1
|
Uddin N, Scott J, Nixon J, Patterson SD, Kidgell D, Pearce AJ, Waldron M, Tallent J. The effects of exercise, heat-induced hypo-hydration and rehydration on blood-brain-barrier permeability, corticospinal and peripheral excitability. Eur J Appl Physiol 2024:10.1007/s00421-024-05616-x. [PMID: 39340668 DOI: 10.1007/s00421-024-05616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE The effects of low-intensity exercise, heat-induced hypo-hydration and rehydration on maximal strength and the underlying neurophysiological mechanisms are not well understood. METHODS To assess this, 12 participants took part in a randomised crossover study, in a prolonged (3 h) submaximal (60 W) cycling protocol under 3 conditions: (i) in 45 °C (achieving ~ 5% body mass reduction), with post-exercise rehydration in 2 h (RHY2), (ii) with rehydration across 24 h (RHY24), and (iii) a euhydrated trial in 25 °C (CON). Dependent variables included maximal voluntary contractions (MVC), maximum motor unit potential (MMAX), motor evoked potential (MEPRAW) amplitude and cortical silent period (cSP) duration. Blood-brain-barrier integrity was also assessed by serum Ubiquitin Carboxyl-terminal Hydrolase (UCH-L1) concentrations. All measures were obtained immediately pre, post, post 2 h and 24 h. RESULTS During both dehydration trials, MVC (RHY2: p < 0.001, RHY24: p = 0.001) and MEPRAW (RHY2: p = 0.025, RHY24: p = 0.045) decreased from pre- to post-exercise. MEPRAW returned to baseline during RHY2 and CON, but not RHY24 (p = 0.020). MEP/MMAX ratio decreased across time for all trials (p = 0.009) and returned to baseline, except RHY24 (p < 0.026). Increased cSP (p = 0.011) was observed during CON post-exercise, but not during RHY2 and RHY24. Serum UCH-L1 increased across time for all conditions (p < 0.001) but was not significantly different between conditions. CONCLUSION Our findings demonstrate an increase in corticospinal inhibition after exercise with fluid ingestion, but a decrease in corticospinal excitability after heat-induced hypo-hydration. In addition, low-intensity exercise increases peripheral markers of blood-brain-barrier permeability.Kindly check and confirm inserted city name correctly identified in affiliation 7This is correct.
Collapse
Affiliation(s)
- Nasir Uddin
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK.
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Jamie Scott
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Jonathan Nixon
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- Swinburne Neuroimaging Facility, School of Health Science, Swinburne University of Technology, Melbourne, Australia
| | - Mark Waldron
- Applied Sport, Technology, Exercise and Medicine, College of Engineering, Swansea University, Swansea, Wales, UK
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Shan D, Zhang H, Cui L, Chai S, Chen W, Liu G, Tian F, Fan L, Yang L, Zhang Y. Clinical characteristics and outcomes of patients with antibody-related autoimmune encephalitis presenting with disorders of consciousness: A prospective cohort study. Immun Inflamm Dis 2024; 12:e70019. [PMID: 39315845 PMCID: PMC11421047 DOI: 10.1002/iid3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE To explore the clinical characteristics, short- and long-term functional outcomes, and risk factors for antibody-related autoimmune encephalitis (AE) in patients with disorders of consciousness (DoC). METHODS Clinical data were collected from AE patients admitted to Xuanwu Hospital of Capital Medical University from January 2012 to December 2021, and patients were followed up for up to 24 months after immunotherapy. RESULTS A total of 312 patients with AE were included: 197 (63.1%) with anti-NMDAR encephalitis, 71 (22.8%) with anti-LGI1 encephalitis, 20 (6.4%) with anti-GABAbR encephalitis, 10 (3.2%) with anti-CASPR2 encephalitis, 10 (3.2%) with anti-GAD65 encephalitis, and 4 (1.3%) with anti-AMPAR2 encephalitis. Among these patients, 32.4% (101/312) presented with DoC, and the median (interquartile range, IQR) time to DoC was 16 (7.5, 32) days. DoC patients had higher rates of various clinical features of AE (p < .05). DoC was associated with elevated lumbar puncture cerebrospinal fluid (CSF) pressure, CSF leukocyte count, and specific antibody titer (p < .05). A high percentage of patients in the DoC group had a poor prognosis at discharge and at 6 months after immunotherapy (p < .001), but no significant difference in prognosis was noted between the DoC group and the non-DoC group at 12 and 24 months after immunotherapy. Dyskinesia (OR = 3.266, 95% CI: 1.550-6.925, p = .002), autonomic dysfunction (OR = 5.871, 95% CI: 2.574-14.096, and p < .001), increased CSF pressure (OR = 1.007, 95% CI: 1.001-1.014, p = .046), and modified Rankin scale (mRS) score ≥3 at the initiation of immunotherapy (OR = 7.457, 95% CI: 3.225-18.839, p < .001) were independent risk factors for DoC in AE patients. CONCLUSION DoC is a relatively common clinical symptom in patients with AE, especially critically ill patients. Despite requiring longer hospitalization, DoC mostly improves with treatment of the primary disease and has a good long-term prognosis after aggressive life support and combination immunotherapy.
Collapse
Affiliation(s)
- Dawei Shan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Huimin Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lili Cui
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shuting Chai
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Weibi Chen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Gang Liu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Fei Tian
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Linlin Fan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Le Yang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yan Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Yunoki T, Zang K, Hatano K, Matsuura R, Ohtsuka Y. Relationship between disturbances of CO 2 homeostasis and force output characteristics during isometric knee extension. Respir Physiol Neurobiol 2023; 315:104119. [PMID: 37468055 DOI: 10.1016/j.resp.2023.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
To determine whether disturbances of CO2 homeostasis alter force output characteristics of lower limb muscles, participants performed four isometric knee extension trials (MVC30%, 10s each with 20-s rest intervals) in three CO2 conditions (normocapnia [NORM], hypercapnia [HYPER], and hypocapnia [HYPO]). Respiratory frequency and tidal volume were matched between CO2 conditions. In each MVC30%, the participants exerted a constant force (30% of maximum voluntary contraction [MVC]). The force coefficient of variation (Fcv) during each MVC30% and MVC before and after the four MVC30% trials were measured. For the means of the four trials, Fcv was significantly lower in HYPER than in HYPO. However, within HYPER, a significant positive correlation was found between the increase in end-tidal CO2 partial pressure and the increase in Fcv. MVCs in NORM and HYPO decreased significantly over the four trials, while no such reduction was observed in HYPER. These results suggest that perturbed CO2 homeostasis influences the force output characteristics independently of breathing pattern variables.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Health and Physical Education, Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | - Kejun Zang
- Department of Health and Physical Education, Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Kei Hatano
- Japan Institute of Sports Sciences, Japan
| | - Ryouta Matsuura
- Graduate School of Education, Joetsu University of Education, Japan
| | - Yoshinori Ohtsuka
- Department of Sports and Human Studies, Sapporo International University, Japan
| |
Collapse
|
4
|
Gordon RJFH, Tillin NA, Diss CE, Tyler CJ. Voluntary torque production is unaffected by changes in local thermal sensation during normothermia and hyperthermia. Exp Physiol 2023; 108:607-620. [PMID: 36807433 PMCID: PMC10103871 DOI: 10.1113/ep090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Hyperthermia reduces the human capacity to produce muscular force, which is associated with decreased neural drive: does mitigating a reduction in neural drive by altering localised thermal sensation help to preserve voluntary force output? What is the main finding and its importance? Altering thermal sensation by cooling and heating the head independent of core temperature did not change neural drive or benefit voluntary force production. Head cooling did slow the rate of rise in core temperature during heating, which may have practical applications in passive settings. ABSTRACT This study investigated altered local head and neck thermal sensation on maximal and rapid torque production during voluntary contractions. Nine participants completed four visits in two environmental conditions: at rectal temperatures ∼39.5°C in hot (HOT; ∼50°C, ∼39% relative humidity) and ∼37°C in thermoneutral (NEU; ∼22°C, ∼46% relative humidity) conditions. Local thermal sensation was manipulated by heating in thermoneutral conditions and cooling in hot conditions. Evoked twitches and octets were delivered at rest. Maximum voluntary torque (MVT), normalised surface electromyography (EMG) and voluntary activation (VA) were assessed during brief maximal isometric voluntary contractions of the knee extensors. Rate of torque development (RTD) and EMG were measured during rapid voluntary contractions. MVT (P = 0.463) and RTD (P = 0.061) were similar between environmental conditions despite reduced VA (-6%; P = 0.047) and EMG at MVT (-31%; P = 0.019). EMG in the rapid voluntary contractions was also lower in HOT versus NEU during the initial 100 ms (-24%; P = 0.035) and 150 ms (-26%; P = 0.035). Evoked twitch (+70%; P < 0.001) and octet (+27%; P < 0.001) RTD during the initial 50 ms were greater in the HOT compared to NEU conditions, in addition to a faster relaxation rate of the muscle (-33%; P < 0.001). In conclusion, hyperthermia reduced neural drive without affecting voluntary torque, likely due to the compensatory effects of improved intrinsic contractile function and faster contraction and relaxation rates of the knee extensors. Changes in local thermal perception of the head and neck whilst hyperthermic or normothermic did not affect voluntary torque.
