PMID: 33015872 DOI: 10.1111/exd.14208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/04/2023]
Abstract
While human eccrine sweat glands respond to adrenergic agonists, there remains a paucity of information on the factors modulating this response. Thus, we assessed the relative contribution of α- and β-adrenergic sweating during a heat exposure and as a function of individual factors of sex and training status. α- and β-adrenergic sweating was assessed in forty-eight healthy young men (n = 35) and women (n = 13) including endurance-trained (n = 12) and untrained men (n = 12) under non-heat exposure (temperate, 25°C; n = 17) and heat exposure (hot, 35°C; n = 48) conditions using transdermal iontophoresis of phenylephrine (α-adrenergic agonist) and salbutamol (β-adrenergic agonist) on the ventral forearm, respectively. Adrenergic sweating was also measured after iontophoretic administration of atropine (muscarinic receptor antagonist) or saline (control) to evaluate how changes in muscarinic receptor activity modulate the adrenergic response to a heat exposure (n = 12). α- and β-adrenergic sweating was augmented in hot compared with temperate conditions (both P ≤ .014), albeit the relative increase was greater in β (~5.4-fold)- as compared to α (~1.5-fold)-adrenergic-mediated sweating response. However, both α- and β-adrenergic sweating was abolished by atropinization (P = .001). Endurance-trained men showed an augmentation in α- (P = .043) but not β (P = .960)-adrenergic sweating as compared to untrained men. Finally, a greater α- and β-adrenergic sweating response (both P ≤ .001) was measured in habitually active men than in women. We show that heat exposure augments α-and β-adrenergic sweating differently via mechanisms associated with altered muscarinic receptor activity. Sex and training status modulate this response.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
41
|
Ashley JD, Shelley JH, Sun J, Song J, Trent JA, Ambrosio LD, Larson DJ, Larson RD, Yabluchanskiy A, Kellawan JM. Cerebrovascular responses to graded exercise in young healthy males and females. Physiol Rep 2020; 8:e14622. [PMID: 33112497 PMCID: PMC7592493 DOI: 10.14814/phy2.14622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023] Open
Abstract
Although systemic sex-specific differences in cardiovascular responses to exercise are well established, the comparison of sex-specific cerebrovascular responses to exercise has gone under-investigated especially, during high intensity exercise. Therefore, our purpose was to compare cerebrovascular responses in males and females throughout a graded exercise test (GXT). Twenty-six participants (13 Females and 13 Males, 24 ± 4 yrs.) completed a GXT on a recumbent cycle ergometer consisting of 3-min stages. Each sex completed 50W, 75W, 100W stages. Thereafter, power output increased 30W/stage for females and 40W/stage for males until participants were unable to maintain 60-80 RPM. The final stage completed by the participant was considered maximum workload(Wmax ). Respiratory gases (End-tidal CO2 , EtCO2 ), middle cerebral artery blood velocity (MCAv), heart rate (HR), non-invasive mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) were continuously recorded on a breath-by-breath or beat-by-beat basis. Cerebral perfusion pressure, CPP = MAP (0. 7,355 distance from heart-level to doppler probe) and cerebral vascular conductance index, CVCi = MCAv/CPP 100mmHg were calculated. The change from baseline (Δ) in MCAv was similar between the sexes during the GXT (p = .091, ωp2 = 0.05). However, ΔCPP (p < .001, ωp2 = 0.25) was greater in males at intensities ≥ 80% Wmax and ΔCVCi (p = .005, ωp2 = 0.15) was greater in females at 100% Wmax . Δ End-tidal CO2 (ΔEtCO2 ) was not different between the sexes during exercise (p = .606, ωp2 = -0.03). These data suggest there are sex-specific differences in cerebrovascular control, and these differences may only be identifiable at high and severe intensity exercise.