Collapse
Affiliation(s)
- Ralph Joseph Frederick Hills Gordon
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
- School of Sport Science and Physical ActivityUniversity of BedfordshireBedfordUK
- Faculty of Science and Engineering, School of Psychology and Sport ScienceAnglia Ruskin UniversityCambridgeUK
| | - Neale Anthony Tillin
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
| | - Ceri Elen Diss
- Department of School of Life and Health SciencesUniversity of RoehamptonLondonUK
| | | |
Collapse
|
5
|
Coehoorn CJ, Patrick Neary J, Krigolson OE, Stuart-Hill LA. Firefighter Pre-Frontal Cortex and Hemodynamics during Rapid Heat Stress. Brain Res 2022; 1798:148156. [DOI: 10.1016/j.brainres.2022.148156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
6
|
Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Eur J Appl Physiol 2022; 122:1797-1810. [PMID: 35362800 PMCID: PMC9287254 DOI: 10.1007/s00421-022-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022]
Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcranial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contractile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
Collapse
|
7
|
Schultz Martins R, Wallace PJ, Steele SW, Scott JS, Taber MJ, Hartley GL, Cheung SS. The Clamping of End-Tidal Carbon Dioxide Does Not Influence Cognitive Function Performance During Moderate Hyperthermia With or Without Skin Temperature Manipulation. Front Psychol 2021; 12:788027. [PMID: 35002880 PMCID: PMC8730541 DOI: 10.3389/fpsyg.2021.788027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Increases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear. Hyperthermia also elicits a hyperventilatory response that decreases the partial pressure of end-tidal carbon dioxide (PetCO2) and subsequently cerebral blood flow that may influence cognitive function. We studied the role of skin and core temperature along with PetCO2 on cognitive function across a range of domains. Eleven males completed a randomized, single-blinded protocol consisting of poikilocapnia (POIKI, no PetCO2 control) or isocapnia (ISO, PetCO2 maintained at baseline levels) during passive heating using a water-perfused suit (water temperature ~ 49°C) while middle cerebral artery velocity (MCAv) was measured continuously as an index of cerebral blood flow. Cognitive testing was completed at baseline, neutral core-hot skin (37.0 ± 0.2°C-37.4 ± 0.3°C), hot core-hot skin (38.6 ± 0.3°C-38.7 ± 0.2°C), and hot core-cooled skin (38.5 ± 0.3°C-34.7 ± 0.6°C). The cognitive test battery consisted of a detection task (psychomotor processing), 2-back task (working memory), set-shifting and Groton Maze Learning Task (executive function). At hot core-hot skin, poikilocapnia led to significant (both p < 0.05) decreases in PetCO2 (∆−21%) and MCAv (∆−26%) from baseline, while isocapnia clamped PetCO2 (∆ + 4% from baseline) leading to a significantly (p = 0.023) higher MCAv (∆−18% from baseline) compared to poikilocapnia. There were no significant differences in errors made on any task (all p > 0.05) irrespective of skin temperature or PetCO2 manipulation. We conclude that neither skin temperature nor PetCO2 maintenance significantly alter cognitive function during passive hyperthermia.
Collapse
Affiliation(s)
- Ricardo Schultz Martins
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Phillip J. Wallace
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Scott W. Steele
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Jake S. Scott
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Taber
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- NM Consulting Inc., St. Catharines, ON, Canada
| | - Geoffrey L. Hartley
- Department of Physical and Health Education, Nipissing University, North Bay, ON, Canada
| | - Stephen S. Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- *Correspondence: Stephen S. Cheung,
| |
Collapse
|
8
|
Katagiri A, Kitadai Y, Miura A, Fukuba Y, Fujii N, Nishiyasu T, Tsuji B. Sodium bicarbonate ingestion mitigates the heat-induced hyperventilation and reduction in cerebral blood velocity during exercise in the heat. J Appl Physiol (1985) 2021; 131:1617-1628. [PMID: 34590911 DOI: 10.1152/japplphysiol.00261.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia during exercise in the heat causes minute ventilation ([Formula: see text]) to increase, which leads to reductions in arterial CO2 partial pressure ([Formula: see text]) and cerebral blood flow. On the other hand, sodium bicarbonate ingestion reportedly results in metabolic alkalosis, leading to decreased [Formula: see text] and increased [Formula: see text] during prolonged exercise in a thermoneutral environment. Here, we investigated whether sodium bicarbonate ingestion suppresses heat-induced hyperventilation and the resultant hypocapnia and cerebral hypoperfusion during prolonged exercise in the heat. Eleven healthy men ingested a solution of sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg) (NaCl trial). Ninety minutes after the ingestion, the subjects performed a cycle exercise for 60 min at 50% of peak oxygen uptake in the heat (35°C and 40% relative humidity). Esophageal temperature did not differ between the trials throughout (P = 0.56, main effect of trial). [Formula: see text] gradually increased with exercise duration in the NaCl trial, but the increases in [Formula: see text] were attenuated in the NaHCO3 trial (P = 0.01, main effect of trial). Correspondingly, estimated [Formula: see text] and middle cerebral artery blood velocity (an index of anterior cerebral blood flow) were higher in the NaHCO3 than the NaCl trial (P = 0.002 and 0.04, main effects of trial). Ratings of perceived exertion were lower in the NaHCO3 than the NaCl trial (P = 0.02, main effect of trial). These results indicate that sodium bicarbonate ingestion mitigates heat-induced hyperventilation and reductions in [Formula: see text] and cerebral blood velocity during prolonged exercise in the heat.NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The cerebral hypoperfusion may underlie central fatigue. We demonstrate that sodium bicarbonate ingestion reduces heat-induced hyperventilation and attenuates hypocapnia-related cerebral hypoperfusion during prolonged exercise in the heat. In addition, we show that sodium bicarbonate ingestion reduces ratings of perceived exertion during the exercise. This study provides new insight into the development of effective strategies for preventing central fatigue during exercise in the heat.
Collapse
Affiliation(s)
- Akira Katagiri
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Akira Miura
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yoshiyuki Fukuba
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Bun Tsuji
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
9
|
Le Ster C, Mauconduit F, Mirkes C, Vignaud A, Boulant N. Measuring radiofrequency field-induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring. Magn Reson Med 2021; 87:1390-1400. [PMID: 34687068 DOI: 10.1002/mrm.29058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE An MR thermometry (MRT) method with motion and field fluctuation compensation is proposed to measure non-invasively sub-degree brain temperature variations occurring through radiofrequency (RF) power deposition during MR exams. METHODS MRT at 7T with a multi-slice echo planar imaging (EPI) sequence and concurrent field monitoring was first tested in vitro to assess accuracy in the presence of external field perturbations, an optical probe being used for ground truth. In vivo, this strategy was complemented by a motion compensation scheme based on a dictionary pre-scan, as reported in some previous work, and was adapted to the human brain. Precision reached with this scheme was assessed on eight volunteers with a 5 minute-long low specific absorption rate (SAR) scan. Finally, temperature rise in the brain was measured twice on the same volunteers and with the same strategy, this time by employing a 20-minutes scan at the maximum SAR delivered with a commercial volume head coil. RESULTS In vitro, the root mean square (RMS) error between optical probe and MRT measurements was 0.02°C with field sensor correction. In vivo, the low SAR scan returned a precision in temperature change measurement with field monitoring and motion compensation of 0.05°C. The 20-minutes maximum SAR scan returned a temperature rise throughout the inner-brain in the range of 0-0.2°C. Brain periphery remained too sensitive with respect to motion to lead to equally conclusive results. CONCLUSION Sub-degree temperature rise in the inner human brain was characterized experimentally throughout RF exposure. Potential applications include improvement of human thermal models and revision of safety margins.
Collapse
Affiliation(s)
- Caroline Le Ster
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Gordon RJ, Tyler CJ, Castelli F, Diss CE, Tillin NA. Progressive hyperthermia elicits distinct responses in maximum and rapid torque production. J Sci Med Sport 2021; 24:811-817. [DOI: 10.1016/j.jsams.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
|
11
|
Johnson MA, Sharpe GR, Needham RS, Williams NC. Effects of Prior Voluntary Hyperventilation on the 3-min All-Out Cycling Test in Men. Med Sci Sports Exerc 2021; 53:1482-1494. [PMID: 33481485 DOI: 10.1249/mss.0000000000002608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT). METHODS Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP). End-test power (EP; synonymous with critical power) was calculated as the mean power output over the last 30 s of the 3MT, and the work done above EP (WEP; synonymous with W') was calculated as the power-time integral above EP. RESULTS At the start of the 3MT, capillary blood PCO2 and [H+] were lower in HYP (25.2 ± 3.0 mm Hg, 27.1 ± 2.6 nmol·L-1) than CONT (43.2 ± 2.0 mm Hg, 40.0 ± 1.5 nmol·L-1) (P < 0.001). At the end of the 3MT, blood PCO2 was still lower in HYP (35.7 ± 5.4 mm Hg) than CONT (40.6 ± 5.0 mm Hg) (P < 0.001). WEP was 10% higher in HYP (19.4 ± 7.0 kJ) than CONT (17.6 ± 6.4 kJ) (P = 0.006), whereas EP was 5% lower in HYP (246 ± 69 W) than CONT (260 ± 74 W) (P = 0.007). The ΔWEP (J·kg-1) between CONT and HYP correlated positively with the PCO2 immediately before the 3MT in HYP (r = 0.77, P = 0.006). CONCLUSION These findings suggest that acid-base changes elicited by prior VH increase WEP but decrease EP during the all-out 3MT.
Collapse
Affiliation(s)
- Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UNITED KINGDOM
| | | | | | | |
Collapse
|
12
|
Bardakci O, Akdur G, Akdur O, Das M. Accidental Hypothermia and Transcranial Doppler Sonography: Case Report. Ther Hypothermia Temp Manag 2021; 11:192-195. [PMID: 34028287 DOI: 10.1089/ther.2020.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a patient who was diagnosed with hypothermia in the emergency department and the changes in bedside transcranial Doppler (TCD) measurements during and immediately after the diagnoses were recorded. To the best of our knowledge, this is the first case report in the literature in which TCD data were shared in an accidental hypothermia patient in the emergency department. A 78-year-old male patient was brought to the emergency department with the complaint of speech impairment. The respiratory rate was 24 bpm, pulse rate 40 bpm, body temperature 25.6°C, blood pressure 80/50 mmHg, and glasgow coma scale 11. On electrocardiography, sinus bradycardia (40 bpm) and a small deflection (J wave) at the end of the QRS complex were observed. Immediately after the patient's admission, right middle cerebral artery end diastolic velocity (EDV) was 13.42 cm/s, peak systolic velocity (PSV) was 40.25 cm/s, and pulsatile index (PI) was 1.26 cm/s. After 1 hour, her body temperature was 34.5°C. Measurements with TCD were repeated 1 hour later at the same point and EDV was found to be 26.12 cm/s, PSV 84.02 cm/s, and PI 1.33. At the fourth hour, the patient's body temperature was 36.4°C, he was normothermic, and his mental status completely normalized. The patient was hospitalized for follow-up and treatment. This case supports that it can be used in the evaluation of cerebral perfusion and improvement during treatment in patients with accidental hypothermia in their admission to the emergency department.
Collapse
Affiliation(s)
- Okan Bardakci
- Department of Emergency Medicine, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Gökhan Akdur
- Department of Emergency Medicine, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Okhan Akdur
- Department of Emergency Medicine, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Murat Das
- Department of Emergency Medicine, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| |
Collapse
|
13
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Gibbons TD, Ainslie PN, Thomas KN, Wilson LC, Akerman AP, Donnelly J, Campbell HA, Cotter JD. Influence of the mode of heating on cerebral blood flow, non-invasive intracranial pressure and thermal tolerance in humans. J Physiol 2021; 599:1977-1996. [PMID: 33586133 DOI: 10.1113/jp280970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS The human brain is particularly vulnerable to heat stress; this manifests as impaired cognition, orthostatic tolerance, work capacity and eventually, brain death. The brain's limitation in the heat is often ascribed to inadequate cerebral blood flow (CBF), but elevated intracranial pressure is commonly observed in mammalian models of heat stroke and can on its own cause functional impairment. The CBF response to incremental heat strain was dependent on the mode of heating, decreasing by 30% when exposed passively to hot, humid air (sauna), while remaining unchanged or increasing with passive hot-water immersion (spa) and exercising in a hot environment. Non-invasive intracranial pressure estimates (nICP) were increased universally by 18% at volitional thermal tolerance across all modes of heat stress, and therefore may play a contributing role in eliciting thermal tolerance. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under mild to severe heating due to lower blood flow but similarly increased nICP. ABSTRACT The human brain is particularly vulnerable to heat stress; this manifests as impaired cognitive function, orthostatic tolerance, work capacity, and eventually, brain death. This vulnerability is often ascribed to inadequate cerebral blood flow (CBF); however, elevated intracranial pressure (ICP) is also observed in mammalian models of heat stroke. We investigated the changes in CBF with incremental heat strain under three fundamentally different modes of heating, and assessed whether heating per se increased ICP. Fourteen fit participants (seven female) were heated to thermal tolerance or 40°C core temperature (Tc ; oesophageal) via passive hot-water immersion (spa), passive hot, humid air exposure (sauna), cycling exercise, and cycling exercise with CO2 inhalation to prevent heat-induced hypocapnia. CBF was measured with duplex ultrasound at each 0.5°C increment in Tc and ICP was estimated non-invasively (nICP) from optic nerve sheath diameter at thermal tolerance. At thermal tolerance, CBF was decreased by 30% in the sauna (P < 0.001), but was unchanged in the spa or with exercise (P ≥ 0.140). CBF increased by 17% when end-tidal P C O 2 was clamped at eupnoeic pressure (P < 0.001). On the contrary, nICP increased universally by 18% with all modes of heating (P < 0.001). The maximum Tc was achieved with passive heating, and preventing hypocapnia during exercise did not improve exercise or thermal tolerance (P ≥ 0.146). Therefore, the regulation of CBF is dramatically different depending on the mode and dose of heating, whereas nICP responses are not. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under equivalent heat strain.
Collapse
Affiliation(s)
- Travis D Gibbons
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Philip N Ainslie
- University of British Columbia, Okangan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kate N Thomas
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Luke C Wilson
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | | | | | - Holly A Campbell
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Jim D Cotter
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| |
Collapse
|
15
|
Huang XX, Zhang S, Yan LL, Tang Y, Wu J. Influential factors and predictors of anti-N-methyl-D-aspartate receptor encephalitis associated with severity at admission. Neurol Sci 2021; 42:3835-3841. [PMID: 33483886 DOI: 10.1007/s10072-021-05060-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We aimed to study the clinical characteristics and biological indicators of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis with different severity levels to explore factors predicting disease severity at admission. METHODS Using the modified Rankin scale (mRS), patients were divided into mild-to-moderate group (mRS ≤ 3) and severe group (mRS > 3) on admission based on severity of illness. General information, previous history, premonitory symptoms, clinical manifestations before admission, imaging findings and biochemical tests were compared to explore the clinical manifestations and biological indicators related to the severity of illness at admission. RESULTS In the severe group, the incidences of fever, anti-infective therapy, generalized seizures, consciousness disorder, blood white blood cell, neutrophils, and neutrophil-lymphocyte ratio (NLR) were higher than those in mild-to-moderate group (P < 0.001, P = 0.001, P = 0.020, P < 0.001, P = 0.002, P < 0.001, P < 0.001, respectively); blood lymphocyte counts was lower than those in mild-to-moderate group (P < 0.001). There was the strongest significant positive correlation between the NLR and disease severity at admission (rs = 0.684, P < 0.001). In multivariate logistic regression, fever, generalized seizures, consciousness disorder, and elevated NLR were independent risk factors for disease severity; the area under the receiver operating characteristic curve was 0.896 (95%CI: 0.840-0.952, P < 0.001). CONCLUSION Fever, generalized seizures, consciousness disorder, and elevated NLR were independent risk factors for disease severity. NLR is a good predictor of the severity of illness at admission.