Collapse
Affiliation(s)
- John D. Ashley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Joe H. Shelley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jongjoo Sun
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jiwon Song
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jacob A. Trent
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Luis D. Ambrosio
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Daniel J. Larson
- Department of Health and Exercise Science, Sport, Health, and Exercise Data Analytics LaboratoryUniversity of OklahomaNormanOKUSA
| | - Rebecca D. Larson
- Department of Health and Exercise ScienceBody Composition and Physical Performance Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Andriy Yabluchanskiy
- Oklahoma Center for GeroscienceDepartment of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - J. Mikhail Kellawan
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| |
Collapse
|
42
|
Foster J, Hodder SG, Lloyd AB, Havenith G. Individual Responses to Heat Stress: Implications for Hyperthermia and Physical Work Capacity. Front Physiol 2020; 11:541483. [PMID: 33013476 PMCID: PMC7516259 DOI: 10.3389/fphys.2020.541483] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extreme heat events are increasing in frequency, severity, and duration. It is well known that heat stress can have a negative impact on occupational health and productivity, particularly during physical work. However, there are no up-to-date reviews on how vulnerability to heat changes as a function of individual characteristics in relation to the risk of hyperthermia and work capacity loss. The objective of this narrative review is to examine the role of individual characteristics on the human heat stress response, specifically in relation to hyperthermia risk and productivity loss in hot workplaces. Finally, we aim to generate practical guidance for industrial hygienists considering our findings. Factors included in the analysis were body mass, body surface area to mass ratio, body fat, aerobic fitness and training, heat adaptation, aging, sex, and chronic health conditions. Findings We found the relevance of any factor to be dynamic, based on the work-type (fixed pace or relative to fitness level), work intensity (low, moderate, or heavy work), climate type (humidity, clothing vapor resistance), and variable of interest (risk of hyperthermia or likelihood of productivity loss). Heat adaptation, high aerobic fitness, and having a large body mass are the most protective factors during heat exposure. Primary detrimental factors include low fitness, low body mass, and lack of heat adaptation. Aging beyond 50 years, being female, and diabetes are less impactful negative factors, since their independent effect is quite small in well matched participants. Skin surface area to mass ratio, body composition, hypertension, and cardiovascular disease are not strong independent predictors of the heat stress response. Conclusion Understanding how individual factors impact responses to heat stress is necessary for the prediction of heat wave impacts on occupational health and work capacity. The recommendations provided in this report could be utilized to help curtail hyperthermia risk and productivity losses induced by heat.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon G Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
43
|
Notley SR, D'Souza AW, Meade RD, Richards BJ, Kenny GP. Whole-body heat exchange in women during constant- and variable-intensity work in the heat. Eur J Appl Physiol 2020; 120:2665-2675. [PMID: 32902693 DOI: 10.1007/s00421-020-04486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Time-weighted averaging is used in occupational heat stress guidelines to estimate the metabolic demands of variable-intensity work. However, compared to constant-intensity work of the same time-weighted average metabolic rate, variable-intensity work may cause decrements in total heat loss (dry + evaporative heat loss) that exacerbate heat storage in women. We therefore used direct calorimetry to assess whole-body total heat loss and heat storage (metabolic heat production minus total heat loss) in women and men during constant- and variable-intensity work of equal average intensity. METHODS Ten women [mean (SD); 31 (11) years] and fourteen men [30 (8) years] completed two trials involving 90-min of constant- and variable-intensity work (cycling) eliciting an average metabolic heat production of ~ 200 W/m2 in dry-heat (40 °C, ~ 15% relative humidity). External work was fixed at ~ 40 W/m2 for constant-intensity work, and alternated between ~ 15 and ~ 60 W/m2 (5-min each) for variable-intensity work. RESULTS When expressed as a time-weighted average over each work period, total heat loss did not differ between men and women (mean difference [95% CI]; 4 W/m2 [- 11, 20]; p = 0.572) or between constant- and variable-intensity work (1 W/m2 [- 3, 5]; p = 0.642). Consequently, heat storage did not differ significantly between men and women (- 4 W/m2 [- 17, 8]; p = 0.468) or between constant- and variable-intensity work (0 W/m2 [- 3, 3]; p = 0.834). CONCLUSION Neither whole-body heat loss nor heat storage was modulated by the partitioning of work intensity, indicating that time-weighted averaging is appropriate for estimating metabolic demand to assess occupational heat stress in women.
Collapse
Affiliation(s)
- Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Room 367 Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Andrew W D'Souza
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Room 367 Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Room 367 Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Brodie J Richards
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Room 367 Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Room 367 Montpetit Hall, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
44
|
Williams ML. Global warming, heat-related illnesses, and the dermatologist. Int J Womens Dermatol 2020; 7:70-84. [PMID: 33537396 PMCID: PMC7838243 DOI: 10.1016/j.ijwd.2020.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Global warming, provoked by the greenhouse effect of high levels of atmospheric gases (most notably carbon dioxide and methane), directly threatens human health and survival. Individuals vary in their capacity to tolerate episodes of extreme heat. Because skin is the organ tasked with heat dissipation, it is important for dermatologists to be versed in the physiology of cutaneous heat dissipation and cognizant of clinical settings in which the skin’s thermoregulatory responses may be impaired. When the external temperature is lower than that of the skin, the skin releases internal heat through direct thermal exchange with the environment, a process that is aided by an expansion of cutaneous blood flow and eccrine sweating. Cooling through the evaporation of sweat is effective even when the external temperature exceeds that of skin. Many factors, including environmental and physiological (e.g., age and sex), and pathological (e.g., preexisting illnesses, disorders of eccrine function, and medications) considerations, affect the skin’s capacity to thermoregulate. Identification of individuals at increased risk for heat-related morbidity and mortality will become increasingly important in the care of patients.