Collapse
Affiliation(s)
- Xiao-Xue Huang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shuang Zhang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lu-Lu Yan
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yao Tang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Wallace PJ, Schultz Martins R, Scott JS, Steele SW, Greenway MJ, Cheung SS. The effects of acute dopamine reuptake inhibition on cognitive function during passive hyperthermia. Appl Physiol Nutr Metab 2020; 46:511-520. [PMID: 33232172 DOI: 10.1139/apnm-2020-0869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine activity can modulate physical performance in the heat, but less is known about its effects on cognition during thermal stress. Twelves males completed a randomized, double-blinded protocol consisting of oral ingestion of 20 mg of methylphenidate (MPH) or placebo (lactose pill) during passive heating using a water-perfused suit (water temperature ∼49 °C). To identify the impact of peripheral versus central thermal strain, a cognitive test battery was completed at 4 different thermal states: baseline (BASE; 37.2 ± 0.6 °C core, 32.9 ± 0.7 °C skin), neutral core-hot skin (NC-HS; 37.2 ± 0.3 °C, 37.4 ± 0.3 °C), hyperthermic core-hot skin (HC-HS; 38.7 ± 0.4 °C, 38.7 ± 0.2 °C), and hyperthermic core-cooled skin (HC-CS; 38.5 ± 0.4 °C, 35.1 ± 0.8 °C). The cognitive test battery consisted of the 2-back task (i.e., working memory), set-shifting (i.e., executive function), Groton Maze Learning Task (i.e., executive function) and detection task (i.e., psychomotor processing). MPH led to significantly higher heart rates (∼5-15 b·min-1) at BASE, NC-HS, and HC-HS (all p < 0.05). There were no significant differences in the number of errors made on each task (all p < 0.05). Participants were significantly faster (p < 0.05) on the set-shifting task in the HC-HS timepoint, irrespective of drug condition (p > 0.05). In summary, we demonstrated that 20 mg of MPH did not significantly alter cognitive function during either normothermia or moderate hyperthermia. Novelty: Twenty milligrams of MPH did not significantly alter cognitive function during passive heat stress. MPH led to significant higher heart rates (∼5-15 b·min-1) in thermoneutral and during passive heat stress. Future studies are needed to determine the mechanisms of why MPH improves physical but not cognitive performance during heat stress.
Collapse
Affiliation(s)
- Phillip J Wallace
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Ricardo Schultz Martins
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jake S Scott
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Scott W Steele
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Mathew J Greenway
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen S Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
17
|
Abstract
People undertaking prolonged vigorous exercise experience substantial bodily fluid losses due to thermoregulatory sweating. If these fluid losses are not replaced, endurance capacity may be impaired in association with a myriad of alterations in physiological function, including hyperthermia, hyperventilation, cardiovascular strain with reductions in brain, skeletal muscle and skin blood perfusion, greater reliance on muscle glycogen and cellular metabolism, alterations in neural activity and, in some conditions, compromised muscle metabolism and aerobic capacity. The physiological strain accompanying progressive exercise-induced dehydration to a level of ~ 4% of body mass loss can be attenuated or even prevented by: (1) ingesting fluids during exercise, (2) exercising in cold environments, and/or (3) working at intensities that require a small fraction of the overall body functional capacity. The impact of dehydration upon physiological function therefore depends on the functional demand evoked by exercise and environmental stress, as cardiac output, limb blood perfusion and muscle metabolism are stable or increase during small muscle mass exercise or resting conditions, but are impaired during whole-body moderate to intense exercise. Progressive dehydration is also associated with an accelerated drop in perfusion and oxygen supply to the human brain during submaximal and maximal endurance exercise. Yet their consequences on aerobic metabolism are greater in the exercising muscles because of the much smaller functional oxygen extraction reserve. This review describes how dehydration differentially impacts physiological function during exercise requiring low compared to high functional demand, with an emphasis on the responses of the human brain, heart and skeletal muscles.
Collapse
|
18
|
Qian S, Yan S, Zhou C, Shi Z, Wang Z, Xiong Y, Zhou Y. Resting-state brain activity predicts selective attention deficits during hyperthermia exposure. Int J Hyperthermia 2020; 37:220-230. [PMID: 32126849 DOI: 10.1080/02656736.2020.1735536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Purpose: Environmental hyperthermia exerts detrimental effect on attention performance that might increase the probability of accidents for high risk occupation. Previously, we reported aberrant activations and selective attention deficits under task performing during hyperthermia. However, whether resting-state baseline during hyperthermia would contribute to the reported selective attention deficits remains unclear.Materials and methods: Here, we investigated the resting-state activity within two attention subsystems named dorsal attention network (DAN) and ventral attention network (VAN) using the conjoint analysis of functional connectivity (FC) and regional cerebral blood flow (CBF). Blood oxygenation level dependent (BOLD) and 3 D arterial spin labeling data were obtained from 25 healthy male participants under two simulated thermal conditions: normothermic (25 °C for 1 h) and hyperthermic condition (50 °C for 1 h).Results: Paired comparisons on the FC and CBF showed decreased activity in the bilateral frontal eye field (FEF) and intraparietal sulcus (IPS) in the DAN but increased activity in the ventral frontal cortex (VFC) in the VAN. The CBF-FC correlation analysis further confirmed decreased CBF-FC coupling in the bilateral FEF in the DAN and increased coupling in the VFC in the VAN. Additionally, the left IPS and FEF in the DAN showed altered CBF per unit functional connectivity in the CBF/FC ratio analysis. Multiple regression analysis revealed that the selectively altered performances were predicted by alterations of the multiple metrics within the DAN and VAN.Conclusions: These findings suggested that altered resting-state brain activity within the attention networks might provide potential neural basis of the selective deficits for different cognitive-demand attention tasks under hyperthermia.
Collapse
Affiliation(s)
- Shaowen Qian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China.,Department of Medical Imaging, Jinan Military General Hospital, Jinan, People's Republic of China
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Chang Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Zhiyue Shi
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Zhaoqun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
21
|
Tsuji B, Hoshi Y, Honda Y, Fujii N, Sasaki Y, Cheung SS, Kondo N, Nishiyasu T. Respiratory mechanics and cerebral blood flow during heat-induced hyperventilation and its voluntary suppression in passively heated humans. Physiol Rep 2019; 7:e13967. [PMID: 30637992 PMCID: PMC6330649 DOI: 10.14814/phy2.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/01/2023] Open
Abstract
We investigated whether heat-induced hyperventilation can be voluntarily prevented, and, if so, how this modulates respiratory mechanics and cerebral blood flow in resting heated humans. In two separate trials, 10 healthy men were passively heated using lower body hot-water immersion and a water-perfused garment covering their upper body (both 41°C) until esophageal temperature (Tes ) reached 39°C or volitional termination. In each trial, participants breathed normally (normal-breathing) or voluntarily controlled minute ventilation (VE ) at a level equivalent to that observed after 5 min of heating (controlled-breathing). Respiratory gases, middle cerebral artery blood velocity (MCAV), work of breathing, and end-expiratory and inspiratory lung volumes were measured. During normal-breathing, VE increased as Tes rose above 38.0 ± 0.3°C, whereas controlled-breathing diminished the increase in VE (VE at Tes = 38.6°C: 25.6 ± 5.9 and 11.9 ± 1.3 L min-1 during normal- and controlled-breathing, respectively, P < 0.001). During normal-breathing, end-tidal CO2 pressure and MCAV decreased with rising Tes , but controlled-breathing diminished these reductions (at Tes = 38.6°C, 24.7 ± 5.0 vs. 39.5 ± 2.8 mmHg; 44.9 ± 5.9 vs. 60.2 ± 6.3 cm sec-1 , both P < 0.001). The work of breathing correlated positively with changes in VE (P < 0.001) and was lower during controlled- than normal-breathing (16.1 ± 12.6 and 59.4 ± 49.5 J min-1 , respectively, at heating termination, P = 0.013). End-expiratory and inspiratory lung volumes did not differ between trials (P = 0.25 and 0.71, respectively). These results suggest that during passive heating at rest, heat-induced hyperventilation increases the work of breathing without affecting end-expiratory lung volume, and that voluntary control of breathing can nearly abolish this hyperventilation, thereby diminishing hypocapnia, cerebral hypoperfusion, and increased work of breathing.
Collapse
Affiliation(s)
- Bun Tsuji
- Department of Health SciencesPrefectural University of HiroshimaHiroshimaJapan
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yuta Hoshi
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yasushi Honda
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yosuke Sasaki
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | | | - Narihiko Kondo
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| |
Collapse
|
22
|
Crandall CG, Rickards CA, Johnson BD. Impact of environmental stressors on tolerance to hemorrhage in humans. Am J Physiol Regul Integr Comp Physiol 2018; 316:R88-R100. [PMID: 30517019 DOI: 10.1152/ajpregu.00235.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemorrhage is a leading cause of death in military and civilian settings, and ~85% of potentially survivable battlefield deaths are hemorrhage-related. Soldiers and civilians are exposed to a number of environmental and physiological conditions that have the potential to alter tolerance to a hemorrhagic insult. The objective of this review is to summarize the known impact of commonly encountered environmental and physiological conditions on tolerance to hemorrhagic insult, primarily in humans. The majority of the studies used lower body negative pressure (LBNP) to simulate a hemorrhagic insult, although some studies employed incremental blood withdrawal. This review addresses, first, the use of LBNP as a model of hemorrhage-induced central hypovolemia and, then, the effects of the following conditions on tolerance to LBNP: passive and exercise-induced heat stress with and without hypohydration/dehydration, exposure to hypothermia, and exposure to altitude/hypoxia. An understanding of the effects of these environmental and physiological conditions on responses to a hemorrhagic challenge, including tolerance, can enable development and implementation of targeted strategies and interventions to reduce the impact of such conditions on tolerance to a hemorrhagic insult and, ultimately, improve survival from blood loss injuries.
Collapse
Affiliation(s)
- Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center , Dallas, Texas
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Blair D Johnson
- Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| |
Collapse
|
23
|
Barley OR, Chapman DW, Blazevich AJ, Abbiss CR. Acute Dehydration Impairs Endurance Without Modulating Neuromuscular Function. Front Physiol 2018; 9:1562. [PMID: 30450056 PMCID: PMC6224374 DOI: 10.3389/fphys.2018.01562] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction/Purpose: This study examined the influence of acute dehydration on neuromuscular function. Methods: On separate days, combat sports athletes experienced in acute dehydration practices (n = 14) completed a 3 h passive heating intervention (40°C, 63% relative humidity) to induce dehydration (DHY) or a thermoneutral euhydration control (25°C, 50% relative humidity: CON). In the ensuing 3 h ad libitum fluid and food intake was allowed, after which participants performed fatiguing exercise consisting of repeated unilateral knee extensions at 85% of their maximal voluntary isometric contraction (MVIC) torque until task failure. Both before and after the fatiguing protocol participants performed six MVICs during which measures of central and peripheral neuromuscular function were made. Urine and whole blood samples to assess urine specific gravity, urine osmolality, haematocrit and serum osmolality were collected before, immediately and 3 h after intervention. Results: Body mass was reduced by 3.2 ± 1.1% immediately after DHY (P < 0.001) but recovered by 3 h. Urine and whole blood markers indicated dehydration immediately after DHY, although blood markers were not different to CON at 3 h. Participants completed 28% fewer knee extensions at 85% MVIC (P < 0.001, g = 0.775) and reported a greater perception of fatigue (P = 0.012) 3 h after DHY than CON despite peak torque results being unaffected. No between-condition differences were observed in central or peripheral indicators of neuromuscular function at any timepoint. Conclusion: Results indicate that acute dehydration of 3.2% body mass followed by 3 h of recovery impairs muscular strength-endurance and increases fatigue perception without changes in markers of central or peripheral function. These findings suggest that altered fatigue perception underpins muscular performance decrements in recovery from acute dehydration.
Collapse
Affiliation(s)
- Oliver R Barley
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dale W Chapman
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
24
|
Lõhmus M. Possible Biological Mechanisms Linking Mental Health and Heat-A Contemplative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071515. [PMID: 30021956 PMCID: PMC6068666 DOI: 10.3390/ijerph15071515] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
This review provides examples of possible biological mechanisms that could, at least partly, explain the existing epidemiological evidence of heatwave-related exacerbation of mental disease morbidity. The author reviews the complicated central processes involved in the challenge of maintaining a stable body temperature in hot environments, and the maladaptive effects of certain psychiatric medicines on thermoregulation. In addition, the author discusses some alternative mechanisms, such as interrupted functional brain connectivity and the effect of disrupted sleep, which may further increase the vulnerability of mental health patients during heatwaves.
Collapse
Affiliation(s)
- Mare Lõhmus
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Solnavägen 4, 113 65 Stockholm, Sweden.
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 17177 Solna, Sweden.
| |
Collapse
|
25
|
Han W, Qian S, Jiang Q, Liu K, Li B, Sun G. Regional and long-range neural synchronization abnormality during passive hyperthermia. Behav Brain Res 2018; 341:9-15. [PMID: 29247749 DOI: 10.1016/j.bbr.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/25/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Passive hyperthermia would impair wide-domain cognitive performances (e.g. attention, working memory), which may involve abnormal regional and long-range neural activity. Combining the regional homogeneity (ReHo) and seed-based functional connectivity analysis, this study investigated the regional and long-range neural synchronization abnormality during passive hyperthermia. We acquired the resting-state blood oxygenation level dependent (BOLD) data from twenty-three healthy male participants in two simulated thermal conditions: normothermic condition (NC) with temperature at 25°C for 1 h and hyperthermic condition (HC) with temperature at 50°C for 1 h. After scanning, participants were asked to perform an attention network test (ANT). Relative to NC participants, the participants in HC group exhibited decreased regional neural synchronization in the frontal-occipital cortex, specifically in the left opercular part of inferior frontal gyrus/insula, bilateral middle occipital gyrus, and posterior cingulate cortex/precuneus, but increased one in the left dorsal superior/middle frontal gyrus. Using these significantly differed ReHo clusters as seeds, we further performed functional connectivity analysis and found aberrant long-range neural synchronization in the orbital medial frontal cortex, temporal-parietal junction areas. Further neurobehavioral correlation analysis showed significant positive correlation between the regional ReHo alteration in left dorsolateral superior/middle frontal gyrus and executive control effect. Additionally, the functional connectivity of the orbital medial frontal cortex with the seeds "left superior/middle frontal gyrus" and "posterior cingulate cortex/precuneus" were negatively correlated with the increase of rectal temperature. In current study, the participants showed hyperthermia-induced brain activity disruptions, appearing as altered local ReHo and long-range functional connectivity, which might help understand the relationship between neuronal and circuit activities and physiological thermal sensation and regulation as well as behavioral changes.
Collapse
Affiliation(s)
- Wei Han
- Department of Scientific Research and Training, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China
| | - Qingjun Jiang
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China
| | - Kai Liu
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China.
| | - Bo Li
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
26
|
Tsuji B, Filingeri D, Honda Y, Eguchi T, Fujii N, Kondo N, Nishiyasu T. Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. J Appl Physiol (1985) 2018; 124:225-233. [DOI: 10.1152/japplphysiol.00232.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevating core temperature at rest causes increases in minute ventilation (V̇e), which lead to reductions in both arterial CO2 partial pressure (hypocapnia) and cerebral blood flow. We tested the hypothesis that in resting heated humans this hypocapnia diminishes the ventilatory sensitivity to rising core temperature but does not explain a large portion of the decrease in cerebral blood flow. Fourteen healthy men were passively heated using hot-water immersion (41°C) combined with a water-perfused suit, which caused esophageal temperature (Tes) to reach 39°C. During heating in two separate trials, end-tidal CO2 partial pressure decreased from the level before heating (39.4 ± 2.0 mmHg) to the end of heating (30.5 ± 6.3 mmHg) ( P = 0.005) in the Control trial. This decrease was prevented by breathing CO2-enriched air throughout the heating such that end-tidal CO2 partial pressure did not differ between the beginning (39.8 ± 1.5 mmHg) and end (40.9 ± 2.7 mmHg) of heating ( P = 1.00). The sensitivity to rising Tes (i.e., slope of the Tes − V̇E relation) did not differ between the Control and CO2-breathing trials (37.1 ± 43.1 vs. 16.5 ± 11.1 l·min−1·°C−1, P = 0.31). In both trials, middle cerebral artery blood velocity (MCAV) decreased early during heating (all P < 0.01), despite the absence of hyperventilation-induced hypocapnia. CO2 breathing increased MCAV relative to Control at the end of heating ( P = 0.005) and explained 36.6% of the heat-induced reduction in MCAV. These results indicate that during passive heating at rest ventilatory sensitivity to rising core temperature is not suppressed by hypocapnia and that most of the decrease in cerebral blood flow occurs independently of hypocapnia. NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The last may underlie central fatigue. We are the first to demonstrate that hyperthermia-induced hyperventilation is not suppressed by the resultant hypocapnia and that hypocapnia explains only 36% of cerebral hypoperfusion elicited by hyperthermia. These new findings advance our understanding of the mechanisms controlling ventilation and cerebral blood flow during heat stress, which may be useful for developing interventions aimed at preventing central fatigue during hyperthermia.