Collapse
Affiliation(s)
- Mary L Williams
- Departments of Dermatology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
Amano T, Sekihara S, Fujii N, Kenny GP, Inoue Y, Kondo N. Does the iontophoretic application of bretylium tosylate modulate sweating during exercise in the heat in habitually trained and untrained men? Exp Physiol 2020; 105:1692-1699. [PMID: 32776611 DOI: 10.1113/ep088797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the administration of the adrenergic presynaptic release inhibitor bretylium tosylate modulate sweating during exercise in the heat, and does this response differ between habitually trained and untrained men? What is the main finding and its importance? Iontophoretic administration of bretylium tosylate attenuates sweating during exercise in the heat in habitually trained and untrained men. However, a greater reduction occurred in trained men. The findings demonstrate a role for cutaneous adrenergic nerves in the regulation of eccrine sweating during exercise in the heat and highlight a need to advance our understanding of neural control of human eccrine sweat gland activity. ABSTRACT We recently reported an influence of cutaneous adrenergic nerves on eccrine sweat production in habitually trained men performing an incremental exercise bout in non-heat stress conditions. Based on an assumption that increasing heat stress induces cholinergic modulation of sweating, we evaluated the hypothesis that the contribution of cutaneous adrenergic nerves on sweating would be attenuated during exercise in the heat. Twenty young habitually trained and untrained men (n = 10/group) underwent three successive bouts of 15 min of light-, moderate- and vigorous-intensity cycling (equivalent to 30, 50, and 70% of peak oxygen uptake ( V ̇ O 2 peak ) respectively), each separated by a 15 min recovery while wearing a perfusion suit perfused with warm water (43°C). Sweat rate (ventilated capsule) was measured continuously at two bilateral forearm skin sites treated with 10 mm bretylium tosylate (an inhibitor of neurotransmitter release from adrenergic nerve terminals) and saline (control) via transdermal iontophoresis. A greater sweat rate was measured during vigorous exercise only in trained as compared to untrained men (P = 0.014). In both groups, sweating was reduced at the bretylium tosylate versus control sites, albeit the magnitude of reduction was greater in the trained men (P ≤ 0.024). These results suggest that cutaneous adrenergic nerves modulate sweating during exercise performed under a whole-body heat stress, albeit a more robust response occurs in trained men. While it is accepted that a cholinergic mechanism plays a primary role in the regulation of sweating during an exercise-heat stress, our findings highlight the need for additional studies aimed at understanding the neural control of human eccrine sweating.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Shin Sekihara
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
46
|
Fujii N, McGarr GW, Ghassa R, Schmidt MD, McCormick JJ, Nishiyasu T, Kenny GP. Sex-differences in cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation: Roles of nitric oxide synthase, cyclooxygenase, and K + channels. Microvasc Res 2020; 131:104030. [PMID: 32531353 DOI: 10.1016/j.mvr.2020.104030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Previous studies indicate that sex-related differences exist in the regulation of cutaneous vasodilation, however, the mechanisms remain unresolved. We assessed if sex-differences in young adults exist for cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation with a focus on nitric oxide synthase (NOS), cyclooxygenase (COX), and K+ channel mechanisms. In twelve young men and thirteen young women, four intradermal forearm skin sites were perfused with the following: 1) lactated Ringer's solution (control), 2) 10 mM Nω-nitro-l-arginine, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM BaCl2, a nonspecific K+ channel blocker. At all four sites, cutaneous vasodilation was induced by 1) 10 mM nicotine, a nicotinic receptor agonist, 2) 100 μM isoproterenol, a nonselective β-adrenergic receptor agonist, and 3) 2 mM and 2000 mM acetylcholine, an acetylcholine receptor agonist. Nicotine and isoproterenol were administered for 3 min, whereas each acetylcholine dose was administered for 25 min. Regardless of treatment site, cutaneous vasodilation in response to nicotine and a high dose of acetylcholine (2000 mM) were lower in women than men. By contrast, isoproterenol induced cutaneous vasodilation was greater in women vs. men. Irrespective of sex, NOS inhibition or K+ channel blockade attenuated isoproterenol-mediated cutaneous vasodilation, whereas K+ channel blockade decreased nicotine-induced cutaneous vasodilation. Taken together, our findings indicate that while the mechanisms underlying cutaneous vasodilation are comparable between young men and women, sex-related differences in the magnitude of cutaneous vasodilation do exist and this response differs as a function of the receptor agonist.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Madison D Schmidt
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Yanovich R, Ketko I, Charkoudian N. Sex Differences in Human Thermoregulation: Relevance for 2020 and Beyond. Physiology (Bethesda) 2020; 35:177-184. [PMID: 32293229 DOI: 10.1152/physiol.00035.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of women in physically strenuous athletic and occupational tasks has increased substantially in the past decade. Female sex steroids have influences on thermoregulatory processes that could impact physical performance in the heat. Here, we summarize and evaluate the current literature regarding sex differences in thermoregulation and provide recommendations for heat-illness risk-mitigation strategies.