Collapse
Affiliation(s)
- Bun Tsuji
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Tsubasa Eguchi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| |
Collapse
|
27
|
Lucas RAI, Wilson LC, Ainslie PN, Fan JL, Thomas KN, Cotter JD. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion. Am J Physiol Regul Integr Comp Physiol 2017; 314:R415-R426. [PMID: 29212807 DOI: 10.1152/ajpregu.00109.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify the dose-dependent effects of heat strain and orthostasis [via lower body negative pressure (LBNP)], with and without mild hypohydration, on systemic function and cerebral perfusion. Eleven men (means ± SD: 27 ± 7 y; body mass 77 ± 6 kg), resting supine in a water-perfused suit, underwent progressive passive heating [0.5°C increments in core temperature (Tc; esophageal to +2.0°C)] while euhydrated (EUH) or hypohydrated (HYPO; 1.5-2% body mass deficit). At each thermal state, mean cerebral artery blood velocity (MCAvmean; transcranial Doppler), partial pressure of end-tidal carbon dioxide ([Formula: see text]), heart rate (HR) and mean arterial blood pressure (MAP; photoplethysmography) were measured continuously during LBNP (0, -15, -30, and -45 mmHg). Four subjects became intolerant before +2.0°C Tc, unrelated to hydration status. Without LBNP, decreases in [Formula: see text] accounted fully for reductions in MCAvmean across all Tc. With LBNP at heat tolerance (+1.5 or +2.0°C), [Formula: see text] accounted for 69 ± 25% of the change in MCAvmean. The HYPO condition did not affect MCAvmean or any cardiovascular variables during combined LBNP and passive heat stress (all P > 0.13). These findings indicate that hypocapnia accounted fully for the reduction in MCAvmean when passively heat stressed in the absence of LBNP and for two- thirds of the reduction when at heat tolerance combined with LBNP. Furthermore, when elevations in Tc are matched, mild hypohydration does not influence cerebrovascular or cardiovascular responses to LBNP, even when stressed by a combination of hyperthermia and LBNP.
Collapse
Affiliation(s)
- R A I Lucas
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - L C Wilson
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,Department of Medicine, University of Otago , Dunedin , New Zealand
| | - P N Ainslie
- Department of Physiology, University of Otago , Dunedin , New Zealand.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan , Kelowna , Canada
| | - J L Fan
- Department of Physiology, University of Otago , Dunedin , New Zealand.,Institute of Sports Science, Faculty of Biology and Medicine, University of Lausanne , Lausanne , Switzerland.,Lemanic Neuroscience Doctoral School, University of Lausanne , Lausanne , Switzerland
| | - K N Thomas
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,Department of Surgical Sciences, Dunedin School of Medicine, University of Otago . New Zealand
| | - J D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
28
|
Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, González-Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiol Rep 2017; 5:5/2/e13108. [PMID: 28108645 PMCID: PMC5269410 DOI: 10.14814/phy2.13108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat‐stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locomotor limb hemodynamics, and hematological parameters were assessed during incremental cycling exercise with elevated skin (mild hyperthermia; HYPmild), combined core and skin temperatures (moderate hyperthermia; HYPmod), and under control conditions. Both hyperthermic conditions increased Tsk versus control (6.2 ± 0.2°C; P < 0.001), however, only HYPmod increased resting TB, leg blood flow and cardiac output (Q̇), but not MCA Vmean. Throughout exercise, Tsk remained elevated in both hyperthermic conditions, whereas only TB was greater in HYPmod. At exhaustion, oxygen uptake and exercise capacity were reduced in HYPmod in association with lower leg blood flow, MCA Vmean and mean arterial pressure (MAP), but similar maximal heart rate and TB. The attenuated brain and leg perfusion with hyperthermia was associated with a plateau in MCA and two‐legged vascular conductance (VC). Mechanistically, the falling MCA VC was coupled to reductions in PaCO2, whereas the plateau in leg vascular conductance was related to markedly elevated plasma [NA] and a plateau in plasma ATP. These findings reveal that whole‐body hyperthermia, but not skin hyperthermia, compromises exercise capacity in heat‐stressed humans through the early attenuation of brain and active muscle blood flow.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Niels H Secher
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,The Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
29
|
Xue Y, Li L, Qian S, Liu K, Zhou XJ, Li B, Jiang Q, Wu Z, Du L, Sun G. The effects of head-cooling on brain function during passive hyperthermia: an fMRI study. Int J Hyperthermia 2017; 34:1010-1019. [PMID: 29025324 DOI: 10.1080/02656736.2017.1392046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yan Xue
- Graduate School, Jinzhou Medical University, Jinzhou, China
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Li Li
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
- Institute of Postgraduates, The Second Military Medical University, Shanghai, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Kai Liu
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Xiaohong Joe Zhou
- Center for MR Research, and Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bo Li
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Qingjun Jiang
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Zhuanzhuan Wu
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Lexia Du
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| |
Collapse
|
30
|
Song X, Qian S, Liu K, Zhou S, Zhu H, Zou Q, Liu Y, Sun G, Gao JH. Resting-state BOLD oscillation frequency predicts vigilance task performance at both normal and high environmental temperatures. Brain Struct Funct 2017; 222:4065-4077. [PMID: 28600679 DOI: 10.1007/s00429-017-1449-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
Abstract
Hyperthermia may impair vigilance functions and lead to slower reaction times (RTs) in the psychomotor vigilance task (PVT) and possibly disturbing cerebral hemodynamic rhythms. To test these hypotheses, we acquired the resting-state BOLD and cerebral blood flow (CBF) data, as well as PVTRTs from 15 participants in two simulated environmental thermal conditions (50 °C/25 °C). We adopted a data-driven method, frequency component analysis, to quantify the mean frequency of the BOLD series of each voxel. Across-subject correlation analysis was employed to detect the brain areas whose BOLD oscillation frequency was correlated with the RTs. Significant changes of BOLD frequency and CBF within these areas were compared between hyperthermia and normothermia conditions. Spatial correlations between BOLD frequency and CBF were calculated within different brain areas for each subject under both thermal conditions. Results showed that, under both thermal conditions, the RTs correlated with the BOLD frequency positively in the default mode network (DMN) and negatively in the sensorimotor network (SMN). The increase of BOLD frequency in the thalamus and ventral medial prefrontal cortex was correlated with the increase of RTs in hyperthermia compared with normothermia. Hyperthermia decreased BOLD frequency and CBF in the SMN, while it increased CBF in the thalamus and posterior cingulate. In both thermal conditions, the spatial distribution of CBF negatively correlated with the spatial distribution of BOLD oscillation frequency in most cortical areas, especially in cingulate cortices, precuneus, and primary visual cortex. These results suggest that hyperthermia might deteriorate task performance by interfering with the resting-state CBF, and with BOLD rhythms. The overlapping of the thermoregulatory and vigilance functions in the SMN and DMN might underlie the neural mechanisms of the cognitive-behavioral impairments induced by hyperthermia.
Collapse
Affiliation(s)
- Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, China
| | - Kai Liu
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, China
| | - Shuqin Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yijun Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, China.
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China.
- Shenzhen Institute of Neuroscience, Shenzhen, China.
| |
Collapse
|
31
|
Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985) 2017; 122:1068-1076. [DOI: 10.1152/japplphysiol.00775.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Sustained physical exercise leads to a reduced capacity to produce voluntary force that typically outlasts the exercise bout. This “fatigue” can be due both to impaired muscle function, termed “peripheral fatigue,” and a reduction in the capacity of the central nervous system to activate muscles, termed “central fatigue.” In this review we consider the factors that determine the recovery of voluntary force generating capacity after various types of exercise. After brief, high-intensity exercise there is typically a rapid restitution of force that is due to recovery of central fatigue (typically within 2 min) and aspects of peripheral fatigue associated with excitation-contraction coupling and reperfusion of muscles (typically within 3–5 min). Complete recovery of muscle function may be incomplete for some hours, however, due to prolonged impairment in intracellular Ca2+ release or sensitivity. After low-intensity exercise of long duration, voluntary force typically shows rapid, partial, recovery within the first few minutes, due largely to recovery of the central, neural component. However, the ability to voluntarily activate muscles may not recover completely within 30 min after exercise. Recovery of peripheral fatigue contributes comparatively little to the fast initial force restitution and is typically incomplete for at least 20–30 min. Work remains to identify what factors underlie the prolonged central fatigue that usually accompanies long-duration single joint and locomotor exercise and to document how the time course of neuromuscular recovery is affected by exercise intensity and duration in locomotor exercise. Such information could be useful to enhance rehabilitation and sports performance.
Collapse
Affiliation(s)
- T. J. Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland; and
| | - J. L. Taylor
- Neuroscience Research Australia and University of New South Wales
| | - S. C. Gandevia
- Neuroscience Research Australia and University of New South Wales
| |
Collapse
|
32
|
Middle cerebral artery blood flow velocity during a 4 km cycling time trial. Eur J Appl Physiol 2017; 117:1241-1248. [DOI: 10.1007/s00421-017-3612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
33
|
Hartley GL, Cheung SS. Reply from Geoffrey L. Hartley and Stephen S. Cheung. J Physiol 2016; 594:7485-7486. [PMID: 27976393 DOI: 10.1113/jp273427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Geoffrey L Hartley
- Centre for Physical and Health Education, Schulich School of Education, Nipissing University, North Bay, Ontario
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St Catharines, Ontario
| |
Collapse
|
34
|
Nakata H, Oshiro M, Namba M, Shibasaki M. Effects of aerobic exercise under different thermal conditions on human somatosensory processing. Am J Physiol Regul Integr Comp Physiol 2016; 311:R629-R636. [PMID: 27465733 DOI: 10.1152/ajpregu.00153.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
The present study aimed to investigate the effects of aerobic exercise on human somatosensory processing recorded by somatosensory evoked potentials (SEPs) under temperate [TEMP, 20°C and 40% relative humidity (RH)] and hot (HOT, 35°C and 30% RH) environments. Fifteen healthy subjects performed 4 × 15-min bouts of a moderate cycling exercise [mean power output: 156.5 ± 7.7 (SE) W], with a 10-min rest period and received a posterior tibial nerve stimulation at the left ankle before and after each exercise bout; SEPs were recorded in five sessions; 1st (pre), 2nd (post-1st exercise bout), 3rd (post-2nd exercise bout), 4th (post-3rd exercise bout), and 5th (post-4th exercise bout). The peak latencies and amplitudes of the P37, N50, P60, and N70 components at Cz were evaluated. The latencies of P37, N50, P60, and N70 were significantly shorter with the repetition of aerobic exercise, and these shortened latencies were significantly greater in the HOT condition than in the TEMP condition (P37: 3rd, P < 0.05, and 5th, P < 0.01; P60: 4th, P < 0.05, and 5th, P < 0.01; N70: 4th, P < 0.05, and 5th, P < 0.001). No significant differences were observed in the amplitudes of any SEP component under either thermal condition. These results suggest that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and aerobic exercise did not alter the strength of neural activity in cortical somatosensory processing.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan; and
| | - Misaki Oshiro
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mari Namba
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Manabu Shibasaki
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan; and
| |
Collapse
|
35
|
Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex. J Appl Physiol (1985) 2016; 121:678-86. [PMID: 27418687 DOI: 10.1152/japplphysiol.00293.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
This article reviews the use of transcranial magnetic stimulation (TMS) over the motor cortex to make estimates of the level of voluntary drive to muscles. The method, described in 2003 (Todd et al. J Physiol 551: 661-671, 2003), uses a TMS pulse to produce descending corticospinal volleys that synaptically activate motoneurons, resulting in a muscle twitch. Linear regression of the superimposed twitch amplitude and voluntary force (or torque) can generate an "estimated" resting twitch for muscles involved in a task. This procedure has most commonly been applied to elbow flexors but also to knee extensors and other muscle groups. Data from 44 papers using the method were tabulated. We identify and discuss five major technical challenges, and the frequency with which they are addressed. The technical challenges include inadvertent activation of the cortical representation of antagonist muscles, the role of antagonist torques at the studied joint, uncertainty about the effectiveness of the TMS pulse in activating the motoneuron pool, the linearity of the voluntary force (or torque) and superimposed twitch relationship, and variability in the TMS-evoked EMG and force/torque responses. The ideal situation in which the descending corticospinal volleys recruit all of the agonist motoneurons and none of the antagonist motoneurons is unlikely to ever occur, and hence results must be carefully examined to assess the authenticity of the voluntary activation estimates in the context of the experimental design. A partial compromise lies in the choice of stimulus intensity. We also identify aspects of the procedure that require further investigation.
Collapse
Affiliation(s)
- Gabrielle Todd
- School of Pharmacy and Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia; and University of New South Wales, Kensington, NSW, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, NSW, Australia; and University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
36
|
Hartley GL, Watson CL, Ainslie PN, Tokuno CD, Greenway MJ, Gabriel DA, O'Leary DD, Cheung SS. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow. J Physiol 2016; 594:3423-37. [PMID: 26836470 DOI: 10.1113/jp271914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic-induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated. We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation-induced hypocapnia to reduce both CBF and P ETC O2. Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2. These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. ABSTRACT Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor-evoked potentials (MEPs), maximal M-wave (Mmax ) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg(-1) ) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end-tidal PCO2 (P ETC O2); (2) controlled iso-oxic hyperventilation-induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation-mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%Mmax ) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability - as reflected by larger MEP amplitude - appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2.
Collapse
Affiliation(s)
- Geoffrey L Hartley
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Physical and Health Education, Schulich School of Education, Nipissing University, North Bay, Ontario, Canada
| | - Cody L Watson
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Craig D Tokuno
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Matthew J Greenway
- Michael G. DeGroote School of Medicine, Niagara Regional Campus, McMaster University, Hamilton, Ontario, Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
37
|
Tsuji B, Hayashi K, Kondo N, Nishiyasu T. Characteristics of hyperthermia-induced hyperventilation in humans. Temperature (Austin) 2016; 3:146-60. [PMID: 27227102 PMCID: PMC4879782 DOI: 10.1080/23328940.2016.1143760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/11/2022] Open
Abstract
In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is observed in panting dogs, but the physiological significance and characteristics of the hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this response, and 3) the physiological consequences of the response.
Collapse
Affiliation(s)
- Bun Tsuji
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan; Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Keiji Hayashi
- Junior College, University of Shizuoka , Shizuoka, Japan
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University , Kobe, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba , Tsukuba City, Japan
| |
Collapse
|
38
|
Schlader ZJ, Wilson TE, Crandall CG. Mechanisms of orthostatic intolerance during heat stress. Auton Neurosci 2015; 196:37-46. [PMID: 26723547 DOI: 10.1016/j.autneu.2015.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023]
Abstract
Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate.
Collapse
Affiliation(s)
- Zachary J Schlader
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States.
| | - Thad E Wilson
- Marian University College of Osteopathic Medicine, Indianapolis, IN, United States
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
39
|
Nakata H, Oshiro M, Namba M, Shibasaki M. Effects of passive heat stress on human somatosensory processing. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1387-96. [DOI: 10.1152/ajpregu.00280.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022]
Abstract
Herein, we investigated the effects of passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs). Fifteen healthy subjects received a median nerve stimulation at the left wrist under two thermal conditions: Heat Stress and normothermic Time Control. The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4′ and P14, N18, P22, and N30 at Fz were evaluated. Under the Heat Stress condition, SEPs were recorded at normothermic baseline (1st), early in heat stress (2nd), when esophageal temperature had increased by ∼1.0°C (3rd) and ∼2.0°C (4th), and after heat stress (5th). In the Time Control condition, SEPs were measured at the same time intervals as those in the Heat Stress condition. The peak latencies and amplitudes of SEPs did not change early in heat stress. However, the latencies of P14, N20, and N60 at C4′ and P14, N18, and P22 at Fz were significantly shorter in the 4th session than in the 1st session. Furthermore, the peak amplitudes of P25 and N60 at C4′, and P22 and N30 at Fz decreased with increases in body temperature. On the other hand, under the Time Control condition, no significant differences were observed in the amplitudes or latencies of any component of SEPs. These results suggested that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and hyperthermia impaired the neural activity of cortical somatosensory processing.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan; and
| | - Misaki Oshiro
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mari Namba
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Manabu Shibasaki
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan; and
| |
Collapse
|
40
|
Whole body heat stress increases motor cortical excitability and skill acquisition in humans. Clin Neurophysiol 2015; 127:1521-1529. [PMID: 26616546 DOI: 10.1016/j.clinph.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. METHODS Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. RESULTS Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. CONCLUSIONS Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. SIGNIFICANCE Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation.
Collapse
|
41
|
Abstract
Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.
Collapse
Affiliation(s)
- Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas Marian University College of Osteopathic Medicine, Indianapolis, Indiana
| | | |
Collapse
|
42
|
Fujii N, Tsuji B, Honda Y, Kondo N, Nishiyasu T. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans. J Appl Physiol (1985) 2015; 119:435-44. [PMID: 26159763 DOI: 10.1152/japplphysiol.01049.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P < 0.05). These traditional indices of successful heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P < 0.05). TR-COLD did not attenuate the increase in minute ventilation or the decrease in the cerebral vascular conductance index observed during passive heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion.