Collapse
Affiliation(s)
- R Yanovich
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
- The Academic College at Wingate, Wingate Institute, Netanya, Israel
| | - I Ketko
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
| | - N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachussetts
| |
Collapse
|
48
|
Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S. Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. ENVIRONMENTAL RESEARCH 2020; 182:109107. [PMID: 32069750 DOI: 10.1016/j.envres.2019.109107] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 05/04/2023]
Abstract
The Mediterranean Basin is undergoing a warming trend with longer and warmer summers, an increase in the frequency and the severity of heat waves, changes in precipitation patterns and a reduction in rainfall amounts. In this unique populated region, which is characterized by significant gaps in the socio-economic levels particularly between the North (Europe) and South (Africa), parallel with population growth and migration, increased water demand and forest fires risk - the vulnerability of the Mediterranean population to human health risks increases significantly. Indeed, climatic changes impact the health of the Mediterranean population directly through extreme heat, drought or storms, or indirectly by changes in water availability, food provision and quality, air pollution and other stressors. The main health effects are related to extreme weather events (including extreme temperatures and floods), changes in the distribution of climate-sensitive diseases and changes in environmental and social conditions. The poorer countries, particularly in North Africa and the Levant, are at highest risk. Climate change affects the vulnerable sectors of the region, including an increasingly older population, with a larger percentage of those with chronic diseases, as well as poor people, which are therefore more susceptible to the effects of extreme temperatures. For those populations, a better surveillance and control systems are especially needed. In view of the climatic projections and the vulnerability of Mediterranean countries, climate change mitigation and adaptation become ever more imperative. It is important that prevention Health Action Plans will be implemented, particularly in those countries that currently have no prevention plans. Most adaptation measures are "win-win situation" from a health perspective, including reducing air pollution or providing shading solutions. Additionally, Mediterranean countries need to enhance cross-border collaboration, as adaptation to many of the health risks requires collaboration across borders and also across the different parts of the basin.
Collapse
Affiliation(s)
- Cristina Linares
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Julio Díaz
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Maya Negev
- School of Public Health, University of Haifa, Israel
| | | | | | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Israel.
| |
Collapse
|
49
|
Liguori C, Holzknecht E, Placidi F, Izzi F, Mercuri NB, Högl B, Stefani A. Seasonality of restless legs syndrome: symptom variability in winter and summer times. Sleep Med 2020; 66:10-14. [DOI: 10.1016/j.sleep.2019.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023]
|
50
|
Notley SR, Flouris AD, Kenny GP. Occupational heat stress management: Does one size fit all? Am J Ind Med 2019; 62:1017-1023. [PMID: 30791115 DOI: 10.1002/ajim.22961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 01/20/2023]
Abstract
Heat stress is a deadly occupational hazard that is projected to increase in severity with global warming. While upper limits for heat stress designed to protect all workers have been recommended by occupational safety institutes for some time, heat stress continues to compromise health and productivity. In our view, this is largely explained by the inability of existing guidelines to consider the inter-individual (age, sex, disease, others) and intra-individual (medication use, fitness, hydration, others) factors that cause extensive variability in physiological tolerance to a given heat stress. In conditions that do not exceed the recommended limits, this 'one size fits all' approach to heat stress management can lead to reductions in productivity in more heat-tolerant workers, while compromising safety in less heat-tolerant workers who may develop heat-related illness, even in temperate conditions. Herein, we discuss future directions in occupational heat stress management that consider this individual variability.
Collapse
Affiliation(s)
- Sean R. Notley
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| | - Andreas D. Flouris
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
- FAME LaboratoryDepartment of Exercise Science, University of Thessaly TrikalaGreece
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| |
Collapse
|