Collapse
Affiliation(s)
- Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Bun Tsuji
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Honda
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan;
| |
Collapse
|
43
|
Randall CA, Ross EZ, Maxwell NS. Effect of Practical Precooling on Neuromuscular Function and 5-km Time-Trial Performance in Hot, Humid Conditions Among Well-Trained Male Runners. J Strength Cond Res 2015; 29:1925-36. [DOI: 10.1519/jsc.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Goodall S, Charlton K, Hignett C, Prichard J, Barwood M, Howatson G, Thomas K. Augmented supraspinal fatigue following constant-load cycling in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:164-72. [DOI: 10.1111/sms.12370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Affiliation(s)
- S. Goodall
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - K. Charlton
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - C. Hignett
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - J. Prichard
- Institue of Health & Society; Newcastle University; Newcastle UK
| | - M. Barwood
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - G. Howatson
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - K. Thomas
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| |
Collapse
|
45
|
Qian S, Li M, Li G, Liu K, Li B, Jiang Q, Li L, Yang Z, Sun G. Environmental heat stress enhances mental fatigue during sustained attention task performing: Evidence from an ASL perfusion study. Behav Brain Res 2015; 280:6-15. [DOI: 10.1016/j.bbr.2014.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
46
|
Burdon CA, Easthope CS, Johnson NA, Chapman PG, O'Connor H. The influence of ice slushy on voluntary contraction force following exercise-induced hyperthermia. Appl Physiol Nutr Metab 2014; 39:781-6. [PMID: 24971678 DOI: 10.1139/apnm-2013-0394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the effect of exercise-induced hyperthermia on central fatigue and force decline in exercised and nonexercised muscles and whether ingestion of ice slushy (ICE) ameliorates fatigue. Eight participants (5 males, 3 females) completed 45 s maximal voluntary isometric contractions (MVIC) with elbow flexors and knee extensors at baseline and following an exercise-induced rectal temperature (Trec) of 39.3 ± 0.2 °C. Percutaneous electrical muscle stimulation was superimposed at 15, 30 and 44 s during MVICs to assess muscle activation. To increase Trec to 39.3 °C, participants cycled at 60% maximum power output for 42 ± 11 min in 40 °C and 50% relative humidity. Immediately prior to each MVIC, participants consumed 50 g of ICE (-1 °C) or thermoneutral drink (38 °C, CON) made from 7.4% carbohydrate beverage. Participants consumed water (19 °C) during exercise to prevent hypohydration. Voluntary muscle force production and activation in both muscle groups were unchanged at Trec 39.3 °C with ICE (knee extensors: 209 ± 152 N) versus CON (knee extensors: 255 ± 157 N, p = 0.19). At Trec 39.3 °C, quadriceps mean force (232 ± 151 N) decreased versus baseline (302 ± 180 N, p < 0.001) and mean voluntary activation was also decreased (by 15% ± 11%, p < 0.001). Elbow flexor mean force decreased from 179 ± 67 N to 148 ± 65 N when Trec was increased to 39.3 °C (p < 0.001) but mean voluntary activation was not reduced at 39.3 °C (5% ± 25%, p = 0.79). After exercise-induced hyperthermia, ICE had no effect on voluntary activation or force production; however, both were reduced from baseline in the exercised muscle group. Peripheral fatigue was greater than the central component and limited the ability of an intervention designed to alter central fatigue.
Collapse
Affiliation(s)
- Catriona A Burdon
- a Exercise and Sport Science, University of Sydney, 75 East St., Lidcombe 2141, NSW, Australia
| | | | | | | | | |
Collapse
|
47
|
Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J Physiol 2014; 592:3143-60. [PMID: 24835170 PMCID: PMC4214665 DOI: 10.1113/jphysiol.2014.272104] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral artery velocity (MCA Vmean), arterial–venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12–23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P < 0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all conditions, reductions in ICA and MCA Vmean were associated with declining cerebral vascular conductance, increasing jugular venous noradrenaline, and falling arterial carbon dioxide tension () (R2 ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing and enhancing vasoconstrictor activity. However, the circulatory strain on the human brain during maximal exercise does not compromise CMRO2 because of compensatory increases in O2 extraction.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Scott T Chiesa
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Christopher G Stock
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Kameljit K Kalsi
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Niels H Secher
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
48
|
Bain AR, Morrison SA, Ainslie PN. Cerebral oxygenation and hyperthermia. Front Physiol 2014; 5:92. [PMID: 24624095 PMCID: PMC3941303 DOI: 10.3389/fphys.2014.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/18/2014] [Indexed: 12/04/2022] Open
Abstract
Hyperthermia is associated with marked reductions in cerebral blood flow (CBF). Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g., posture and degree of hyperthermia). The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2) causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g., hemorrhage or orthostatic challenges), an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy) during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e., 1.0°C to 2.0°C increase in body core temperature) levels of hyperthermia. Future research directions are provided.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, BC, Canada
| | - Shawnda A Morrison
- Faculty of Professional Studies, Kinesiology, Acadia University Wolfville, NS, Canada
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia Okanagan, BC, Canada
| |
Collapse
|
49
|
Qian S, Jiang Q, Liu K, Li B, Li M, Li L, Yang X, Yang Z, Sun G. Effects of short-term environmental hyperthermia on patterns of cerebral blood flow. Physiol Behav 2014; 128:99-107. [PMID: 24530482 DOI: 10.1016/j.physbeh.2014.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/11/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Environmental hyperthermia is a very common risk factor for many occupations, however, its potential influences on cerebral circulation remain obscure. In this study, 20 participants underwent two simulated environmental thermal conditions (50 °C/25 °C, 1 h), and their cerebral blood flows (CBFs) were quantified using a pseudo-continuous arterial spin labeling (ASL) MR imaging. During the experiment, the physiological parameters, including rectal temperature, arterial blood pressure and weight loss, heart rate and respiration rate, were recorded, and a visual analog scale (VAS) test was performed during both conditions to evaluate the psychological state including vigilance, anxiety, vigor, confidence, anger, nervousness, drowsiness, and loquacity. After scanning, a highly-demanding attentional task--the psychomotor vigilance test (PVT) was performed for behavioral performance evaluation. Compared with that during normothermic condition, the global CBF (gCBF) during hyperthermic condition showed a tendency of decrease, but no significant differences. Regional CBFs (rCBFs) were significantly altered mainly in the prefrontal cortex, somatosensory areas and limbic system. Physiological detection revealed significantly decreased diastolic pressure and systolic pressure and accelerated respiration rate. Furthermore, linear multivariate regression analysis showed that altered rCBFs in several regions could be predicted by physiological (systolic pressure, rectal temperature) and psychological (vigilance, drowsiness, nervousness, anger) changes. And PVT revealed significantly slower attentional reaction during hyperthermia, and the longer reaction time was correlated with the altered rCBF in the left dorsolateral prefrontal cortex (DLPFC). These findings suggested that during short-term hyperthermia gCBF might remain relatively stable under the integrated effect of physiological changes and cerebral auto-regulation, rather than decreased solely dependently on hyperthermia-induced physiological changes. Furthermore, altered regional blood distribution might be accounted for neural activity of thermal sensation and regulation, mood state and cognitive changes.
Collapse
Affiliation(s)
- Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Qingjun Jiang
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Kai Liu
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Bo Li
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Min Li
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Li Li
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Xiao Yang
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Zhen Yang
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China.
| |
Collapse
|
50
|
Gholipoor P, Saboory E, Roshan-Milani S, Fereidoni J. Effect of hyperthermia on histamine blood level and convulsive behavior in infant rats. Epilepsy Behav 2013; 29:269-74. [PMID: 24051280 DOI: 10.1016/j.yebeh.2013.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Febrile seizures (FS), which have been extensively studied using animal models, are the most common type of convulsive events in children, but the cellular mechanisms causing FS are still unclear. Histamine has been suggested to participate in seizure control. This study investigated the effect of hyperthermia (HT) on histamine blood level (HBL) and convulsive behavior in prepubertal rats. Forty Wistar rat pups were assigned to 5 groups (n=8), namely, control, HT, cromolyn, chlorpheniramine, and ranitidine. Two groups of adult rats were also used as control and HT adults. The control rats were placed in a hyperthermic chamber, and a room temperature current of air was blown on them. In all other groups, the rats were placed in the chamber for 30 min, and a current of warm air was applied to them. In the pretreatment groups, the rats received an injection of 68-mg/kg cromolyn sodium, 4-mg/kg chlorpheniramine, or 80-mg/kg ranitidine intraperitoneally 30 min prior to HT. Body temperature and convulsive behaviors were recorded. Then, the rats were anesthetized with ether, and their blood sample was obtained through direct heart puncture. Hyperthermia initiated convulsive behaviors in infant rats but not in the adult ones. Pretreatment with chlorpheniramine significantly potentiated convulsive behaviors (p=0.017). Hyperthermia led to a significant decrease in the HBL of both infant (p<0.001) and adult (p=0.003) rats. Pretreatments led to more decrease in the HBL of infant rats (p<0.001). It was concluded that HT could lead to a decrease in HBL, which in turn increases the seizure susceptibility of animals. Histamine may have a pivotal role in hyperthermia-induced seizures.
Collapse
Affiliation(s)
- Peyman Gholipoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | |
Collapse
|